
HAL Id: hal-02875241
https://hal.archives-ouvertes.fr/hal-02875241

Submitted on 19 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Positive semidefinite matrix factorization: A link to
phase retrieval and a block gradient algorithm

Dana Lahat, Cédric Févotte

To cite this version:
Dana Lahat, Cédric Févotte. Positive semidefinite matrix factorization: A link to phase retrieval
and a block gradient algorithm. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), May 2020, Barcelona (virtual), Spain. �10.1109/ICASSP40776.2020.9053938�.
�hal-02875241�

https://hal.archives-ouvertes.fr/hal-02875241
https://hal.archives-ouvertes.fr

POSITIVE SEMIDEFINITE MATRIX FACTORIZATION: A LINK TO PHASE RETRIEVAL
AND A BLOCK GRADIENT ALGORITHM

Dana Lahat, Cédric Févotte∗

IRIT, Université de Toulouse, CNRS, Toulouse, France

ABSTRACT

This paper deals with positive semidefinite matrix factorization (PS-
DMF). PSDMF writes each entry of a nonnegative matrix as the in-
ner product of two symmetric positive semidefinite matrices. PS-
DMF generalizes nonnegative matrix factorization. Exact PSDMF
has found applications in combinatorial optimization, quantum com-
munication complexity, and quantum information theory, among
others. In this paper, we show, for the first time, a link between PS-
DMF and the problem of matrix recovery from phaseless measure-
ments, which includes phase retrieval. We demonstrate the useful-
ness of this observation by proposing a new type of local optimiza-
tion scheme for PSDMF, which is based on a generalization of the
Wirtinger flow method for phase retrieval. Numerical experiments
show that our algorithm can performs as well as state-of-the-art al-
gorithms, in certain setups. We suggest that this link between the two
types of problems, which have until now been addressed separately,
opens the door to new applications, algorithms, and insights.

Index Terms— Positive semidefinite factorization, nonnegative
factorizations, phase retrieval, rank minimization, semidefinite pro-
gramming

1. INTRODUCTION

This paper deals with positive semidefinite matrix factorization
(PSDMF) [1, 2]. PSDMF writes the (i, j)th entry xij of a nonnega-
tive matrix X ∈ RI×J as an inner product of two K ×K symmet-
ric positive semidefinite (psd) matrices A(i) and B(j), indexed by
i = [I], j = [J]:

xij ∼= 〈A(i),B(j)〉 , tr{A(i)B(j)} (1)

where [I] , 1, . . . , I , tr{·} denotes the trace of a matrix, and ∼=
means equal or approximately equal, depending on the context. The
minimal number K such that a nonnegative matrix X admits an ex-
act PSDMF is called the psd rank of X [1]. Each psd matrix A(i)

and B(j) may have a different rank, denoted R(i)
A and R(j)

B , respec-
tively. We shall sometimes refer to the psd rank K as the “outer
rank” and to R(i)

A and R(j)
B as “inner ranks” [3].

When A(i),B(j) are diagonal ∀i, j, PSDMF boils down to
nonnegative matrix factorization (NMF) (e.g., [4]). Hence, NMF
is a special case of PSDMF. Indeed, the original motivation for
PSDMF [1] was generalizing a fundamental result [5] on the con-
nection between nonnegative factorizations of the slack matrix of a
polytope and of its polyhedral lifts. As demonstrated by [1], the ex-
istence of an exact PSDMF to a matrix associated with a convex set

∗This work has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 681839 (project FACTORY).

(i.e., its slack matrix) implies that this convex set can be represented
as the image under a linear map of an affine slice of a given closed
convex cone. When the psd rank K of this factorization is strictly
smaller than the nonnegative rank of this slack matrix, this represen-
tation of the convex set is called a “lift”. Due to the fundamental role
of Yannakakis’ result [5] in combinatorial optimization, its general-
ization attracts a significant amount of attention. Indeed, since it was
first introduced, PSDMF has found applications in numerous fields,
including semidefinite representations of polyhedra [1], semidefinite
reformulations of linear programming [2], quantum communication
complexity [2], combinatorial optimization [6, 2], quantum informa-
tion theory [7], and more. A large amount of work has been dedi-
cated to understanding the psd rank and its relation to other concepts
of rank such as the ordinary matrix rank and the nonnegative rank
(see, e.g., [8, 1], and follow-up work).

Until now, the analysis and applications of PSDMF addressed
only the case of exact decompositions. Due to the wide range
of applications of the nonnegative rank and NMF, several authors
(e.g., [3]) have raised the question if PSDMF can be useful for
data analysis, or any other kinds of applications, beyond those
that have been suggested so far. In this paper, we show, for the
first time (to the best of our knowledge), a link between PSDMF
and the problem of matrix recovery from phaseless measurements
(e.g., [9, 10, 11, 12, 13]), which includes phase retrieval (e.g., [14]).
We explain this link in Section 2. We point out that quantum-related
problems such as quantum tomography, and the combinatorial na-
ture of phase retrieval, have already been discussed in the literature
(e.g., [15]). However, to the best of our knowledge, they have not
been associated with PSDMF.

In order to show the usefulness of this link, we develop, in Sec-
tion 3, a new type of local optimization scheme for PSDMF, which
is based on a generalization [12, 13] of Wirtinger flow [14]. The
algorithm that we propose is based on an alternating block gradi-
ent descent. Our proposed algorithm is different from existing algo-
rithms in the literature [3], which consist of the fast projected gra-
dient method (FPGM) and coordinate descent (CD) schemes. Pre-
liminary numerical experiments in Section 4 indicate that the per-
formance of our algorithm is comparable to the state-of-the-art [3].
Although phase retrieval is associated with complex-valued data, we
restrict our algorithm to the real-valued case, as in [3]. Neverthe-
less, based on the link that we find with phase retrieval, generaliz-
ing our method to the complex case is straightforward. While our
algorithm can certainly be improved, our message is that PSDMF —
and the applications in which it is currently being used— has strong
links with phase retrieval (and its numerous generalizations), and
that these links should be further explored.

2. ALGORITHMIC STATE-OF-THE-ART AND A LINK TO
PHASE RETRIEVAL

In order to find an (approximate) PSDMF of a given nonnegative
matrix, [3] suggested to minimize the cost function

f =

I∑
i=1

J∑
j=1

(xij − 〈A(i),B(j)〉)2 (2)

with respect to (w.r.t.) the variables A(i),B(j) ∀i, j. Van-
daele et al. [3] address the optimization of (2) in an alternating
scheme, in which one set of parameters, without loss of general-
ity (w.l.o.g.) those indexed by [I], is fixed, while the other set is
optimized.

The FPGM algorithm proposed by [3] is a gradient-based ap-
proach in which the gradient is taken, w.l.o.g., w.r.t. the K2J-
dimensional variable consisting of all the entries of {B(j)}Jj=1,
given {A(i)}Ki=1. The gradient step is followed by projecting the
outcome, for each j, on the cone of K×K symmetric psd matrices,
SK
+ . Each alternation is a convex problem, consisting of a series of

successive refinements via a gradient descent scheme. The number
of such refinement steps is set in [3] to max(1,K∆), where ∆ > 0
is a parameter that can be adjusted by the user. We refer the reader
to [3] for further details about FPGM. We now make the new obser-
vation that FPGM optimizes simultaneously, in each alternation, the
convex problem

min
B(j)∈SK

+

‖xj −A(B(j))‖22 for all j , (3)

where ‖ · ‖2 is the Euclidean norm, xj ∈ RI×1 is the jth column
vector of X, and where A : RK×K −→ RI×1 is a given affine
transformation that maps matrices to vectors (e.g., [13, Sec. 1]). This
notation implies that the jth column of X in (1) can be written as
A(B(j)) ∼= xj . We point out that (3) is reminiscent of the matrix
recovery problem

min
M∈RK×K

rank(M) s.t. A(M) = xj . (4)

This problem arises in a broad range of applications, and forms a
challenge in optimization due to its nonconvexity. In particular, the
phase retrieval problem can be recast as (4) if we add the constraint
that M be psd (and if M is complex-valued and has rank-1) [16].
This formulation of phase retrieval lifts up the task of recovering a
vector (or a matrix) from quadratic constraints into low-rank ma-
trix recovery from affine constraints via semidefinite programming;
hence, the phase retrieval framework based on this principle was
termed PhaseLift [16]. We thus make the observation that each al-
ternation in FPGM can be regarded as a lifted approach, but without
the rank minimization constraint. Vandaele et al. [3] mention that
a drawback of FPGM is that it does not allow easily to adjust the
rank of the psd matrices, while there is interest in obtaining low-
rank terms, which usually arise in applications. Therefore, they sug-
gest a factor-based framework, that we shall describe later on in this
section. However, we point out that it is likely that this goal can
be achieved also using algorithms already existing in the literature
(e.g., [16], or their generalizations and variants) by sequentially op-
timizing a problem of the form (4) for each psd matrix.

In PSDMF applications, the psd matrices are often of low rank,
i.e., R(i)

A , R
(j)
B < K for some i and/or j (e.g., [8]). Hence, another

approach suggested by [3] is to write the psd matrices as

A(i) , U(i)U(i)> and B(j) , V(j)V(j)> , (5)

where U(i) ∈ RK×R
(i)
A and V(i) ∈ RK×R

(i)
B are factor matrices

(factors, for short), and to optimize the cost function w.r.t. these fac-
tors. Note that this approach requires the inner ranks to be known,
whereas this is not the case in FPGM. With this notation, the cost
function can be written as

f =

I∑
i=1

J∑
j=1

(
xij − tr{V(j)>A(i)V(j)}

)2 (6a)

=

J∑
j=1

‖xj −A(V(j)V(j)>)‖22 . (6b)

This change of variables is common is semidefinite programming
(e.g., [17]). The second algorithm proposed by [3] is an alternating
scheme based on CD. It optimizes (6) w.r.t. the entries of {V(j)}Jj=1

given {U(i)}Ii=1, and vice versa in the other alternation. We now
make the following new observation. Consider the optimization
of (6b) for a specific j (or when J = 1), when the factors associ-
ated with i are fixed. When all factors have inner rank equal to one,
the complex-valued counterpart of this optimization problem, which
is a special case of (6b), is nothing but the (generalized) phase re-
trieval problem [14], which consists in solving quadratic equations
of the form xij ∼= |〈u(i),v(j)〉|2, i = [I], where u(i),v(j) are com-
plex valued vectors of length K, and u(i) are known. It is thus not
surprising that one can find a CD algorithm [18] for phase retrieval
that is very close to that of [3], with differences arising from the
particularities of phase retrieval.

3. BLOCK GRADIENT DESCENT ALGORITHM

Based on our observations in Section 2, we develop a new real-
valued algorithm for PSDMF, which is based on the principles set
by [14] for phase retrieval, and that were later extended to the gen-
eral low-rank case by [13, 12]. Without loss of generality (W.l.o.g.),
optimizing (6) w.r.t. V(j) can be written as:

min

V(j)∈RK×R
(j)
B

f(V(j)) , ‖xj −A(V(j)V(j)>)‖22 . (7)

Equation (7) is the low-rank, factor-based, counterpart of (3).
Tu et al. [13] and Zheng and Lafferty [12] proposed to optimize
the nonconvex objective in (7) via gradient descent, where the gra-
dient of f w.r.t. V(j), denoted ∇f(V(j)) = ∂f

∂V(j) , is given by
(e.g., [12, 13])

∇f(V(j)) =

I∑
i=1

4(−xij+tr{A(i)V(j)V(j)>})A(i)V(j) . (8)

We thus propose a PSDMF scheme based on successive applica-
tion of the gradient descent method in [13, 12] for optimizing (7)
for each j using the gradient in (8), and then alternating to U(i)

for all i. We refer to it as alternating block gradient (ABG). Al-
gorithm 1 describes one alternation in our block gradient descent
scheme for updating the factors indexed by j = [J] given initial val-
ues V

(1)
0 , . . . ,V

(J)
0 and for fixed {U(i)}Ii=1. The number of gra-

dient refinements (or “passes”) over each factor V(j) is denoted as
D. We consider two options: the first, denoted d->j, corresponds
to Lines 5 and 6 in Algorithm 1; it iterates on d = [D] as the outer
loop and on j = [J] in the inner one. The other option is denoted
j->d.

Algorithm 1 Gradient descent scheme for optimizing one set of fac-
tors

Input: X ∈ RI×J
+ , U(1), . . . ,U(I), V(1)

0 , . . . ,V
(J)
0 .

Output: V(1), . . . ,V(J).
1: for i = 1 : I do
2: A(i) ← U(i)U(i)>

3: end for
4: τ ← Choose initial step size (e.g., Algorithm 2)
5: for d = 1 : D do . the d->j option
6: for j = 1 : J do
7: ∇f(V

(j)
d)←

∑I
i=14(−xij+tr{A(i)V

(j)
d V

(j)>
d })A(i)V

(j)
d

8: µ
(j)
d+1 ← Choose step size (e.g., τ , or Algorithm 3)

9: V
(j)
d+1 ← V

(j)
d − µ

(j)
d+1∇f(V

(j)
d)

10: end for
11: end for
Algorithm 2 Choosing initial step size τ

1: j′ ← U{1, J}
2: x1 ← V

(j′)
d

3: x2 ← V
(j′)
d + E where ekr ∼ N (0, σ2)

4: L̂← ‖∇f(x2)−∇f(x1)‖/‖x2 − x1‖
5: L̂ = max(L̂, 10−30)

6: τ ← CL/L̂

Algorithm 3 Backtracking line search

1: t← τ , choose α, β
2: while f(V

(j)
d − t∇f(V

(j)
d))> f(V

(j)
d)−αt‖∇f(V

(j)
d)‖2F do

3: t = βt
4: end while

Choosing the optimal step size in the gradient scheme to opti-
mize (7) is critical to the good convergence of the algorithm. Due
to the non-convexity of (7), the Lipschitz constant of the gradient,
denoted L(∇f), is not easy to compute (e.g., [14, 13, 12, 18]). We
thus adopt the approach in PhasePack [19] for estimating the initial
step size numerically, using a local estimation of L(∇f), and adjust
it to our PSDMF framework. Using the property

‖∇f(x2)−∇f(x1)‖2/‖x2 − x1‖2 ≤ L(∇f) , (9)

L(∇f) can be estimated numerically by generating two random vec-
tors x1,x2. We adjusted this approach to PSDMF, as described
in Algorithm 2: (i) in each alternation, we estimate a single value
of L(∇f). This is based on an assumption that all factors optimized
in the same alternation satisfy the same model. Of course, if this as-
sumption is not valid, L(∇f) may have to be computed for each fac-
tor individually; (ii) instead of choosing x1,x2 randomly, as in [19],
we set x1 to be one of the factors that we actually optimize. We
choose the index of this factor from the discrete uniform distribution
on the interval [1, J], U{1, J}, at each alternation (Line 1 in Algo-
rithm 2). In our numerical experiments, this scheme turned out to
yield a balanced average number of backtracking steps per alterna-
tion, as opposed to what we observed when fixing the index j′ to
a constant number; (iii) in order to increase the chance of having a
local estimation of L(∇f), x2 is chosen as a random point that is
“not too far” from x1, by adding a small perturbation to x1. This
perturbation is a random matrix E, of the same size of the factor
chosen to represent x1, and whose entries are independent and iden-
tically distributed (i.i.d.) Gaussian with a small variance σ2 (Line 3
in Algorithm 2), and (iv) we set the initial step size to CL/L̂, where

CL > 0 is a constant chosen by the user. We adopt the approach
of [19] and use backtracking line search to guarantee stability. Our
backtracking line search scheme is described in Algorithm 3. This
scheme turned out to yield satisfying results in our preliminary nu-
merical experiments, which we present in Section 4.

Convergence analysis for our proposed ABG framework is be-
yond the scope of this paper. Vandaele et al. [3] do not provide
theoretical convergence results for their algorithms, either. How-
ever, based on our observation that all the algorithms proposed
so far for PSDMF are related to methods that have already been
studied in the context of phase retrieval and its generalizations
(e.g., [13, 12, 18, 14]), it is likely that at least partial understand-
ing of the convergence of these PSDMF algorithms can be based on
existing results in the literature.

The computational complexity of one gradient iteration on one
factor j in Algorithm 1 is essentially the same as one block itera-
tion of the gradient descent algorithm in [12], O(K2R) +O(IK2)

(for simplicity, we take R(i)
A = R = R

(j)
B ∀i, j). Taking into ac-

count J factors and D refinement steps, we obtain O(DJK2R) +
O(DJIK2). Our step size estimation requires another computation
of the gradient, but only once for all the DJ “for” iterations. We
found, numerically, that this estimation of the step size reduces the
number of backtracking steps to an average of one: this means that
we only have to do about twice the number of operations, on average,
due to backtracking. Hence, the backtracking line search procedure
increase the computational load only by factor of two. Taking into
account two alternations per overall iteration, and assuming that I =
J , the overall computational complexity per iteration (which consists
of two alternations of the form Algorithm 1) remains at the order
of O(DIK2R) +O(DI2K2). For comparison, the computational
complexity of FPGM isO(IJK2)+O(IK4)+O(min(K4, I2))+
O(∆JK5) where ∆ = 5 was chosen as the default value in the nu-
merical experiments in [3]. The dominant terms in the computational
complexity of CD areO(IK4R) +O(IK2 max(J,K2)). We omit
the details of the calculations for lack of space. Note that the com-
plexity evaluations in [3] assume R = K, whereas here we do not
make this assumption.

4. NUMERICAL EXPERIMENTS

We implemented our ABG algorithm in Matlab. We test six vari-
ants of our ABG method: for each value of D = 1, 5, 25, we test
with outer loop on j and inner loop on d, and vice versa (Lines 5
and 6 in Algorithm 1). We compare ABG with (i) FPGM with
∆ = 5 (i.e., K∆ refinements per alternation [3]), and (ii) two
variants of CD, cyclic and Gauss-Southwell (GS) (“greedy” CD).
The parameter controlling the number of “greedy” iterations is set
to 0.5. The same values of parameters were used by [3]. Van-
daele et al. [3] implemented their CD algorithm in c. They explain
that the large number of “for” loops in CD causes it to run very
slowly on Matlab. Vandaele et al. [3] thus compare their CD algo-
rithm coded in c with FPGM coded in Matlab. Here, in order to
compare algorithms on the same platform, we implemented CD in
Matlab. We use the c version of CD and the Matlab code for FPGM
from https://sites.google.com/site/exactnmf/psd-factorization. The
only difference between the c and Matlab implementations is the
CPU run time. They are identical in terms of error evolution and
number of iterations. Hence, only comparisons w.r.t. CPU run time
in Figs. 1 and 2 distinguish between c and Matlab versions of CD.

We set α = 0.1, β = 0.2 for backtracking line search (Algo-
rithm 3) and CL = 1, σ2 = 0.05, in the estimation of the initial
step size (Algorithm 2). Each numerical experiment consists of 30

Monte Carlo (MC) trials: the input matrix does not change, and the
variability is only due to the different random initialization of the
input factors. We initialize the factors with numbers drawn from the
standard normal distribution N (0, 1), as in [3]. The stopping crite-
rion is ft+1−ft

f1 < TolFun, where t is the iteration index.
Our first experiment is low-rank approximation of a 13 × 13

matrix (I = 13 = J), generated from factors with ranks K = 3

and R(i)
A = 2 = R

(j)
B ∀i, j, whose entries are drawn independently

from the standard normal distribution. The factorization uses the
true K and R(j)

B ∀j but a smaller value of R(i)
A = 1 ∀i. In this

experiment, we do not compare with FPGM because our factors have
inner rank less than K; as explained in Section 2, FPGM can only
represent factors of size K×K. Note that the input matrix provides
169 observations (or measurements) and consists of 121 degrees of
freedom (d.o.f.), whereas the estimating model has only 95 d.o.f..
Here, TolFun= 10−10. Figure 1 illustrates our results.

In the second experiment, our input is S12, the slack matrix of
the regular 12-gon (twelve-sided polygon). This is a nonnegative
12 × 12 matrix with zero diagonal and subdiagonal. Slack matri-
ces [5] represent geometric properties of polyhedra. Their psd rank
has numerous applications, such as those mentioned briefly in Sec-
tion 1. Vandaele et al. [3] conjecture that the smallest K for which
S12 admits an exact PSDMF, i.e., its psd rank, is K = 5. For the
sake of algorithmic comparison, we approximate S12 with factors
of ranks K = 4 = R

(i)
A = R

(j)
B ∀i, j. Hence, as in the previous

example, we do not expect to obtain exact factorization. Here, the
number of observations is 144, which is much less than the num-
ber of d.o.f. in the factorization model, 224. The reason we can-
not obtain an exact factorization is not only the special structure of
PSDMF, but also due to the fact that S12 has zero diagonal and sub-
diagonal: these zeros impose further constraints on the factors. Here,
TolFun= 10−9. Figure 2 illustrates our results.

The first subfigure (clockwise from top left) in Figs. 1 and 2
demonstrates the evolution of the error ‖X−Xt‖F

‖Xt‖F
, where Xt is the

estimate of X at the tth iteration, in one MC trial, versus CPU time.
The second subfigure illustrates, in box plots, the CPU time needed
to reach the stopping criterion for all MC trials. The 3rd and 4th
subfigures describe, in box plots, the total number of iterations and
the final error achieved, for all MC trials. We use log or log-log scale
in all figures. These subfigures illustrate a trend that we observed in
all our numerical experiments: the c versions of CD are always the
fastest; however, they are not always the ones to achieve the small-
est error. On the other hand, our Matlab implementation of CD is
the slowest to reach the stopping criterion (it is probably possible
to encode it a bit faster in Matlab, but we doubt that the improve-
ment will change the overall trend). The convergence speed of ABG
is somewhere in between, with differences arising from the specific
setup. Figure 2 indicates that FPGM seems to be comparable to the
more efficient variants of ABG. The fact that ABG works on ma-
trices (“blocks”) probably explains why it outperforms the Matlab
versions of CD.

We observe that ABG tends to converge faster with a smaller
number of refinements D, despite the increase in the number of iter-
ations. In the low-rank scenario of Fig. 1, the final error achieved by
all algorithms is distributed more or less the same, whereas in Fig. 2
we see more distinct differences in final error among algorithms and
variants of ABG, in favor of larger D. Perhaps surprisingly, we do
not observe any clear trend that can tell us which of the variants,
j->d and d->j, is better.

Although these preliminary numerical experiments are limited
in scope, they indicate that the proposed ABG framework does not

10-3 10-2 10-1 100

CPU time [s]

10-1

||X
-X

t|| F/||
X|

| F

CD-cyclic (c)
CD-cyclic Matlab
CD-GS (c)
CD-GS Matlab
BG 5 passes d->j
BG 25 passes d->j
BG 1 pass d->j
BG 5 passes j->d
BG 25 passes j->d
BG 1 pass j->d

CD cy
c (

c)

CD G
S (c

)

CD cy
c (

M)

CD G
S (M

)

BG 25
 d-

>j

BG 25
 j->

d

BG 5
d->

j

BG 5
j->

d

BG 1
d->

j

BG 1
j->

d
0

10

20

30

C
PU

 ti
m

e
[s

]

CD cy
c

CD G
S

BG 25
 d-

>j

BG 25
 j->

d

BG 5
d->

j

BG 5
j->

d

BG 1
d->

j

BG 1
j->

d

0.04

0.06

0.08

||X
-X

t|| F/||
X|

| F

CD cy
c

CD G
S

BG 25
 d-

>j

BG 25
 j->

d

BG 5
d->

j

BG 5
j->

d

BG 1
d->

j

BG 1
j->

d
0

1000

2000

3000

ite
ra

tio
ns

Fig. 1: PSDMF of a 13×13 matrix generated from random factors of
ranks K = 3, R(i)

A = 2 = R
(j)
B ∀i, j, factorized with R(i)

A = 1 ∀i.
Clockwise from top left: (i) evolution of the error versus CPU time,
for one MC trial; (ii)–(iv) CPU time, error, and number of iterations,
when stopping criterion is achieved, for all MC trials.

10-2 100 102

CPU time [s]

10-2

10-1

||X
-X

t|| F/||
X|

| F

FPGM
CD-cyclic (c)
CD-cyclic Matlab
CD-GS (c)
CD-GS Matlab
BG 5 passes d->j
BG 25 passes d->j
BG 1 pass d->j
BG 5 passes j->d
BG 25 passes j->d
BG 1 pass j->d

FPGM

CD cy
c (

c)

CD G
S (c

)

CD cy
c (

M)

CD G
S (M

)

BG 25
 d-

>j

BG 25
 j->

d

BG 5
d->

j

BG 5
j->

d

BG 1
d->

j

BG 1
j->

d
0

100

200

300

400

C
PU

 ti
m

e
[s

]
FPGM

CD cy
c

CD G
S

BG 25
 d-

>j

BG 25
 j->

d

BG 5
d->

j

BG 5
j->

d

BG 1
d->

j

BG 1
j->

d

9

10

11

||X
-X

t|| F/||
X|

| F

10-3

FPGM
CD cy

c

CD G
S

BG 25
 d-

>j

BG 25
 j->

d

BG 5
d->

j

BG 5
j->

d

BG 1
d->

j

BG 1
j->

d

0.5

1

1.5

ite
ra

tio
ns

104

Fig. 2: PSDMF of the slack matrix of the 12-gon, S12, factorized
with K = 4 = R

(i)
A = R

(j)
B ∀i, j. Clockwise from top left: (i)

evolution of the error versus CPU time, for one MC trial; (ii)–(iv)
CPU time, error, and number of iterations, when stopping criterion
is achieved, for all MC trials.

fall, in terms of computational complexity and ability to converge, at
least to a local optimum, behind the state-of-the-art [3]. Follow-up
work will deal with convergence guarantees and understanding of
the various variants of ABG.

In a broader perspective, our observations and numerical re-
sults clarify that results from phase retrieval and related problems
can be used to develop new algorithms for PSDMF. Conversely,
results already developed for PSDMF may be applied to phase re-
trieval, low-rank matrix recovery from magnitude-only (phaseless)
measurements, and related problems. Having said that, we do not
say that PSDMF solves phase retrieval (or any of its low-rank gen-
eralizations): unless sufficient constraints are imposed, PSDMF is
a highly non-unique problem. A more substantial link between
PSDMF and phase retrieval may be established by considering re-
cent elaborate models, as in [10, 20]. We leave further discussion of
this matter for future work.

Acknowledgment The authors would like to thank Vincent Y. F.
Tan for bringing the paper of Vandaele et al. to our attention and for
his valuable feedback on our manuscript.

5. REFERENCES

[1] J. Gouveia, P. A. Parrilo, and R. R. Thomas, “Lifts of con-
vex sets and cone factorizations,” Mathematics of Operations
Research, vol. 38, no. 2, pp. 248–264, May 2013.

[2] S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. De Wolf,
“Linear vs. semidefinite extended formulations: exponential
separation and strong lower bounds,” in Proc. 44th Annu. ACM
Symp. Theory of Computing. ACM, May 2012, pp. 95–106.

[3] A. Vandaele, F. Glineur, and N. Gillis, “Algorithms for positive
semidefinite factorization,” Computational Optimization and
Applications, vol. 71, no. 1, pp. 193–219, Sep 2018.

[4] P. Paatero and U. Tapper, “Positive matrix factorization: A
non-negative factor model with optimal utilization of error es-
timates of data values,” Environmetrics, vol. 5, no. 2, pp. 111–
126, Jun. 1994.

[5] M. Yannakakis, “Expressing combinatorial optimization prob-
lems by linear programs,” Journal of Computer and System
Sciences, vol. 43, no. 3, pp. 441–466, Dec. 1991.

[6] V. Kaibel, “Extended formulations in combinatorial optimiza-
tion,” arXiv:1104.1023 [math.CO], Apr. 2011.

[7] R. Jain, Y. Shi, Z. Wei, and S. Zhang, “Efficient protocols for
generating bipartite classical distributions and quantum states,”
IEEE Trans. Inf. Theory, vol. 59, no. 8, pp. 5171–5178, Aug
2013.

[8] H. Fawzi, J. Gouveia, P. A. Parrilo, R. Z. Robinson, and R. R.
Thomas, “Positive semidefinite rank,” Mathematical Program-
ming, vol. 153, no. 1, pp. 133–177, Oct 2015.

[9] D. Yang, Structured Low-Rank Matrix Recovery via Optimiza-
tion Methods, Ph.D. thesis, Colorado School of Mines, 2018.

[10] S. Nayer, P. Narayanamurthy, and N. Vaswani, “Phaseless
PCA: Low-rank matrix recovery from column-wise phaseless
measurements,” in Proc. ICML, K. Chaudhuri and R. Salakhut-
dinov, Eds., Long Beach, California, USA, 09–15 Jun 2019,
vol. 97 of Proceedings of Machine Learning Research, pp.
4762–4770, PMLR.

[11] G. Wang, G. B. Giannakis, and Y. C. Eldar, “Solving systems
of random quadratic equations via truncated amplitude flow,”
IEEE Trans. Inf. Theory, vol. 64, no. 2, pp. 773–794, Feb 2018.

[12] Q. Zheng and J. Lafferty, “A convergent gradient descent
algorithm for rank minimization and semidefinite program-
ming from random linear measurements,” in Proc. NeurIPS,
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, Eds., pp. 109–117. Curran Associates, Inc., 2015.

[13] S. Tu, R. Boczar, M. Simchowitz, M. Soltanolkotabi, and
B. Recht, “Low-rank solutions of linear matrix equations via
Procrustes flow,” in Proc. ICML, M. F. Balcan and K. Q. Wein-
berger, Eds., New York, New York, USA, 20–22 Jun 2016,
vol. 48 of Proceedings of Machine Learning Research, pp.
964–973, PMLR.

[14] E. J. Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval
via Wirtinger flow: Theory and algorithms,” IEEE Trans. Inf.
Theory, vol. 61, no. 4, pp. 1985–2007, April 2015.

[15] E. Candès, Y. Eldar, T. Strohmer, and V. Voroninski, “Phase
retrieval via matrix completion,” SIAM Rev., vol. 57, no. 2, pp.
225–251, 2015.

[16] E. J. Candès, T. Strohmer, and V. Voroninski, “Phaselift: Exact
and stable signal recovery from magnitude measurements via
convex programming,” Communications on Pure and Applied
Mathematics, vol. 66, no. 8, pp. 1241–1274, 2013.

[17] S. Burer and R. D. C. Monteiro, “A nonlinear programming
algorithm for solving semidefinite programs via low-rank fac-
torization,” Mathematical Programming, vol. 95, no. 2, pp.
329–357, Feb 2003.

[18] W.-J. Zeng and H. C. So, “Coordinate descent algorithms for
phase retrieval,” Signal Processing, vol. 169, pp. 107418, 4
2020.

[19] R. Chandra, Z. Zhong, J. Hontz, V. McCulloch, C. Studer, and
T. Goldstein, “PhasePack: A phase retrieval library,” in Proc.
ACSSC, Pacific Grove, CA, USA, Oct 2017, pp. 1617–1621.

[20] T. Bendory, D. Edidin, and Y. C. Eldar, “Blind phaseless short-
time Fourier transform recovery,” IEEE Trans. Inf. Theory,
2019, DOI: 10.1109/TIT.2019.2947056.

