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Abstract—In this paper we propose a method to classify radar
clutter from radar data using a non-supervised classification
algorithm. As a final objective, new radars will therefore be
able to use the experience of other radars to improve their
performances: learning pathological radar clutter can be used
to fix some false alarm rate created by strong echoes coming
from hail, rain, waves, mountains, cities; it will also improve the
detectability of slow moving targets, like drones, which can be
hidden in the clutter, flying close to the landform.

Index Terms—radar clutter, machine learning, non-supervised
classification, k-means, autocorrelation matrix, Burg algorithm,
reflection coefficients, Kähler metric

I. INTRODUCTION

Our aim is to classify the radar clutter cell by cell, a cell
being an area of small lenght in a direction in which the
radar sends a series of pulses. A cell is represented by a
temporal sequence of complex numbers corresponding to the
amplitude a phase of the echoes coming back from this area
to the radar. The idea is to classify each cell according to
the autocorrelation matrix of the complex temporal signal.
In [1], this autocorrelation matrix is said to be equivalent to
coefficients of an autoregressive model, called reflection co-
efficients, which will be estimated thanks to Burg algorithms.
We will then classify the cells according to these reflection
coefficients. The non-supervised classification of radar data is
dealt in [2] with a mean-shift algorithm. Here we will present
another classification algorithm called k-means, and test it on
simulated data, showing promising results.

II. INTRODUCTION TO SIGNAL PROCESSING THEORY

A. From radar data to complex matrices

In this study, the input data will be taken on a single burst,
for a single elevation corresponding to the horizontal beam.

Therefore, the radar provides us a 2D complex matrix of
size (#impulses)× (#cells):

U =


u0,0 u0,1 u0,2 . . . u0,p−1
u1,0 u1,1 u1,2 . . . u1,p−1

...
...

...
. . .

...
un−1,0 un−1,1 un−1,2 . . . un−1,p−1

 (1)

where n denotes the number of pulses of the burst, p the
number of cells.

The complex coefficient uij represents the amplitude and
phase after pulse compression of the echo beam at distance
index i from the radar, at time index j (jth impulse).

The data to classify are the cells, each cell being represented
by a column of the matrix U .

B. Model and hypotheses

We will now focus on a single column of the matrix U
defined in equation 1. We will define its autocorrelation matrix
and explain how to estimate an equivalent formulation of this
autocorrelation matrix.

We denote by ·T the matrix transposition, ·H the complex
matrix conjugate transpose and ·∗ the complex scalar conju-
gate.

We denote:

u = [u(0), u(1), ..., u(n− 1)]T (2)

the one dimensional complex signal registered in a cell.
We assume this signal to be stationary with zero mean:

E[u(n)] = 0 for all n (3)

We also assume that this signal can be modeled as an
autoregressive Gaussian process.

Interested readers may refer to [3] for a comprehensive
course on complex signal processing theory.



C. From input vector to autocorrelation matrix
We define the autocorrelation matrix:

R = E[u uH ] (4)

ri,j = E[u(k + i)u(k + j)∗] (5)

We define the time lag: t = i− j.
Proposition 1 (autocorrelation and stationarity): The signal

is supposed to be stationary, so ri,j depends only of the lag t.

ri,j = E[u(k + i)u(k + j)∗]
= E[u(k + i− j)u(k)∗]
= E[u(k + t)u(k)∗]
= rt

(6)

Proposition 2 (autocorrelation and conjugation):

r−t = E[u(k − t)u(k)∗]
= E[u(k)u(k + t)∗]
= E[u(k + t)u(k)∗]∗

= r∗t

(7)

Consequence: R is a Positive Definite Hermitian Toeplitz
matrix.

R =


r0 r∗1 r∗2 . . . r∗n−1
r1 r0 r∗1 . . . r∗n−2
r2 r1 r0 . . . r∗n−3
...

...
...

. . .
...

rn−1 rn−2 rn−3 . . . r0

 (8)

Note that the assumptions made in section II-B that the
signal can be modeled as a complex stationary autoregessive
Gaussian process with zero mean has the following equivalent
formulation : u = R1/2x with R a Toeplitz Hermitian Positive
Definite matrix and x a standard complex Gaussian random
vector which dimension is equal to the number of pulses.

D. Autocorrelation matrix estimation
In our classification problem, the autocorrelation matrix Ri

will be estimated independently for each cell ui:

U =


u0,0 u0,1 u0,2 . . . u0,p−1
u1,0 u1,1 u1,2 . . . u1,p−1

...
...

...
. . .

...
un−1,0 un−1,1 un−1,2 . . . un−1,p−1


↓ ↓ ↓ ↓

R̂0 R̂1 R̂2 R̂p−1
(9)

a) Empirical covariance matrix: To estimate the Toeplitz
autocorrelation matrix R from the data vector u, we can
estimate each coefficient rt by the following empirical mean:

r̂t =
1

n− t

n−1−t∑
k=0

u(k + t)u(k)∗ t = 0, ..., n− 1 (10)

Note that this method is unprecise when the vector length
n is small, especially when the lag t is close to n−1. We now
propose a more robust method to estimate the autocorrelation
matrix with few data, based on an autoregessive model.

b) Burg algorithm: The Burg algorithm principle is to
minimize the forward and the backward prediction errors.
The regularised Burg algorithm of order M and regularization
coefficient γ is described in algorithm 1 and detailed in [4],
[5].

Algorithm 1 regularised Burg algorithm
Initialization:

f0,k = b0,k = uk k = 0, ..., n− 1 (11)

a0,k = 1 k = 0, ..., n− 1 (12)

p0 =
1

n

n−1∑
k=0

|uk|2 (13)

for i = 1, ...,M : do

µi = −

(
2
n−i

n−1∑
k=i

fi−1,k b̄i−1,k−1 + 2
i−1∑
k=1

βk,iak,i−1ai−k,i−1

)
(

1
n−i

n−1∑
k=i

|fi−1,k|2 + |bi−1,k−1|2 + 2
i−1∑
k=0

βk,i|ak,i−1|2
)

(14)

where:

βk,i = γ(2π)2(k − i)2 (15)

{
ak,i = ak,i−1 + µiāi−k,i−1 k = 1, ..., i− 1
ai,i = µi

(16)

and

{
fi,k = fi−1,k + µibi−1,k−1 k = i, ..., n− 1
bi,k = bi−1,k−1 + µ̄ifi−1,k k = i, ..., n− 1

(17)

end for
return (p0, µ1, ..., µn−1)

The regularized Burg algorithm allows us to transform
the original complex vector u into a power factor in R∗+
and reflection coefficients in Dn−1, where D represents the
complex unit disk.

According to [1], the following transformation is a bijection:

T +
n → R∗+ × Dn−1

Rn 7→ (p0, µ1, ..., µn−1) (18)



where T +
n denotes the set of Positive Definite Hermitian

Toeplitz matrices of size n.
It is therefore equivalent to estimate the coefficients

(p0, µ1, ..., µn−1) and Rn.

E. The Kähler metric

According to the previous bijection, we will represent a
Positive Definite Hermitian Toeplitz matrix Ti by the corre-
sponding coefficients (p0,i, µ1,i, ..., µn−1,i).

The following distance on R∗+×Dn−1 has been introduced
by F. Barbaresco in [6]:

d2T +
n

(T1, T2) = d2T +
n

((p0,1, µ1,1, ..., µn−1,1), (p0,2, µ1,2, ..., µn−1,2))

= n log2

(
p0,2
p0,1

)
+

n−1∑
l=1

n− l
4

log2

1 +
∣∣∣ µl,1−µl,2

1−µl,1µ∗
l,2

∣∣∣
1−

∣∣∣ µl,1−µl,2

1−µl,1µ∗
l,2

∣∣∣


(19)

In the Encyclopedia of Distance by Deza [7], this distance
is called Barbaresco distance.

F. The Kähler mean

The computation of the mean is an important step of the
k-means algorithm described below. Our first task is to give
a meaningful definition the mean in a non-Euclidean metric
space.

The Kähler mean of (T0, ..., Tm−1) is defined as the point
X such that the following function f , sum of the squared
distances from X to Ti, reaches its minimum:

f(X) =

m−1∑
i=0

d2(X,Ti) (20)

We can see in equation 19 that the squared distance between
two matrices T1 and T2 is a linear combination of squared
distances between the coordinates (p0,1, µ1,1, ..., µn−1,1) and
(p0,2, µ1,2, ..., µn−1,2). Hence the coordinates can be averaged
independently:

T0 7→ ( p0,0, µ1,0, · · · , µn−1,0 )
...

...
...

...
Tm−1 7→ ( p0,m−1, µ1,m−1, · · · , µn−1,m−1 )

↓ ↓ ↓
T ← ( p0, µ1, · · · , µn−1 )

(21)

The Kähler mean algorithm is performed in [8] as a gradient
descent on the function f , which is equivalent to a gradient
descent on each coordinate. Remember that the space R∗+ ×
Dn−1 is not endowed with the Euclidean metric, so this is not
a classical gradient descent in a Euclidean space but a gradient
descent in the Riemannian manifold R∗+×Dn−1 endowed with
the Kähler metric. At each step of the algorithm, once the
gradient is computed (it is an element of the tangent space),
we move on R∗+ × Dn−1 following its geodesics.

III. SIMULATION MODEL

Each cell is simulated independently from the others. For
each cell, we simulate a complex vector using a SIRV (Spher-
ically Invariant Random Vectors) model:

Z =
√
τR1/2x︸ ︷︷ ︸

information coming from the environment

+ bradar︸ ︷︷ ︸
noise coming from the radar itself

(22)
with:
τ : clutter texture (positive real random variable).
R: scaled autocorrelation matrix (Toeplitz Hermitian

Positive Definite).
x, bradar: independent standard complex Gaussian random

vectors which dimension is equal to the number of
pulses.

To choose the matrix R, we learn experimentally from
radar measures the spectrum shape of the clutter we want to
simulate. The scaled autocorrelation coefficients of the matrix
R can then be computed from the spectrum using the inverse
Fourier transform.

See [9], [10] for more details about clutter modeling.

IV. CLASSIFICATION PROBLEM

A. Methodology

Using the previous model, we simulate 100 vectors with the
model parameters (τ1, R1) and 100 vectors with the model
parameters (τ2, R2), τi being a random process and Ri a
constant matrix. Then for each vector ui we try to recover
the parameters (τi, Ri) used to simulate it. In practice we
use the Burg algorithm to recover the equivalent parameters
(p0,i, µ1,i, ..., µn−1,i). In this paper, we classify the data only
on the scaled autocorrelation matrix R, represented by the
reflection coefficients (µ1, ..., µn−1). Future work might also
use the texture parameter τ , influencing the power coefficient
p0, to classify the data.

Each vector ui is now represented by its reflection coef-
ficients (µi,1, ..., µi,n−1) in the metric space Dn−1 endowed
with the Kähler metric. We classify these vectors using a k-
means algorithm described in the next section. The k-means
algorithm is a classical clustering algorithm in Euclidean
spaces, the main difficulty was to adapt it to the Riemannian
manifold Dn−1 endowed with the Kähler metric. In figure 1 ,
we plot the FFT of each simulated vector on the left graphic,
each FFT being drawn horizontally; the vertical axis represents
the different cells along the distance axis. On the graphic in
the middle of figure 1, we plot the result of the corresponding
k-means clustering. We present in figure 2 the result of the
clustering on the first coefficients of reflection.

Once the classification result is obtained, we compute the
F1 score of the classification. The F1 score is a way to measure
the performance of a supervised classification algorithm. We
adapted it to our non-supervised classification algorithm by
doing all possible permutations in the classification results
labels in order to find the best matching with the expected
results; the best matching being defined as the best F1 score.



Figure 1. FFT and classification results, k-means on Dn−1, Kähler metric

Figure 2. First coefficients of reflection, k-means on Dn−1, Kähler metric

Finally we plot the normalized confusion matrix using the
labels corresponding to this best F1 score, see figure 3.

B. k-means on Dn−1 with the Kähler metric

a) The algorithm: The k-means algorithm is described
in algorithm 2.

Note that the k-means algorithm complexity is linear with
respect to the amount of data.

Note also that the result of this algorithm depends on
arbitrary factors:
• The initialization of the algorithm is random. This can

affect the limit value of the barycenters. To solve this

Figure 3. Confusion matrix and F1 score, k-means on Dn−1, Kähler metric

Algorithm 2 k-means algorithm for N clusters
Initialization:
Pick randomly N points in the dataset. They now represent
the barycenters of each class.
for i = 1 to m do

Assign each point of the dataset to the closest barycenter.

Compute the new barycenter of each class.
end for
return Each point is labeled according to the closest
barycenter.

problem, we run the algorithm several times and keep
the classification result with the most compact clusters.

• The number of loops of the algorithm.
• The number of loops and the step size of the Kähler mean

approximation.
b) Predictions: Once an effective k-means algorithm is

developed, we can easily predict the class of the new radar
data: they will be assigned to the cluster having the closest
barycenter.

C. Median averaging

During all this study, we classified the data cell by cell,
regardless of the spatial positioning of the data, each cell being
considered independently from its neighbours. If we assume
that each cell is correlated to the neighbouring cells, we can
avoid missclassification due to outliers by associating to each
data an average of its neigbouring cells, and performing the
classification on the averaged data.

In figure 1, the graphic on the right represents the clas-
sification result given by a sliding window of size 9 (the
classification result was perfect). In each window, we compute
a median of the data in Dn−1. The median of a set of points
(x1, x2, ..., xn) in a metric space (E, d) is defined as follows:

median(x1, x2, ..., xn) = argminx∈E

n∑
i=1

d(x, xi) (23)



Figure 4. Silhouette of the classification cell by cell using k-means on Dn−1

endowed with the Kähler metric

Figure 5. Evolution of the F1 score and the silhouette mean with the distance
between the parameters of the model used to simulate the two classes

The median is more robust to outliers than the mean, the
mean being the point minimizing the sum of squared distances.
We then select the closest points of the barycenter to get rid
of outliers, keeping half of the points, and compute the new
median of these selected points. The center cell of the sliding
window is now represented by this last median. Interested
readers will find in [11] an algorithm to compute the median
of several points in Dn−1 endowed with the Kähler metric.

D. Silhouette

On real radar data, one of the challenges is to decide
the number of clusters k we would like from the k-means
clustering. We now introduce a tool to guide us in the choice
of the number of clusters k.

Figure 4 show a graphical display called silhouette. The
silhouette gives an idea of shape of the clusters.

We now define the silhouette s(i) of a point i. Take any
point i in the data set, and denote by A the cluster to which it
has been assigned. When cluster A contains other points apart
from i, then we can compute:
a(i) = average dissimilarity of i to all other objects of A.
If A contains only one point i, we set s(i) = 0 as a neutral

choice.

Let us now consider a cluster C different from A, and
compute:
d(i, C) = average dissimilarity of i to all objects of C.
After computing d(i, C) for all clusters C different from A,

we select the smallest of those numbers, and denote it by:
b(i) = minC 6=Ad(i, C)
b(i) represents how far i is from the cluster that would have

been the second best choice for i. The silhouette number s(i)
is then computed as follows:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(24)

The silhouette measures how much i is closer from the
cluster A than the cluster that would have been the second
best choice for i.

We always have −1 6 s(i) 6 1.
The silhouette gives indications about the shape of the

clusters given by the classification algorithm. Clusters with
small radius far from the other clusters will give silhouette
values close to 1.

However, the silhouette does not give any information about
the performance of the classification agorithm. Most of the
time, if the clusters overlap, a perfect classification will give a
worst silhouette than the k-means clustering. Moreover, well
separated clusters with non-spherical interlaced shapes can
also have a low mean silhouette value.

Interested readers can read [12] for a reference about the
silhouette construction, and [2] for another radar application.

When the clusters do not overlap, the average silhouette
value can by used as a criterion to determine the number of
clusters: we classify the data with different number of clusters
and keep the classification giving the best mean silhouette
value.

In figure 4, the points have been ordered in each cluster
according to their silhouette value, in decreasing order.

We plot in figure 5 the evolution of both the F1 score
and the silhouette mean according to the distance between
the parameters of the model used to simulate the two classes.
As expected, they both increase as the simulated clusters are
spliting.

V. CONCLUSION

We developed a k-means algorithm to classify the radar
clutter. This algorithm has been adapted to the Kähler metric
and has given promising results. Future work may also take
into account the texture coefficient τ ; the normalized Burg
algorithm presented in [13] might help to take this texture
coefficient τ into consideration. More clustering algorithms
will be adapted to the Kähler metric to deal with clusters
of unusual interlaced shapes, like the mean-shift algorithm
presented in [2], [14].
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