Skip to Main content Skip to Navigation
Journal articles

Topological defects and confinement with machine learning: the case of monopoles in compact electrodynamics

Abstract : We investigate the advantages of machine learning techniques to recognize the dynamics of topological objects in quantum field theories. We consider the compact U(1) gauge theory in three spacetime dimensions as the simplest example of a theory that exhibits confinement and mass gap phenomena generated by monopoles. We train a neural network with a generated set of monopole configurations to distinguish between confinement and deconfinement phases, from which it is possible to determine the deconfinement transition point and to predict several observables. The model uses a supervised learning approach and treats the monopole configurations as three-dimensional images (holograms). We show that the model can determine the transition temperature with accuracy, which depends on the criteria implemented in the algorithm. More importantly, we train the neural network with configurations from a single lattice size before making predictions for configurations from other lattice sizes, from which a reliable estimation of the critical temperatures are obtained.
Complete list of metadata

Cited literature [38 references]  Display  Hide  Download
Contributor : Maxim Chernodub Connect in order to contact the contributor
Submitted on : Monday, November 9, 2020 - 7:24:49 PM
Last modification on : Saturday, February 12, 2022 - 1:20:01 AM
Long-term archiving on: : Wednesday, February 10, 2021 - 7:54:35 PM


Files produced by the author(s)




Maxim N. Chernodub, Harold Erbin, V. A. Goy, A. V. Molochkov. Topological defects and confinement with machine learning: the case of monopoles in compact electrodynamics. Physical Review D, American Physical Society, 2020, 102 (054501), ⟨10.1103/PhysRevD.102.054501⟩. ⟨hal-02874540⟩



Record views


Files downloads