
HAL Id: hal-02874762
https://hal.science/hal-02874762

Preprint submitted on 19 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extensive Infinite Games and Escalation, an exercice in
Agda

Pierre Lescanne

To cite this version:

Pierre Lescanne. Extensive Infinite Games and Escalation, an exercice in Agda. 2020. �hal-02874762�

https://hal.science/hal-02874762
https://hal.archives-ouvertes.fr

Extensive Infinite Games and Escalation,

an exercice in Agda

Pierre Lescanne

University of Lyon, École normale supérieure de Lyon, CNRS (LIP),
46 allée d’Italie, 69364 Lyon, France

Escalation in games is when agents keep playing forever. Based on formal proofs we claim
that if agents assume that resource are infinite, escalation is rational.

Keywords: extensive game, infinite game, sequential game, escalation coinduction, Agda,
proof assistant, formal proof.

1 Introduction

Escalation in games is the phenomenon where agents keep playing (or betting if the game
consists in bets) forever, leading to their ruin. Since Shubik[12] people claim that such an
attitude is not rational. Based on formal proofs we are able to refute such a claim and to
say that if agents assume that resource are infinite, escalation is rational. Since our first
work[4] which took place before the 2008 financial crisis, evidence[1] show that stating
the rationality of escalation makes sense. The only solution for avoiding escalation is then
to assume that resource are finite.

In previous works[6,5] we used an approach based on Coq[2] and coinduction (a dual
of induction aimed at reasoning on infinite data structures[3]). Especially in[7] we used
dependent types together with coinduction. In this paper, we use coinduction in Agda[9],
because it allows a terse style closed to this of mathematicians. Agda is a formal proof
computer environment as well as a dependently typed programming language.

Notice other works using proof assistants for proving properties of agents. For instance,
Stéphane Le Roux proved the existence of Nash equilibria using Coq and Isabelle[10,11].
In a somewhat connected area, Tobias Nipkow proved Arrows theorem in HOL[8]. Agda
code of this development are available on GitHub 1.

2 Games and Strategy Profiles

Since we study game theory, lest us first define games. A game is either a leaf or a node.
A leaf is a assignment to each agent of a Utility (sometime called a payoff). Note that
the type of utility depends on the agent (dependent type). A node contains two entities,
put in a record: an agent (the agent who has the trait) and a function next which tells
the next positions to be played.

1 https://github.com/PierreLescanne/DependentTypesForExtensiveGames-in-Agda

https://github.com/PierreLescanne/DependentTypesForExtensiveGames-in-Agda
https://github.com/PierreLescanne/DependentTypesForExtensiveGames-in-Agda

mutual

Game = ((a : Agent) → Utility a) ⊎ NodeG

record NodeG : Set where

coinductive

field

ag : Agent

next : Choice → Game

Notice the key word coinductive which shows that we deal with infinite games. The main
concept in game theory is this of strategy profiles. Strategy profiles are like games with at
each node a choice, which is the choice of the agent who continues the game. In Agda the
sum comes with to unctions inj1 and inj2. In our case, if u is a utility assignment of type
((a : Agent) → Utility a) then inj1 u is a Game and n is a NodeG then inj2 n is a Game.
Strategy profiles are abbreviated StratProf.

mutual

StratProf = ((a : Agent) → Utility a) ⊎ NodeS

record NodeS : Set where

coinductive

field

ag : Agent

next : Choice → StratProf

ch : Choice

We can define the underlying game of a strategy profile

game : (s : StratProf) → Game

game (inj1 u) = inj1 u

game (inj2 n) = inj2 (gameN n) where

gameN : NodeS → NodeG

NodeG.ag (gameN n) = ag n

NodeG.next (gameN n) c = game (next n c)

The underlying game of a leaf (strategy profile) is the same utility assignment, i.e., a leaf
(game). For nodes, games are attributed corecursively. Now let us look at another concept.
Given two strategy profiles, one may wonder whether they have the same underlying game.
This is given by the binary relation ≈sg .

mutual

data _≈sg_ : StratProf → StratProf → Set where

≈sgLeaf : u : (a : Agent) → Utility a → inj1 u ≈sg inj1 u

≈sgNode : n n’ : NodeS → n ◦≈sg n’ → inj2 n ≈sg inj2 n’

record _◦≈sg_ (n n’ : NodeS) : Set where

coinductive

field

is◦≈sg : ag n ≡ ag n’ → ((c : Choice) → next n c ≈sg next n’ c)

A leaf has the same game as itself, two nodes have the same game if all their “next”
strategy profiles have the same games. Notice that we use the symbol ◦ for concepts
associated with NodeS, when the concept without ◦ is associated with StratProf. Given a
strategy profile, we may want to compute the utility of an agent. This assumes that the
path that follows the choices of the agents leads to a leaf. A strategy profile s with such
a property is said convergent, written ↓ s. This is defined as follows:

mutual

data ↓ : StratProf → Set where

↓Leaf : u : (a : Agent) → Utility a → ↓ (inj1 u)

↓Node : n : NodeS → ◦↓ n → ↓ (inj2 n)

record ◦↓ (n : NodeS) : Set where

inductive

field

is◦↓ : ↓ (next n (ch n))

Notice that not all the strategy profile are convergent, for instance the strategy profile
AcBc of Section 4 is not convergent.

We define the utility assignment '&%$!"#u of a convergent strategy profile. '&%$!"#u takes two
parameters: a strategy profile s and a proof that s is convergent.

'&%$!"#u : (s : StratProf) → (↓ s) → (a : Agent) → Utility a
'&%$!"#u (inj1 u) ↓Leaf = u
'&%$!"#u (inj2 n) (↓Node p) = ◦ '&%$!"#u n p

◦ '&%$!"#u : (n : NodeS) → (◦↓ n) → (a : Agent) → Utility a

◦ '&%$!"#u n p = '&%$!"#u (next n (ch n)) (is◦↓ p)

Subgame perfect equilibria are very interesting strategy profiles. They are strategy pro-
files in which the choices of the agents are the best. A leaf is always a subgame perfect
equilibrium. A node is a subgame perfect equilibrium if the next strategy profile for the
choice of the agent is convergent and is a subgame perfect equilibrium, if for any other
node which has the same game and whose next strategy profile is also convergent and is
a subgame perfect equilibrium, the utility of the agent of the given node is not less than
the utility of the agent of this other node. This is defined formally in Agda as follows,
where we use ⇋ s to tell that s is a subgame perfect equilibrium.

data ⇋_ : StratProf → Set where

⇋Leaf : u : (a : Agent) → Utility a → ⇋ inj1 u

⇋Node : n n’ : NodeS →

n ◦≈sg n’ →

⇋ (next n (ch n)) →

⇋ (next n’ (ch n’)) →

(p : ↓ (next n (ch n))) → (p’ : ↓ (next n’ (ch n’))) →

('&%$!"#u (next n (ch n)) p (ag n)) ≮ ('&%$!"#u (next n’ (ch n’)) p’ (ag n)) →

⇋ inj2 n

3 Escalation

We are now interested in strategy profile leading to escalation.

3.1 Good strategy profile

A first property toward escalation is what we call goodness. A strategy profile is good if
at each node, there is a subgame perfect equilibrium with the same game and the same
choice.

mutual

data ,_ : (s : StratProf) → Set where

,Node : n : NodeS → ◦, n → , (inj2 n)

record ◦,_ (n : NodeS) : Set where

coinductive

field

is◦, : (n’ : NodeS) → ⇋ (inj2 n’) → n ◦≈sg n’ → ch n ≡ ch n’ →

, (next n (ch n))

In other words, this strategy profile is not itself a subgame perfect equilibrium, in partic-
ular, it can be non convergent, but each of its choices is dictated by a subgame perfect
equilibrium. Goodness can be considered as rationality in the choices of the agents. Reader
may notice that goodness is of interest only in infinite games, because in a finite game,
there is no difference between a good strategy and a subgame perfect equilibrium.

3.2 Divergent strategy profile

Another property of strategy profiles is divergence. In a divergent strategy profile, if one
follows the choices of the agents, one never gets to a leaf, but, on the opposite, one
runs forever. A divergent strategy profile is written ↑ s. The formal definition in Agda
of divergence looks like this of convergence, but the test for divergence is based on a
coinductive record and never hits a leaf, therefore there is no ↑Leaf case.

mutual

data ↑_ : StratProf → Set where

↑Node : n : NodeS → ◦↑ n → ↑ (inj2 n)

record ◦↑ (n : NodeS) : Set where

coinductive

field

is◦↑ : ↑ (next n (ch n))

An escalation is a strategy profile which is both good and divergent.

4 Strategies with two agents and two choices

To build escalating strategy profiles, we consider the case of two agents Alice and Bob
and two choices down and right.

data AliceBob : Set where

Alice Bob : AliceBob

data DorR : Set where

down right : DorR

We take the natural numbers N as utility 2 for both agents 3 and for the ≮ relation we
take the < relation defined as:

data _<_ : N → N → Set where

z<z : zero < zero

s<z : n : N → suc n < zero

s<s : n m : N → n < m → suc n < suc m

A utility assignment is for instance this which assigns 1 to Alice and 0 to Bob:

uA1B0 : AliceBob → N

uA1B0 Alice = 1

uA1B0 Bob = 0

from which we can build a leaf strategy profile:

A1B0 : StratProf

A1B0 = inj1 uA1B0

which is convergent.

↓A1B0 : ↓ A1B0

↓A1B0 = ↓Leaf

From the utility assignment which assigns 0 to Alice and 1 to Bob on can build the
convergent strategy profile A0B1.

Moreover, we build an infinite strategy AcBs, in which Alice continues always and Bob
stops always:

2 We could have taken a utility with only two values, but we feel that the reader is more
acquainted with natural numbers for utilities.

3 In this case, the type of utility does not depend on the agent.

mutual

AcBs : StratProf

AcBs = inj2 ◦AcBs

◦AcBs : NodeS

ag ◦AcBs = Alice

ch ◦AcBs = right

next ◦AcBs down = A0B1

next ◦AcBs right = BsAc

BsAc : StratProf

BsAc = inj2 ◦BsAc

◦BsAc : NodeS

ag ◦BsAc = Bob

ch ◦BsAc = down

next ◦BsAc down = A1B0

next ◦BsAc right = AcBs

We notices that by mutual co-recursion, AcBs is defined together with an infinite strategy
profile BsAc which starts with a node of which Bob is the agent. Those strategies are like
infinite combs.

?>=<89:;
A

r
&.

d

		

?>=<89:;
B

r
**

d

�

?>=<89:;
A

r
&.

d

		

?>=<89:;
B

r
**

d

�

?>=<89:;
A

r
&.

d

		

?>=<89:;
B

r
**

d

�

?>=<89:;
A

r
&.

d

		

?>=<89:;
B

r
**

d

�

?>=<89:;
A

r
"*

d

		

r
$$

0, 1 1, 0 0, 1 1, 0 0, 1 1, 0 0, 1 1, 0 0, 1

With down one reaches always a leaf and with right one goes always to a new strategy
profile, which is a node. There is a variant of the node ◦AcBs, in which the first choice of
Alice is down instead of right.

Var◦AcBs : NodeS

ag Var◦AcBs = Alice

ch Var◦AcBs = down

next Var◦AcBs down = A0B1

next Var◦AcBs right = BsAc

?>=<89:;
A

r
**

d

�

?>=<89:;
B

r
**

d

�

?>=<89:;
A

r
&.

d

		

?>=<89:;
B

r
**

d

�

?>=<89:;
A

r
&.

d

		

?>=<89:;
B

r
**

d

�

?>=<89:;
A

r
&.

d

		

?>=<89:;
B

r
**

d

�

?>=<89:;
A

r
"*

d

		

r
$$

0, 1 1, 0 0, 1 1, 0 0, 1 1, 0 0, 1 1, 0 0, 1

We prove that ◦AcBs and Var◦AcBs have the same game. Likewise we prove that AcBs is
convergent i.e., ↓ AcBs. Those two facts are key steps in the proof that AcBs is subgame
prefect equilibrium i.e., that ⇋ AcBs.

On the same paradigm we built a strategy profile AsBc in which A stops and B
continues and which is proved to be convergent and to be a subgame perfect equilibrium.

We also build a strategy profile in which A and B both continue.

mutual

AcBc : StratProf

AcBc = inj2 ◦AcBc

◦AcBc : NodeS

ag ◦AcBc = Alice

ch ◦AcBc = right

next ◦AcBc down = A0B1

next ◦AcBc right = BcAc

BcAc : StratProf

BcAc = inj2 ◦BcAc

◦BcAc : NodeS

ag ◦BcAc = Bob

ch ◦BcAc = right

next ◦BcAc down = A1B0

next ◦BcAc right = AcBc

AcBs, AcBc and AsBc have the same game. Unlike AcBs and AsBc, the strategy profile
AcBc is divergent, i.e., ↑AcBc. Moreover AcBc is good which means ,AcBc.

5 Conclusion

Since AcBc is good and divergent, AcBc is an escalation. Hence we proved formally the
claim of the introduction, namely if agents assume that resource are infinite, escalation

is rational.
In the current implementation, the type of choices is the same for all the agents.

However, one may imagine that this type may depend on the agents. Making the type of
choices depending on the agents is object of the current investigation.

References

1. Lucie M Bland, Jessica A Rowland, Tracey J Regan, David A Keith, Nicholas J Murray,
Rebecca E Lester, Matt Linn, Jon Paul Rodŕıguez, and Emily Nicholson. Developing a
standardized definition of ecosystem collapse for risk assessment. Frontiers in Ecology and

the Environment, 16(1):29–36, 2018.
2. Pierre Boutillier, Stephane Glondu, Benjamin Grégoire, Hugo Herbelin, Pierre Letouzey,

Pierre-Marie Pédrot, Yann Régis-Gianas, Matthieu Sozeau, Arnaud Spiwack, and Enrico
Tassi. Coq 8.4 Reference Manual. Research report, Inria, July 2014. The Coq Development
Team.

3. Bart Jacobs and Jan Rutten. An introduction to (co)algebra and (co)induction. In Davide
Sangiorgi and Jan J. M. M. Rutten, editors, Advanced Topics in Bisimulation and Coinduc-

tion, volume 52 of Cambridge tracts in theoretical computer science, pages 38–99. Cambridge
University Press, 2012.

4. Pierre Lescanne. (Mechanical) Reasoning on Infinite Extensive Games. CoRR,
abs/0805.1798, 2008. avaliable on http://arxiv.org/abs/0805.1798.

5. Pierre Lescanne. Rationality and escalation in infinite extensive games. CoRR,
abs/1112.1185, 2011. available on http://arxiv.org/abs/1112.1185.

6. Pierre Lescanne. Bubbles are rational. CoRR, abs/1305.0101, 2013.
7. Pierre Lescanne. Dependent types for extensive games. J. Formalized Reasoning, 11(1):1–17,

2018. available at https://jfr.unibo.it/article/view/7517.
8. Tobias Nipkow. Social choice theory in HOL. J. Autom. Reasoning, 43(3):289–304, 2009.

Available at http://www21.in.tum.de/~nipkow/pubs/arrow.pdf.
9. Ulf Norell. Dependently typed programming in Agda. In Andrew Kennedy and Amal Ahmed,

editors, Proceedings of TLDI’09: 2009 ACM SIGPLAN International Workshop on Types in

Languages Design and Implementation, Savannah, GA, USA, January 24, 2009, pages 1–2.
ACM, 2009.

10. Stéphane Le Roux. Acyclic preferences and existence of sequential Nash equilibria: A for-
mal and constructive equivalence. In Stefan Berghofer, Tobias Nipkow, Christian Urban,
and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, 22nd International

Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings, volume
5674 of Lecture Notes in Computer Science, pages 293–309. Springer, 2009. available at
http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2007/RR2007-18.pdf.

11. Stephane Le Roux, Erik Martin-Dorel, and Jan-Georg Smaus. Formalization of an ex-
istence theorem of Nash equilibrium in Coq and Isabelle. In Patricia Bouyer and Pier-
luigi San Pietro, editors, GandALF 2017, The Eighth International Symposium on Games,

Automata, Logics, and Formal Verification. EPTCS 256, September 2017. Available at
http://eptcs.web.cse.unsw.edu.au/content.cgi?GANDALF2017.

12. Martin Shubik. The dollar auction game: A paradox in noncooperative behavior and esca-
lation. Journal of Conflict Resolution, 15(1):109–111, 1971.

http://arxiv.org/abs/0805.1798
http://arxiv.org/abs/1112.1185
https://jfr.unibo.it/article/view/7517
http://www21.in.tum.de/~nipkow/pubs/arrow.pdf
http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2007/RR2007-18.pdf
http://eptcs.web.cse.unsw.edu.au/content.cgi?GANDALF2017

	Extensive Infinite Games and Escalation, an exercice in Agda
	Pierre Lescanne

