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Abstract
We examine the role of category representations for decision-making in real-life tasks. To this
end, we empirically examine how people categorize kitchen objects and make use of categories
when storing objects in a kitchen. We then compare two computational models and their ability
to represent the participants’ mental models. We discuss the advantages and disadvantages of the
models and point the way to further research.

1. Introduction

Mutual understanding between people and cognitive systems is needed, for example in language and 
for interaction. Typically, categories are modeled as sets of individual objects. This representation 
is practical for automatic reasoning, but it ignores many details of human categorization (Lakoff & 
Johnson, 1980). The affiliation of an object to a category can depend on the situational c ontext. For 
example, a drinking glass can serve as a vase if no better container for flowers i s a v ailable. There 
is also the phenomenon of typical vs. untypical representatives, for example a sparrow is a typical 
bird, while a penguin is a bird, but not a typical one (Rosch, 1975).

In this paper we show empirically that categorization can be a major piece of knowledge in 
decision-making tasks. In the context of a real kitchen situation we compare the results of a previ-
ous experiment, where participants stored objects in a real kitchen, with a new experiment where 
participants categorized objects.

We describe two feature-based models for representing categories in a more human-like way, 
both based on models from psychology. We explore how well they capture the mental models of 
our participants and discuss their potential applicability for decision-making.

2. Experiments

The following experiments were designed to gather data about categorization of typical kitchen 
objects. In the first e xperiment w e  a s ked p a rticipants t o  g r oup o b jects a c cording t o  a ny scheme 
they find appropriate, in the other one participants were asked to distribute the same objects into an 
empty kitchen in the way they would furnish their kitchen at home.
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2.1 Experiment 1: Categorization

The categorization task was tested in a remote experiment with the software CatScan that was de-
veloped and used by the group of Alexander Klippel (Klippel et al., 2008, 2011, 2012, 2013; Mast
et al., 2014) to examine categorization in spatial cognition. They gave us their source code and
the permission to change it for our experiment. We made some adjustments for German language
instructions and answers, adapted some parameters to fit our needs, and made some usability ad-
justments. We adjusted the original pre-trial that asks participants to categorize figures of cats, dogs
and camels to make sure they performed the task seriously in the remote setup.

Materials We had 225 images of objects, each in the size of 150× 150 pixels. The set contained
images of identical objects, for example the five identical plates of a dinnerware set. Though, the
set contained 157 different objects.

Participants 46 German-speaking participants were recruited from the University of Tübingen.
Participants who passed the trial could win one of ten 20 e retail vouchers.

Procedure The participants downloaded our prepared CatScan software as a jar file, which they
executed on their own Java Runtime Environment (Version 1.6d or higher) on a screen resolution of
at least 800× 600 pixels. After the experiment, CatScan generates a zip file containing the results.
The participants uploaded this file with a unique identifier that they had received with the download.

After starting the CatScan software, the participants first answered some demographic questions.
Then they received instructions to categorize given objects. Next they performed a trial task with
images of cats, dogs and camels. This task served on the one hand to familiarize the participants
with the procedure and the software, and on the other hand to ensure that they understood the task
and performed the experiment seriously (which all of our participants did). The interface of CatScan
for the categorization task is shown in Figure 1.

The experimental setup consisted of categorizing all 225 images into at most 224 groups (so
there had to be at least one group with more than one object). In the last step, the participants were
presented with each of their self-formed groups and were asked to 1) provide a label for the whole
group, 2) identify one prototypical item in the group and 3) (optionally) describe their rationale of
putting these objects into one group.

The participants had no time restrictions for any of the tasks.

2.2 Experiment 2: Decision-Making

In previous work (Schröder et al., 2019a,b) we asked 20 participants to sort the same 225 kitchen 
items as we used in Experiment 1 into a kitchen as one would do at home when organizing a new 
kitchen. On the whole there were 28 possible places (cupboards, drawers, surfaces) in the kitchen 
to store objects.

We then evaluated which objects were placed together, i.e. in the same group. We treated these 
groups in the same way as the categories of the previous experiment in the following evaluation.
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Figure 1: The CatScan user interface: The objects were given on the left, the categories are on
the right. The buttons on the bottom allow participants to add a category, delete a category, re-
move empty spaces in the object images, re-read the instructions, and move to the next step in the
experiment (only possible when all objects were assigned to categories).

3. Representation and Models

We assume that individual objects are categorized by perceptible features. To mirror the human trait
of categorizing objects in the context of a situation, we use models of categorization that are based
on similarities of features. In the following we use these models to assign one category to each
object, but it is important to note that at least the prototype model could potentially also provide a
“second best” category or check the acceptability of the association of an object to a class.

3.1 Objects

3.1.1 Representation

We represented an object as a vector with the following features

• on the ratio scale: height, width, depth, concavity, hardness, transparency, weight, capacity,
handles,

• on the nominal scale: color, material, function.

For the nominal features color, material and function could receive several values, e.g. a metallic 
pot with a wooden handle.

The function feature was a label like “eat”, “clean”, etc. The assignment was performed by a 
consensus of our team. We added this feature because we had experienced that people often use
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the function information. Our representation with labels is certainly too simplistic to represent the
human association between an object and its possible functions, but it allows us to integrate this
important aspect.

3.1.2 Similarity

To calculate the similarity, or conversely the distance, of two objects, we applied a distance measure
to each feature. We defined distance functions for a feature of object 1 f1 and the same feature of
object 2 f2 (Volkert & Kirsch, 2015; Schröder et al., 2019a):

• for the ratio scale, where the features are numbers: dratio(f1, f2) = |f1 − f2|

• for the nominal scale, where the features are sets of labels: dnominal(f1, f1) = 1− |f1∩f2||f1∪f2|

3.2 Exemplar Model

The exemplar model (Medin & Schaffer, 1978; Nosofsky, 1987; Jäkel, 2007; Nosofsky, 2011) as-
sumes that categories emerge from the similarity to known object. So when I know one object that
someone has called “plate” and I find another object that strongly resembles the first, I may call the
second also “plate”. The psychology literature proposes several specific models for the exemplar
approach. But the basic idea is captured in the k-Nearest Neighbour classifier (Fix & Hodges Jr,
1952).

In this classification method, the learning consists only of specifying weights for a distance
function over all features. In the classification step, the distance to all known objects is calculated
and the majority class of the k closest objects is returned as the class.

We used a Nearest Neighbour classifier with k = 1 and the distance function

dexem(o1, o2) =
∑
f∈F

wf · df (of1 , o
f
2)

according to Minda & Smith (2011) where o1, o2 are feature vectors representing two objects, F is
the set of features, wf is the weight of feature f , of1 , o

f
2 the values of feature f for each object, and

df is the distance function dratio or dnominal depending on the scaling level of the feature.
In the learning phase the weights wf are optimized to best represent the training data set.

3.3 Prototype Model

The prototype model (Posner & Keele, 1968; Rosch, 1975; Volkert & Kirsch, 2015; Volkert et al.,
2018; Schröder et al., 2019a) assumes that instead of memorizing every object one has ever seen,
only a prototype is stored for each category and category membership is determined by the maxi-
mum similarity of an object to a prototype.

Prototype Formation A prototype of objects in category c is a vector with the same features as
the objects. The feature values of a prototype p are determined for features

• on the ratio scale: fp =
∑

oi∈c o
f
i

|c|
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• on the nominal scale: fp = mode(ofi ), oi ∈ c

where fp is the feature value of the prototype, ofi the values of feature f for object oi (Hampton,
1993; Minda & Smith, 2011; Volkert & Kirsch, 2015; Schröder et al., 2019a). The mode function
returns the most frequent value occurring in the input.

Categorization Analogously to the exemplar model, the category of an object is determined by
calculating the distance to all prototypes and returning the category of the closest prototype. But
the reduction of a group of objects to a single point, i.e. the prototype, in the vector space loses the
information of how much variation inside a category is tolerable. Therefore we normalize the dis-
tance function by the standard deviation sfc of feature f over the instances that formed the prototype
pc (Volkert & Kirsch, 2015):

dproto(o, pc) =
∑
f∈F

wf · df (of , pfc )
sfc

Instantiation To determine weights for the features in the prototype model, we identified the 
classificatory s ignificance of  ea ch fe ature by  me asuring th e co rrect cl assification of an obj ect to 
its own group, based on one specific f eature. The better a feature could predict the corresponding 
group, i.e. the closer the object’s feature value is to its prototype feature value, the stronger its 
classificatory significance. Based on that significance we calculated weights for each feature.

4. Evaluation

In the following we first compare the classification results of  the two experiments to  establish the 
connection between categorization and decision-making. Then we present classification results for 
the exemplar and prototype model when instantiated with data from our experiments.

4.1 Categorization and Decision-Making

For both experiments we calculated for each participant a similarity matrix, where the rows and 
columns represent one of the 225 objects each. The value in each field is one if the objects were 
grouped together (either in a self-defined group in Experiment 1  or in the same place in Experi-
ment 2) (Tang & Heymann, 2002; Klippel & Montello, 2007; Klippel et al., 2013). We then added 
the similarity matrices over all participants into an overall similarity matrix per experiment (Wall-
grün et al., 2002; Klippel et al., 2013). The result is shown in Figure 2.

Remember that the tasks were described differently: categorizing objects vs. storing them in a 
real kitchen. The physical environment in the kitchen had constraints such as overall space at one 
place or the size of single objects that were absent in the categorization task. In the decision-making 
experiment in the kitchen, however, participants never used all possible shelves. In addition, some 
participants in this experiment reported that they had grouped objects according to their aesthetic 
appeal (e.g. like putting the ugly plates apart from the nice-looking ones).

Despite these and other differences, the overall similarity matrices look remarkably similar. 
Certain groups of objects such as cutlery were always put into the same group. In order to check for
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(a) Experiment 1: Categorization

(b) Experiment 2: Decision-Making

Figure 2: Overall similarity matrices (OSM) from the two experiments. Those are obtained by
summing up the similarity matrices of all participants for each experiment.
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the similarity between those two matrices, we calculated the difference between them. Since both 
matrices contain percentages of participants grouping two objects together, the resulting difference 
matrix returns percentages as well. Having a look on the absolute values of the difference matrix, 
revealed that only few spots show a larger difference than 60 %. In order to evaluate the difference 
between the two experiments, we calculated the mean of differences for each object. Here, we want 
to discuss those objects having a mean difference larger than 13 %.

The huge soup plate No. 110 got the biggest mean difference (14 %) when calculating the differ-
ences between the two matrices (s. Tab. 1). When the threshold in the decision-making experiment 
was bigger than 65 % it became a standalone. Having a closer look on the overall similarity matrix 
(OSM) of the decision-making experiment revealed that 65 % of the participants each grouped it 
together with another soup plate (No. 114), 60 % grouped it together with soup plate No. 113 (s. 
Fig. 3) and 50 % grouped it together with the large plates (No. 34–36, s. Fig. 4), the soup plates 
(No. 111 and 112) and a deep cake plate (No. 225)(s. Fig. 5). These subsets of our participants do 
not have to be the same individuals though. It is conspicuous, that plate No. 114 (Fig. 3) rather looks 
like a pasta plate as plate No. 110 (Tab. 1) does. The grouping of these two plates in the decision-
making experiment has as a consequence that soup plate No. 110 falls into the same category as the 
other soup and large plates when the threshold is lower than 66 %.
Having a closer look on the differences between the two experiments concerning plate No. 110 
revealed that anybody in the decision-making experiment has neither grouped the plates (No. 212–
216, Fig. 6a) nor the saucers (No. 217–221, Fig. 6b) of the dinnerware set together with plate 
No. 110. When decreasing the threshold in the decision-making experiment, plates of the dinner-
ware set are grouped together with the other small plates (No. 48–52, Fig. 6). This goes in line with 
the finding that only 10 % of the participants in the decision-making experiment have grouped plate 
No. 110 together with the small plates, whereas at least 89 % of the participants in the categorization 
experiment grouped them together. There was also a huge difference concerning the other saucers. 
More than 70 % difference in the grouping behavior is a consequence of the different grouping 
behavior in the two experiments. While in the decision-making experiment only 5 % of the partic-
ipants grouped plate No. 110 together with the saucers, at least 76 % grouped them together in the 
categorization experiment.
Another object type with a relatively high mean difference (13 %) was the espresso cup saucer 
(No. 152–156, Tab. 1). There were especially not grouped together with the large plates (No. 34–
36, Fig. 4): nobody in the decision-making experiment grouped these two types of items together. 
Another large difference shows up considering the grouping with—or rather—without the plate 
No. 110 discussed above. Only 5 % of the participants in the decision-making experiment grouped 
the espresso saucers together with plate No. 110. In the categorization experiment more than 76 %
of the participants grouped them together. Same holds for the espresso saucers and the pasta plate 
No. 114 (Fig. 3). Here, only 10 % of the participants grouped these two types of items together. 
More than 76 % of the participants in the categorization experiment grouped the espresso saucers 
together with the small plates (No. 48–52, Fig. 7), whereas in the decision-making experiment only 
10 % grouped these two types of objects together. Another 65 % difference shows up when looking 
on the grouping with the plates of the dinnerware set. While more than 80 % in the categorization 
experiment grouped them together with the espresso saucers, only 15 % in the decision-making
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(a) Item No. 114 (b) Item No. 113

Figure 3: Item No. 114 that was grouped together with the large soup plate (s. Tab. 1) by 65 %
of the participants and plate No. 113 that was grouped with it by 60 % of the participants in the
decision-making experiment. Pictures: Vanessa Bernath

(a) Item No. 34 (b) Item No. 35 (c) Item No. 36

Figure 4: Three large plates that were grouped together with the large soup plate (s. Tab. 1) by 50 %
of the participants each in the decision-making experiment. Pictures: Vanessa Bernath

experiment grouped these two types of objects together.
When decreasing the threshold in the decision-making experiment down to 65 %, the espresso cup 
saucers were grouped together with the espresso cups.
Also one vase (No. 202, Tab. 1) was grouped differently depending on the experiment (13 %). 
While in the categorization experiment it has been grouped together with all other glasses, in the 
decision-making experiment it was a standalone. We had to decrease the threshold down to 45 %
of the participants in order to identify a category, where this vase might belong to. In this case it 
was grouped together with the other vases and jugs. This might be because of slightly different 
sensory input participants got when doing the categorization experiment. Here, they only could see 
the pictures of the objects, whereas in the decision-making experiment they even could and had to 
touch the objects. So in the categorization experiment the size of the objects might have been a bit 
unclear to them.

On the whole one can say, that participants differentiated much more in the decision-making 
experiment than in the categorization experiment. This makes sense, since putting saucers to the 
large plates is something people would rather not do in their kitchen.
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(a) Item No. 111 (b) Item No. 112 (c) Item No. 225

Figure 5: Three other objects that were grouped together with the large soup plate (s. Tab. 1) by
50 % of the participants each in the decision-making experiment. Pictures: Vanessa Bernath

(a) Item No. 212–216 (b) Item No. 217–221

Figure 6: Anybody in the decision-making experiment has neither grouped the plates (No. 212–216)
nor the saucers (No. 217–221) of the dinnerware set together with the large soup plate No. 110 (s.
Tab. 1) in the decision-making experiment. Pictures: Vanessa Bernath

(a) Item No. 48–49 (b) Item No. 50 (c) Item No. 51 (d) Item No. 52

Figure 7: When decreasing the threshold in the decision-making experiment, plates of the dinner-
ware set (Fig. 6) were grouped together with the other small plates in the decision-making experi-
ment. Pictures: Vanessa Bernath
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Table 1: Comparison of the categorization and the decision-making experiment. Categorization of some objects differed
more than that of other objects in the two experiments. Here we show three objects where categorization differed the most.
For each object we show the category it was in when we set the threshold to 75 % of participants in each experiment. Some
objects do not belong to any category using this threshold.

Ambivalent
Object

Category containing this object in the
categorization experiment

Category containing this object in the
decision-making experiment

No single category
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Table 1: Comparison of the categorization and the decision-making experiment. Categorization of some objects differed
more than that of other objects in the two experiments. Here we show three objects where categorization differed the most.
For each object we show the category it was in when we set the threshold to 75 % of participants in each experiment. Some
objects do not belong to any category using this threshold.
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Table 1: Comparison of the categorization and the decision-making experiment. Categorization of some objects differed
more than that of other objects in the two experiments. Here we show three objects where categorization differed the most.
For each object we show the category it was in when we set the threshold to 75 % of participants in each experiment. Some
objects do not belong to any category using this threshold.

Ambivalent
Object

Category containing this object in the
categorization experiment

Category containing this object in the
decision-making experiment

No single category
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(b) Decision-Making

Figure 8: Prediction scores from the 10-fold cross validation for each experiment.

4.2 Model Comparison

Not surprisingly, in both experiments we see a large overlap between the grouping of the partici-
pants, but still there was individual divergence. This observation confirms the findings of  Lakoff 
(1987) that categorization is individual, but not arbitrary. We all have our own mental model of the 
world, but we share large parts by culture. To test whether the prototype and exemplar models can 
represent individual mental models, we instantiated each model for each participant. In a 10-fold 
cross validation, we used 90% of the objects a participant had classified to instantiate the model, 
and 10% as a test set. Each model was evaluated by a score that counted the number of test items 
where the closest prototype or the best category of the exemplar model was the same group that the 
participant had grouped the item into.

Figure 8 shows that with the data of both experiments the exemplar model has a higher score, 
indicating a better representation of the person’s mental model. The advantage of the exemplar 
model is more pronounced in the decision-making task. This indicates that the prototype model 
is stronger when the categories are “clean”, i.e. the categorization had no physical or aesthetic 
constraints. The exemplar model seems to be more robust if information is used for the grouping 
that is not directly related to the object properties.

One drawback of the exemplar model is the runtime for classification. T he exemplar model 
needs about 8–9 times longer to determine a category.
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Another argument for the prototype model could be a wider applicability to different tasks. As 
the figure shows, the prototype model can reflect the participants’ mental model to  an  acceptable 
level, while the exemplar model seems to be better adapted to the specific t ask. In the context of a 
full decision procedure (like the one by Kirsch (2019)), other aspects such as available space could 
be added by other knowledge modules.

In all, both models have their benefits and drawbacks. It remains to be explored how they behave 
in the context of a decision-making model. The results also confirm that categorization is extremely 
related to the real-world task.

5. Related Work

Prototype theory is one of the most important categorization theories in psychology (Posner & 
Keele, 1968; Rosch, 1973; Minda & Smith, 2011). The prototype view assumes that a category of 
things in the world (animals, objects, shapes, etc.) is represented mentally by a prototype, which 
captures the common features of the members of a category. New stimuli are classified by compar-
ing them with the prototypes, regardless of whether that prototype actually exists in the real world 
or is simply an abstract idea of a non-existing average stored in our mind. Posner and Keele (1968) 
discovered significantly faster categorization r esponse for s timuli near an average t hat had never 
been seen before and a very fast response for the average stimulus itself, thus providing evidence, 
that humans use prototypes to classify entities. While well fitting stimuli in regard to the prototype 
facilitate responses, poor stimuli hinder responses (Rosch, 1975).

Another psychological model is the exemplar theory, which is often contrasted with the pro-
totype theory. It denies that there is an abstract summary of all entities belonging to a category. 
Instead, it is assumes that a new stimulus is compared with all exemplars already stored in mind 
(Medin & Schaffer, 1978; Nosofsky, 2011).

A computational framework for concept representation in cognitive systems and architectures is 
DUAL PECCS (Prototypes and Exemplars-based Conceptual Categorization System). It is a cog-
nitive system for conceptual representation and categorization and relies on a combination of the 
prototype and the exemplar theory (S1) (Lieto, 2014; Lieto et al., 2017). It uses a hybrid represen-
tation of concepts called heterogeneous proxytypes. A proxytype is an element of a representation 
network in long-term memory corresponding to a specific category that can be activated in working 
memory (Prinz, 2002). Heterogeneous proxytypes can be prototypes, exemplars or classical rep-
resentations. A concept is represented by all of these. DUAL PECCS also uses an ontology (S2) 
to categorize input sentences with both systems: S1 and S2. If the two systems do not categorize 
equally, both proposed categories are provided (Lieto et al., 2017).

Rouder & Ratcliff (2006) have proposed a rule-based categorization, which might be used when 
a new stimulus may be confused with stored exemplars. For example a platypus may not be easy to 
classify as a mammal or a bird relying on the exemplars stored in mind since it is a mammal laying 
eggs. Using a rule—or definition—that all animals nursing their young with milk are mammals, the 
new stimulus can be classified correctly.

From an engineering perspective, several approaches for categorization have been constructed 
using the psychological theories just mentioned. Hepner et al. (1990) proposed a connectionist
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method using artificial neural networks, while Madsen & Thomson (2009) used a symbolic ap-
proach with ontologies. Gupta et al. (2011) also used a symbolic representation to choose object
places where people will expect to find the objects. The robot Dora (Hanheide et al., 2011) had
to perform the inverse task: retrieving objects in an apartment that were placed there by peo-
ple. Their probabilistic representation covers the possibility of situation-dependent classification
to some extent, however without representing reasons. Jacobsson et al. (2008) proposed a model of
shared understanding that integrates different symbolic and subsymbolic representations to repre-
sent situation-specific knowledge for a robot.

6. Conclusion

Our experiments show that categorization can be tightly coupled to the decisions people make in
real-world tasks. Therefore, the representation of categories beyond sets needs more research. The
exemplar and prototype models are both promising starting points, but they leave potential for im-
provement. Both aggregate the feature differences by a weighted sum. In decision-making it is
well-known that people hardly ever use weighted sums to integrate different pieces of information
and non-compensatory combination methods may also be a good option or categorization (Kirsch,
2019).

To really appreciate the value of a categorization method, it will have to be put into the context
of decision-making. In our example, the next step is to reproduce human behavior when putting
objects into a kitchen and check for the acceptability of determined places. Finding intuitive and
acceptable solutions is a necessary skill for household robots.
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