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Abstract. Here we propose a method to classify radar clutter from radar data
using an unsupervised classification algorithm. The data will be represented by
Positive Definite Hermitian Toeplitz matrices and clustered using the Fisher met-
ric. Once the clustering algorithm dispose of a large radar database, new radars
will be able to use the experience of other radars, which will improve their per-
formances: learning radar clutter can be used to fix some false alarm rate created
by strong echoes coming from hail, rain, waves, mountains, cities; it will also im-
prove the detectability of slow moving targets, like drones, which can be hidden
in the clutter, flying close to the landform.

Keywords: radar clutter, machine learning, unsupervised classification, k-means, au-
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1 Introduction

Our aim is to classify the radar clutter cell by cell. The idea is to classify each cell
according to its autocorrelation matrix. In [1] this autocorrelation matrix is said to
be equivalent to coefficients of an autoregressive model, called reflection coefficients,
which will be estimated thanks to Burg algorithms. We will then classify the cells ac-
cording to these reflection coefficients. Finally we will present a classification algorithm
called k-means, and test it on simulated data. The unsupervised classification of radar
data is dealt in [2] with a mean-shift algorithm. Here we will present another classifica-
tion algorithm called k-means, and test it on simulated data, showing promising results.

2 Introduction to signal processing theory

2.1 From radar data to complex matrices

In this study, the input data will be taken on a single burst, for a single elevation corre-
sponding to the horizontal beam.
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Therefore, the radar provides us a 2D complex matrix of size (#impulses) ×
(#cells):

U =


u0,0 u0,1 u0,2 . . . u0,p−1
u1,0 u1,1 u1,2 . . . u1,p−1

...
...

...
. . .

...
un−1,0 un−1,1 un−1,2 . . . un−1,p−1

 (1)

where n denotes the number of pulses of the burst, p the number of cells.
The complex coefficient uij represents the amplitude and phase after pulse compres-

sion of the echo beam at distance index i from the radar, at time index j (jth impulse).
The data to classify are the cells, each cell being represented by a column of the

matrix U .

2.2 Model and hypotheses

In this section, we will focus on a single column of the matrix U defined in equation
1. We will define its autocorrelation matrix and explain how to estimate an equivalent
formulation of this autocorrelation matrix.

We denote by ·T the matrix transposition, ·H the complex matrix conjugate trans-
pose and ·∗ the complex scalar conjugate.

We denote:
u = [u(0), u(1), ..., u(n− 1)]T (2)

the one dimensional complex signal registered in a cell.
We assume this signal to be stationary with zero mean:

E[u(n)] = 0 for all n (3)

We also assume that this signal can be modeled as an autoregressive Gaussian pro-
cess.

Interested readers may refer to [3] for a comprehensive course on complex signal
processing theory.

2.3 From input vector to autocorrelation matrix

We define the autocorrelation matrix:

R = E[u uH ] (4)

ri,j = E[u(k + i)u(k + j)∗] (5)

We define the lag: t = i− j.
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Proposition 1 (autocorrelation and stationarity). The signal is supposed to be sta-
tionary, so ri,j depends only of the lag t.

ri,j = E[u(k + i)u(k + j)∗]
= E[u(k + i− j)u(k)∗]
= E[u(k + t)u(k)∗]
= rt

(6)

Proposition 2 (autocorrelation and conjugation).

r−t = E[u(k − t)u(k)∗]
= E[u(k)u(k + t)∗]
= E[u(k + t)u(k)∗]∗

= r∗t

(7)

Consequence R is a Toeplitz Hermitian Positive Definite matrix.

R =


r0 r∗1 r∗2 . . . r∗n−1
r1 r0 r∗1 . . . r∗n−2
r2 r1 r0 . . . r∗n−3
...

...
...

. . .
...

rn−1 rn−2 rn−3 . . . r0

 (8)

Note that the assumptions made in section 2.2 that the signal can be modeled as a
complex stationary autoregessive Gaussian process with zero mean has the following
equivalent formulation : u = R1/2x with R a Toeplitz Hermitian Positive Definite
matrix and x a standard complex Gaussian random vector which dimension is equal to
the number of pulses.

2.4 Autocorrelation matrix estimation

In our classification problem, the autocorrelation matrix Ri will be estimated indepen-
dently for each cell ui:

U =


u0,0 u0,1 u0,2 . . . u0,p−1
u1,0 u1,1 u1,2 . . . u1,p−1

...
...

...
. . .

...
un−1,0 un−1,1 un−1,2 . . . un−1,p−1


↓ ↓ ↓ ↓

R̂0 R̂1 R̂2 R̂p−1
(9)

Empirical covariance matrix To estimate the Toeplitz autocorrelation matrix R from
the data vector u, we can estimate each coefficient rt by the following empirical mean:

r̂t =
1

n− t

n−1−t∑
k=0

u(k + t)u(k)∗ t = 0, ..., n− 1 (10)
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Note that this method is unprecise when the vector length n is small, especially
when the lag t is close to n− 1. We now propose a more robust method to estimate the
autocorrelation matrix with few data, based on an autoregessive model.

Burg algorithm The Burg algorithm principle is to minimize the forward and the back-
ward prediction errors. The regularised Burg algorithm of order M and regularization
coefficient γ is described in algorithm 1 and detailed in [4], [5].

Algorithm 1 regularised Burg algorithm
Initialization:

f0,k = b0,k = uk k = 0, ..., n− 1 (11)

a0,k = 1 k = 0, ..., n− 1 (12)

p0 =
1

n

n−1∑
k=0

|uk|2 (13)

for i = 1, ...,M : do

µi = −

(
2

n−i

n−1∑
k=i

fi−1,k b̄i−1,k−1 + 2
i−1∑
k=1

βk,iak,i−1ai−k,i−1

)
(

1
n−i

n−1∑
k=i

|fi−1,k|2 + |bi−1,k−1|2 + 2
i−1∑
k=0

βk,i|ak,i−1|2
) (14)

where:

βk,i = γ(2π)2(k − i)2 (15)

{
ak,i = ak,i−1 + µiāi−k,i−1 k = 1, ..., i− 1
ai,i = µi

(16)

and

{
fi,k = fi−1,k + µibi−1,k−1 k = i, ..., n− 1
bi,k = bi−1,k−1 + µ̄ifi−1,k k = i, ..., n− 1

(17)

end for
return (p0, µ1, ..., µn−1)
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The regularized Burg algorithm allows us to transform the original data into a power
factor in R∗+ and reflection coefficients in Dn−1, where D represents the complex unit
disk.

According to [1], the following transformation is a bijection:

T +
n → R∗+ × Dn−1

Rn 7→ (p0, µ1, ..., µn−1) (18)

where T +
n denotes the set of Toeplitz Hermitian Positive Definite matrices of size

n.
It is therefore equivalent to estimate the coefficients (p0, µ1, ..., µn−1) and the au-

tocorrelation matrix Rn.

2.5 The Kähler metric

Each data vector ui is now represented by an estimation of its autocorrelation matrix R̂i
which is a Toeplitz Hermitian Positive Definite matrix. We define the metric on the set
T +
n of Toeplitz Hermitian Positive Definite matrices as coming from the Fisher metric

on the manifold of complex Gaussian distributions with zero means, Toeplitz Hermitian
Positive Definite covariance matrices and null relation matrices.

According to the previous bijection, we will represent a Toeplitz Hermitian Positive
Definite matrix Ti by the corresponding coefficients (p0,i, µ1,i, ..., µn−1,i). The follow-
ing distance has been introduced by F. Barbaresco in [6] on the set R∗+×Dn−1 to make
this bijection an isometry. In the Encyclopedia of Distance by Deza [7], this distance is
called Barbaresco distance:

d2T +
n
(T1, T2) = d2T +

n
((p0,1, µ1,1, ..., µn−1,1), (p0,2, µ1,2, ..., µn−1,2))

= n log2
(
p0,2
p0,1

)
+

n−1∑
l=1

n− l
4

log2

1 +
∣∣∣ µl,1−µl,2

1−µl,1µ∗
l,2

∣∣∣
1−

∣∣∣ µl,1−µl,2

1−µl,1µ∗
l,2

∣∣∣
 (19)

The equations of the geodesics of the set R∗+ × Dn−1 endowed with the Kähler
metric are described in [4].

2.6 The Kähler mean

The Kähler mean of (T0, ..., Tm−1) is defined as the point Tmean such that the following

function f(T ) =
m−1∑
i=0

d2(T, Ti), sum of the squared distances from T to Ti, reaches its

unique minimum.
The Kähler mean algorithm is performed in [4], [8] as a gradient descent on the

function f . The gradient expression of f is:
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−→
∇f(T ) =

m−1∑
i=0

2
−→
∇d(T, Ti) d(T, Ti) = 2

m−1∑
i=0

−
−−→
T Ti

d(T, Ti)
d(T, Ti) = −2

m−1∑
i=0

−−→
T Ti

(20)

where
−→
∇ denotes the gradient operator and

−−→
T Ti, also written exp−1T (Ti), denotes

the element of the tangent space of the manifold R∗+×Dn−1 at T such that the geodesic
starting at T at time 0 with inital tangent vector

−−→
T Ti arrives at Ti at time 1.

Note that the squared distance between two matrices T1 and T2 is a linear combina-
tion of squared distances between the coordinates (p0,1, µ1,1, ..., µn−1,1) and (p0,2, µ1,2, ..., µn−1,2).
Hence the coordinates can be averaged independently:

T0 7→ ( p0,0, µ1,0, · · · , µn−1,0 )
...

...
...

...
Tm−1 7→ ( p0,m−1, µ1,m−1, · · · , µn−1,m−1 )

↓ ↓ ↓
T ← ( p0, µ1, · · · , µn−1 )

(21)

The gradient descent on the function f is therefore equivalent to a gradient descent
on each coordinate. At each step of the algorithm, once the gradient is computed, we
move on R∗+ × Dn−1 following its geodesics.

3 Simulation model

Each cell is simulated independently from the others. For each cell, we simulate a com-
plex vector using a SIRV (Spherically Invariant Random Vectors) model:

Z =
√
τR1/2x︸ ︷︷ ︸

information coming from the environment

+ bradar︸ ︷︷ ︸
noise coming from the radar itself

(22)

with:

τ : clutter texture coefficient (positive real random variable).
R: scaled autocorrelation matrix (Toeplitz Hermitian Positive Definite).
x, bradar: independent standard complex Gaussian random vectors which dimension

is equal to the number of pulses.

The radar noise bradar is assumed to be small enough in comparaison with the
information coming from the environment

√
τR1/2x for estimating the autocorrelation

matrix τR using the methods described in section 2.4.
To choose the matrix R, we learn experimentally from radar measures the spectrum

shape of the clutter we want to simulate. The scaled autocorrelation coefficients of the
matrix R can then be computed from the spectrum using the inverse Fourier transform.

See [9], [10] for more details about the clutter modeling.
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4 Classification problem

4.1 Methodology

Using the previous model, we simulate 100 vectors with the model parameters (τ1, R1)
and 100 vectors with the model parameters (τ2, R2). Then for each vector we try to
recover the parameters used to simulate it thanks to Burg algorithm. In this paper, we
classify the data only on the scaled autocorrelation matrix R, represented by the reflec-
tion coefficients (µ1, ..., µn−1). Future work might also use the texture parameter τ ,
influencing the power coefficient p0, to classify the data.

Each vector is now represented by its reflection coefficients in the metric space
Dn−1 endowed with the Kähler metric. We classify these vectors using a k-means al-
gorithm described in the next section. The k-means algorithm is a classical clustering
algorithm in Euclidean spaces, the main difficulty was to adapt it to the Riemannian
manifold Dn−1 endowed with the Kähler metric. In figure 1 , we plot the FFT of each
simulated vector on the left graphic, each FFT being drawn horizontally; the vertical
axis represents the different cells along the distance axis. On the graphic in the middle
of figure 1, we plot the result of the corresponding k-means clustering. We present in
figure 2 a visualization of the clustering on the first coefficients of reflection.

Once the clustering is done, we compute the F1 score of the classification. The F1
score is a way to measure the performance of a supervised classification algorithm.
We adapted it to our unsupervised classification algorithm by doing all possible per-
mutations in the classification results labels in order to find the best matching with the
expected results. Finally we plot on figure 3 the normalized confusion matrix using the
labels corresponding to this best matching.

4.2 k-means on Dn−1 with the Kähler metric

Fig. 1. FFT and classification results, k-means on Dn−1, Kähler metric
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Fig. 2. First coefficients of reflection, k-means on Dn−1, Kähler metric

Fig. 3. Confusion matrix and F1 score, k-means on Dn−1, Kähler metric
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The algorithm The k-means algorithm is described in algorithm 2.

Algorithm 2 k-means algorithm for N clusters
Initialization:
Pick randomly N points in the dataset. They now represent the barycenters of each class.
for i = 1 to loop number do

Assign each point of the dataset to the closest barycenter.
Compute the new barycenter of each class.

end for
return Each point is labeled according to the closest barycenter.

Predictions Once an effective k-means algorithm is developed, we can easily predict
the class of the new radar data: they will be assigned to the cluster having the closest
barycenter.

4.3 Median averaging

During all this study, we classified the data cell by cell, regardless of the spatial posi-
tioning of the data, each cell being considered independently from its neighbours. If we
assume that each cell is correlated to the neighbouring cells, we can avoid missclassi-
fication due to outliers by associating to each data an average of its neigbouring cells,
and performing the classification on the averaged data.

In figure 1, the graphic on the right represents the classification result given by a
sliding window of size 9 (the classification result was perfect). In each window, we
compute a median of the data in Dn−1. The median of a set of points (x1, x2, ..., xn) in
a metric space (E, d) is defined as follows:

median(x1, x2, ..., xn) = argminx∈E

n∑
i=1

d(x, xi) (23)

The median is more robust to outliers than the mean, the mean being the point mini-
mizing the sum of squared distances. We then select the closest points of the barycenter
to get rid of outliers, keeping half of the points, and compute the new median of these
selected points. The center cell of the sliding window is now represented by this last me-
dian. Interested reader will find in [11] an algorithm to compute the median of several
points in Dn−1.

5 Conclusion

We developed a k-means algorithm to classify the radar clutter. This algorithm has been
adapted to the Kähler metric and has given promising results. Future work may also take
into account the texture coefficient τ ; the normalized Burg algorithm presented in [12]
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might help to take this texture coefficient τ into consideration. More clustering algo-
rithms will be adapted to the Kähler metric to deal with clusters of unusual interlaced
shapes, like the mean-shift algorithm presented in [2], [13]. These clustering algorithms
will also be used to cluster groups of neighbouring cells: we will use a multidimensional
spatial autoregressive model to represent the data (the autocorrelation matrices will be
Positive Definite Block-Toeplitz matrices) and adapt our clustering algorithms to this
higher dimensional space [1], [14].
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