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Single Scanner BLS System for 

Forest Plots Mapping 

Jie Shao, Wuming Zhang, Nicolas Mellado, Shuangna Jin, Lei Luo, Shangshu Cai, 

Lingbo Yang, and Guangjian Yan 

Abstract—Three-dimensional (3D) structural information 

collected from sample plots is significant for forest inventories. 

Terrestrial laser scanning (TLS) has been demonstrated to be an 

effective instrument in data acquisition of forest plots, but the 

application of TLS is time consuming and laborious due to the 

need for scan preparation and its lack of mobility. In contrast, 

mobile laser scanning (MLS) is being increasingly utilized in the 

mapping of various environments due to its mobility. However, 

the geometrical peculiarity of forests (e.g., occlusion, similarity 

between tree shapes) poses problems for existing mapping 

methods. In this paper, a backpack-based single scanner MLS 

system, i.e., backpack laser scanning (BLS), is designed for mobile 

mapping of forest. Thus, to achieve accurate feature matching, 

this paper proposes to combine the line and point features for 

scanner positioning, in which the line feature is derived from 

trunk skeletons. In addition, an optimization framework based on 

two incremental maps is proposed for correcting positional drift. 

Finally, this paper evaluates the effectiveness and the mapping 

accuracy of the proposed method under forest canopy conditions. 

The experimental results indicate that the proposed method 

achieves accurate forest mapping using the BLS system; 

meanwhile, compared with the previous methods, the proposed 

method effectively utilizes the geometric characteristics of the 

tree stems and reaches a lower mapping error, in which the mean 

errors for the horizontal/vertical direction in plots are less than 2 

cm, and the standard deviations are at the millimeter level. 

Index Terms—Forest plots, mobile mapping, point cloud, 

single scanner BLS, SLAM. 

I. INTRODUCTION 

RECISE structural information collected from field 

measurements is necessary for forest inventories, decision 

making on forest resources, and ecological studies. Most of the 

field measurements in a forest are based on field sample plots, 

and these sample plots are typically representative of the entire 

area of interest [1]. Generally, it is expensive to measure 

sample plots utilizing conventional and simple measurement 

tools. With the development of remotely sensed data, a 

frequently used method of the forest measurements is known 
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as light detection and ranging (LiDAR), and a common LiDAR 

method uses laser scanners [2], [3]. The precondition of 

LiDAR-based method is mapping of the surrounding 

environment [4]. In this context, LiDAR-based mapping has 

become an active research topic for forest inventories. 

Terrestrial laser scanning (TLS), commonly known as 

ground-based LiDAR, has shown promise in highly accurate 

forest mapping [5], [6]. TLS instruments use either a pulsed or 

continuous frequency modulated laser that measures the 

distance to an intercepting surface and allows for the precise 

location of the surface to be determined [7]. Currently, 

common TLS instruments can fire millions of laser pulses per 

scan, which creates a highly detailed 3D point cloud 

representation of the scanning domain. However, the occlusion 

effect limits the use of the instrument in forest environments 

[8]. To tackle the occlusion effect, multiple TLS scans are 

typically utilized to scan forest plots instead of one single scan 

in the center of the plot [9]. For multiple scans, pre-scan 

preparations are generally required, e.g., placing targets [10], 

which reduces the cost effectiveness of the technology. As a 

result, the largest problem with TLS is that it is often a 

cumbersome and time-consuming task, increasingly hindered 

by increasing size of the sample plot to be mapped. 

Laser scanners have recently been mounted on moving 

platforms to build mobile laser scanning (MLS) systems and 

are being studied for forest mapping. Compared to TLS, the 

main advantage of MLS is the immensely rapid data collection 

in complex forest environments. Thus, it has great 

opportunities for increasing the cost effectiveness of TLS 

instruments [11], [12]. The greatest challenge for MLS is 

positional accuracy which is closely connected with the 

accuracy of mapping. 

Due to the ability of the global navigation satellite system 

(GNSS) to position the sensor and the ability of the inertial 

measurement unit (IMU) to produce the attitude information, 

the GNSS-IMU system is usually used to derive the trajectory 
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information of MLS for various mapping tasks [13], [14], [15]. 

The positioning techniques work correctly in clear sky 

conditions, but the task becomes increasingly difficult when 

satellite visibility decreases or multipath effects increase [16]. 

In forest environments, satellite availability largely depends on 

the amount of coverage by the canopy, and the dense canopy 

absorbs, reflects or completely blocks the GNSS radio 

frequency signal, causing either a poor signal or signal loss. 

Even with a high precision GNSS-IMU system, the positioning 

error can grow to several tens of centimeters and even to 

meters due to trajectory drift and will greatly limit the mapping 

accuracy in dense forest environments [17]. In such cases, the 

scanner MLS needs to be repositioned during the mapping step, 

which leads to the so-called simultaneous localization and 

mapping (SLAM) problem [18]. 

SLAM is the process of mapping an unknown environment 

and locating the mobile platform simultaneously, which has 

now been widely used to provide positioning information in 

various environments [19]. In the initial stage of the SLAM 

technique, a common sensor is a camera, and currently, many 

excellent methods have been proposed for positioning and 

mapping based on the camera, e.g., MonoSLAM (MonoSLAM: 

Real-Time Single Camera SLAM) [20], LSD-SLAM (Large-

Scale Direct Monocular SLAM) [21], SVO (SVO: Fast Semi-

Direct Monocular Visual Odometry) [22], and ORB-SLAM 

(ORB-SLAM: A Versatile and Accurate Monocular SLAM 

System) [23]. However, these methods require a strong 

matching of landmarks and are generally limited by depth 

precision. By contrast, LiDAR typically has superior depth 

perception and the capacity of dense mapping, both in 2D and 

3D. Similarly, some LiDAR-based SLAM algorithms have 

also been developed for positioning and mapping in various 

environments without reference coordinates, especially the 

graph-based SLAM approach, such as LOAM (LOAM: Lidar 

Odometry and Mapping in Real-time) [24] and Cartographer 

[25]. In the literature, the features, including the point, line, and 

plane of both the camera-based SLAM technique and the 

LiDAR-based SLAM technique are usually used to estimate 

the position and attitude of the sensors. In the feature-based 

SLAM methods, the position and attitude solution is 

continuing to mature, but the feature selection limits the 

effectiveness of the methods in various environments. For 

MLS data, the feature-based SLAM methods can acquire 

satisfactory solutions due to rich and clear geometrical features 

in indoor and urban scenes [26]. However, the features are not 

stable or continuous in forest environments. In addition, 

objects in the forests are remarkably similar, which easily 

causes inaccurate corresponding pairs and registration results. 

For example, the LOAM method utilizes the line and plane 

features to achieve SLAM-based mapping and generally needs 

an initial transformation for feature matching, of which the 

features are extracted from the objects surface. However, 

during the nonlinear optimization process the selected features 

easily fall into local minima when matching is implemented 

with an inaccurate initial transformation in forest scenes. 

Therefore, the feature selection poses challenges to the feature-

based SLAM methods in accurate mapping of forest scenes. 

In practice, many feature-based studies in scan matching 

have been presented for forest environments, of which 

manually selected features [27], artificial targets [28], [29] or 

geometrical features (or “marker-free”) [30], [31] are 

commonly adopted to calculate the position and attitude of 

scanners. However, these studies mainly serve for 

coregistration of several dense point clouds, e.g., TLS-TLS 

data. The process that selects features manually is labor 

intensive and time-consuming [32] and surely would not be 

practical for thousands of MLS point clouds; the artificial 

targets could provide landmarks for localization of the sensor, 

but they are difficult to extract from the sparse MLS point 

clouds due to the size of the targets and the effects of occlusion. 

In addition, the common marker-free-based methods focus on 

coarse alignment of point clouds and need a fine registration 

step in postprocessing. The iterative closest point (ICP) 

method [33] is now the standard approach for fine registration. 

It starts by searching the corresponding pairs between point 

clouds, and then minimizes the distance between those pairs. 

Consequently, the method generally requires sufficient overlap 

of point clouds for obtaining accurate correspondences. 

However, the sparsity of MLS data and the lack of points 

overlap easily leads to inaccurate pairs and affects registration 

results. Therefore, this method is ill-suited to forest scenes. 

MLS-based mapping has increasingly gained attention in 

various environments. However, the complex structure and 

irregular shape of the natural elements in the forest brings 

challenges to the existing mapping methods using MLS [34]. 

Therefore, we integrate a single scanner BLS system without 

the GNSS-IMU technique and propose a novel mapping 

method specific to forest environments in this paper. For 

accurate positioning, we extract trunk skeletons that represent 

the tree center lines for motion estimation of BLS, which 

prevents inaccurate corresponding pairs and allows scan 

matching with low overlap. In addition, a new optimization 

framework based on incremental trunk skeletons points and 

BLS point clouds is used for global optimization and prevents 

accumulative errors. Following the introduction section, the 

overview and key steps of the proposed method is elaborated 

in Section Ⅱ. Section Ⅲ introduces the performance of the 

proposed method on field measurements. Finally, discussions 

and conclusions are presented. 

II. METHODS 

A. Outline of the method 

In this paper, we focus our attention on forest plots mapping 

using a single scanner. First, a single scanner BLS system is 

used for acquisition of raw point clouds. Then, a SLAM-based 

method is executed for forest plots mapping, which consists of 

four key components: feature extraction, feature matching, 

motion estimation, and global optimization. Specifically, we 

propose the combination of the semantic line features and point 

features for motion estimation, in which the lines are derived 

from trunk skeletons that are natural geometric elements of 

trees, and the point features are extracted from the BLS point 

cloud evenly. Finally, accumulative BLS point clouds and the 
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trunk skeleton map are used to provide global constraints and 

optimize the pose of each BLS point cloud. The proposed 

processing flowchart is shown in Fig. 1. 

 

Fig. 1. Flowchart of SLAM-based forest mapping. 

B. Feature extraction 

In the feature-based SLAM method, feature extraction is the 

precondition of localization and mapping. To achieve accurate 

matching, we propose to combine the line and point features to 

estimate the motion of the scanner in this paper, of which the 

line features are mainly used to optimize the matching error in 

the horizontal direction and the point features are used to 

ensure the vertical accuracy. 

1) Line features 

For BLS point clouds captured from different positions, 

accurate corresponding pairs between the two frames are 

difficult to extract directly due to the sparsity of data and the 

complexity of natural elements. In the forest, tree trunks are 

remarkable and stable [35]. Although the surface of the tree 

trunks rarely has significant geometric features, the tree trunk 

skeletons that represent the tree center lines can provide stable 

and robust constraints for motion estimation of the scanner, 

especially in the horizontal direction. Therefore, we study a 

hierarchical clustering method to extract the tree trunk 

skeletons from each frame of the BLS point clouds. 

According to the characteristics of the BLS point cloud used, 

the raw point cloud is first divided into multiple subsets of 

point clouds based on the angular resolution in the vertical 

direction. For each subset, distance-based region growing is 

used to segment various objects, and then the circle fit based 

on the least square method is used to detect tree trunk points. 

Finally, the center points of the detected circles are regarded as 

trunk skeleton nodes, and the nodes that are continuously 

distributed in the vertical direction are considered to be derived 

from a trunk skeleton in which the connected line between two 

neighbor nodes is regarded as a line feature (Fig. 2). 

 

(a) 

 

(b) 

Fig. 2. Line features extraction. (a) Layered processing. Different colors represent subsets of different layers. (b) Extracting tree trunk skeleton nodes (red points), 

skeleton lines can be generated by connecting the neighboring nodes. 

2) Point features 

The trunk skeletons contribute to reducing horizontal error 

of mapping results, but due to the approximate parallel 

relationship among trunk skeletons, the line features have 

difficulty providing constraints for feature matching in the 

vertical direction. Therefore, we use well-distributed points to 

provide an overall constraint for the SLAM process. In this 

paper, the difference of Gaussian (DoG) method is used to 

extract point features. 

DoG is usually used for feature enhancement and extraction 

in digital imaging processing. Major advantages of DoG 

features are their invariance to scaling, rotation and translation 

[36]. By contrast, we directly extract features based on point 

range. The principle of DoG-based 3D point feature extraction 

is subtracting one blurred point cloud level from another 

blurred point cloud level. The blurred levels are obtained by 

convolving the point cloud with Gaussian kernels having 

different standard deviations. 

𝓕𝑖(𝑥, 𝑦, 𝑧) = 𝑮𝑖(𝑥, 𝑦, 𝑧; 𝜎1) − 𝑮𝑖(𝑥, 𝑦, 𝑧; 𝜎2) (1) 

where 𝓕𝑖 is the difference between the Gaussians of a point 

(𝑥, 𝑦, 𝑧) and 𝑮 is the Gaussian kernel in 1D, 

𝑮(𝑥, 𝑦, 𝑧; 𝜎) =
1

√2𝜋𝜎
𝑒

−
(|(𝑥,𝑦,𝑧)|−𝜇)2

2𝜎2  (2) 

where the 𝜎 represents the width of the Gaussian kernel. In 

statistics, 𝜎 is the standard deviation and 𝜎2 is the variance. 

Finally, we detect points with local minima or maxima 𝓕 

value as the point feature. 

In this paper, 180 feature points were extracted from each 

frame of the BLS point cloud (see Fig. 3). Let ℛ𝑛
𝐿  be the set 

of point features in the time of sweep n. 
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Fig. 3. Point features extraction. Grey points are raw BLS points and blue 

points represent the extracted real feature points. 

C. Feature matching 

The acquisition of BLS data is rapid and continuous. 

Therefore, to find corresponding feature pairs for motion 

estimation, the Euclidean nearest neighbor search is adopted 

for feature matching, and the distance between the matched 

features is regarded as the matching constraint. 

For a tree stem, the corresponding trunk skeletons that 

derived from the BLS point cloud and its reference are similar, 

but they are not exactly the same because of the sparsity of the 

BLS data. By contrast, the trunk skeleton nodes maintain 

uniform distribution with the corresponding trunk skeleton in 

its reference, so the point-to-line (trunk skeleton node to trunk 

skeleton line) distance could establish a more accurate 

relationship between the BLS point clouds. If a skeleton node 

has two nearest skeleton points in the reference data which are 

within a certain neighborhood of the node, then we set the 

skeleton node as a keypoint and regard the line that is 

composed by the two nearest skeleton points as a 

corresponding feature for motion estimation. The distance 𝑑𝑙 

between the point and line can be computed by 

𝑑𝑙 =
|(𝑋(𝑡+1,𝑙) − 𝑋(𝑡,𝑎)) × (𝑋(𝑡+1,𝑙) − 𝑋(𝑡,𝑏))|

|𝑋(𝑡,𝑎) − 𝑋(𝑡,𝑏)|
 (3) 

where 𝑋(𝑡+1,𝑙) is a trunk skeleton node at the time of sweep, 

𝑡 + 1 , and 𝑋(𝑡,𝑎)  and 𝑋(𝑡,𝑏)  are the two nearest skeleton 

points of 𝑋(𝑡+1,𝑙) at the time of sweep, 𝑡. 

In addition, due to fast convergence speed, the planar patch 

is found to be the correspondence of the point feature. If a point 

has three nearest points in reference that are within a certain 

neighborhood and not on the same line, then a planar patch 

consisting of the three points is regarded as a correspondence 

of the point feature, and the point will be used as a keypoint 

for motion estimation. The distance, 𝑑𝑝 , between the point 

and the plane can be computed by 

𝑑𝑝 =
|𝑋(𝑡+1,𝑝)𝑋(𝑡,𝑎)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ 𝒏⃗⃗ |

|𝒏⃗⃗ |
=

|(𝑋(𝑡+1,𝑝) − 𝑋(𝑡,𝑎)) ∙ ((𝑋(𝑡+1,𝑝) − 𝑋(𝑡,𝑏)) × (𝑋(𝑡+1,𝑝) − 𝑋(𝑡,𝑐)))|

|(𝑋(𝑡+1,𝑝) − 𝑋(𝑡,𝑏)) × (𝑋(𝑡+1,𝑝) − 𝑋(𝑡,𝑐))|
 (4) 

where 𝑋(𝑡+1,𝑝) is a feature point at the time of sweep, 𝑡 + 1, 

and its corresponding plane at the time of sweep, 𝑡, is set to 

{𝑋(𝑡,𝑎), 𝑋(𝑡,𝑏), 𝑋(𝑡,𝑐)} and 𝒏⃗⃗  is the normal vector of the plane. 

Both 𝑑𝑙  and 𝑑𝑝 are smaller and tend toward 0. Therefore, 

the relationship of the corresponding pairs will be more stable 

and accurate. 

D. Motion estimation 

When 𝑇𝑛
𝑊  is the transformation vector between the BLS 

point cloud and its reference point cloud, the scanner motion 

can be represented by 6-DOF and consists of position and 

attitude during a sweep, i.e., 

𝑻𝑛
𝑊 = [𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝜔, 𝜑, 𝜅] 

where 𝑡𝑥, 𝑡𝑦 and 𝑡𝑧 are translations along the x-, y- and z-

axes, respectively. 𝜔, 𝜑 and 𝜅 are rotation angulars around 

the x-, y-, z-axes, respectively. 𝑋̃𝑡+1  is the raw BLS point 

cloud at the time of sweep, 𝑡 + 1 , and 𝑋𝑡+1  is the 

transformation result. To estimate accurate motion of the BLS 

system, a rigid transformation relationship between 𝑋̃𝑡+1 and 

𝑋𝑡+1 can be established: 

𝑋𝑡+1 = 𝑹𝑋̃𝑡+1 + 𝑻𝑛
𝑊(1: 3) (5) 

where 𝑹 is the rotation matrix (𝑹 ∈ ℝ3×3). From (3), we can 

derive a geometric relationship between each skeleton node in 

the BLS point cloud at the time of sweep, 𝑡 + 1 , and its 

corresponding line feature in the reference point cloud: 

𝐟𝑙(𝑋(𝑡+1,𝑙)) = 𝑑𝑙 (6) 

Similarly, from (4) we can derive a geometric relationship 

between the point feature in the current BLS point cloud and 

its correspondence in the reference point cloud: 

𝐟𝑝(𝑋(𝑡+1,𝑝)) = 𝑑𝑝 (7) 

Combining (6) and (7), a nonlinear function about 𝑻𝑛
𝑊 can 

be established: 

𝐟(𝑻𝑛
𝑊) = ∑𝐟𝑙(𝑋(𝑡+1,𝑙)) + ∑𝐟𝑝(𝑋(𝑡+1,𝑝)) (8) 

where 𝐟(∙) represents the distance between the keypoint and 

its corresponding feature and each row of 𝐟 corresponds to a 

feature. Finally, (8) can be solved through nonlinear iterations 

by minimizing the error e toward zero with the Levenberg-

Marquardt (L-M) method: 

𝑒 = 𝑎𝑟𝑔 min
𝑒

1

2
∑‖𝑑𝑖 − 0‖2

𝑁

𝑖=1

= 𝑎𝑟𝑔 min
𝑒

1

2
𝐟(𝑻𝑛

𝑊)𝑇𝐟(𝑻𝑛
𝑊) (9) 
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First, we linearize (9) with the first-order approximation of 

a Taylor expansion: 

𝐟(𝑻𝑛
𝑊) = 𝐟(𝑻̂𝑛

𝑊 + ∆𝑻) = 𝐟(𝑻̂𝑛
𝑊) + 𝑱∆𝑻 (10) 

where 𝑻̂𝑛
𝑊  is the initial motion in 6-DOF and ∆𝑻  is the 

correction of the initial motion. 𝑱 is the Jacobian matrix of 

𝐟(∙). Then, the correction ∆𝑻 can be solved by: 

∆𝑻 = (𝑱T𝑱 + 𝜆𝑰)−1𝑱T𝒅 (11) 

where 𝜆 is the damping factor, and the scanner motion can be 

calculated by: 

𝑻𝑛
𝑊 = 𝑻̂𝑛

𝑊 + ∆𝑻 (12) 

Once 𝑻𝑛
𝑊  is obtained, 𝑋̃𝑡+1  can be converted into the 

reference coordinate system. 

E. Global optimization 

To eliminate the accumulative error and transform the BLS 

data from different perspectives into a global coordinate 

system, global optimization is usually used for the SLAM 

process [37]. To maintain global mapping accuracy, most of 

the related methods need to perform numerous loop-closure 

detections, increasing the algorithm complexity [38]. 

Compared to other environments (e.g., indoor and urban), 

there are more occlusion effects in forest environments, but the 

forest plot areas are generally within the range of the LiDAR 

and the forest plots still have certain permeability. In other 

words, the objects in the previous BLS point clouds still can be 

observed by the subsequent BLS point clouds. Therefore, we 

use the previous BLS point clouds as constraints and propose 

an optimization framework based on two incremental maps. 

The two maps contain trunk skeleton points and incremental 

BLS point clouds. The detailed schematic is shown in Fig. 4. 

 

Fig. 4. Schematic of global optimization. {BLS(1,2, … , n − 1, n)} and {Skeletons(1,2, … , n − 1, n)} denote BLS data and the trunk skeleton map at different 

times, respectively. {BLS(1 + 2 + ⋯+ n − 1 + n)} and {Skeletons(1 + 2 + ⋯+ n − 1 + n)} represent the incremental BLS point clouds and the incremental 

trunk skeleton map, respectively. 

In the proposed optimization framework, the BLS point 

cloud at the time of sweep 1 and its corresponding trunk 

skeleton data are regarded as initial references, where the BLS 

point cloud is used to provide constraint for the point features 

and the trunk skeletons are used to provide constraint for the 

line features. In addition, the coordinate system of the first 

frame of the BLS point cloud is regarded as the global 

coordinate system. For the BLS point cloud at the time of 

sweep 2, the scanner motion is calculated according to Section 

Ⅱ. B – Ⅱ. D, and then the current point cloud is transformed 

into the global coordinate system; simultaneously, we rebuild 

the incremental BLS data and trunk skeleton points by 

combining the data at the time of sweep 1 and 2 and set the two 

incremental maps as new references for global optimization. 

Similarly, for each of the subsequent BLS point clouds, the 

motion at the time of sweep, 𝑛, adopts the motion at the time 

of sweep, 𝑛 − 1, as an initial pose, and the two incremental 

maps provide global constraints and horizontal constraints for 

motion estimation, respectively; furthermore, the BLS point 

cloud and its corresponding trunk skeleton data will be 

transformed into a global coordinate system and the two global 

incremental maps are updated. In addition, the mean distance 

between the skeleton nodes and their corresponding line 

features are used for determining whether the current BLS 

point cloud is a keyframe. If the mean distance is less than the 

set threshold, the current BLS point cloud will be regarded as 

a keyframe, and then, the point cloud and its corresponding 

trunk skeleton data are added to the two incremental maps, 

respectively, of which the threshold is an empirical value and 

set as twice the measurement precision of the scanner. 
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III. EXPERIMENTAL RESULTS 

A. Study area and data acquisition 

The study area, located in Saihanba National Forest Park in 

Hebei Province in northern China, is dominated by coniferous 

trees. For this study, we acquired two sets of data in different 

plots of approximately 30 m × 30 m in size. The mean diameter 

at the breast height (DBH) varies between 0.25 m ~ 0.30 m in 

the test plots. 

A single scanner BLS system is designed in this study and 

consists of a single scanner (Velodyne VLP-16), a data 

recording device (PC), and a backpack frame (a simple test 

system is shown in Fig. 5), where the scanner was mounted on 

the backpack frame. The VLP-16 supports 16 channels, 

collects 600,000 points/sec, and its field of view (FOV) is 360° 

in the horizontal direction and 30° in the vertical direction. The 

angular resolution is 2° in the vertical direction and varies 

between 0.1° ~ 0.4° in the horizontal direction. The maximum 

range is approximately 100 m and the measurement precision 

is around 3 cm in the 100 m range. The BLS point clouds were 

captured by moving around the forest plots, and the sampling 

frequency of the BLS was set to 10 Hz. 

 

Fig. 5. The BLS system. 

B. Forest plots mapping 

To verify the effectiveness of the proposed method, two sets 

of data were collected to map forest environments using the 

designed BLS system. In this paper, we achieved forest plots 

mapping and recovered the trajectory of the BLS system (see 

Fig. 6). 

 

(a) 

 

(b) 

Fig. 6. Forest mapping results. (a) and (b) represent the mapping results of datasets 1 and 2, respectively, where red points represent the trajectories of the BLS 

system in the test plots. 

In Fig. 6, the results show that the below-canopy structural 

information in the test plots are constructed by using the 

designed BLS system, and the trajectories are coincident with 

the practical movements. In the mapping results, each tree in 

the plots is registered with high accuracy, and the distribution 

of individual trees is identifiable and has no significant 

deviations, which suggest that the trees reconstructed by the 

proposed method are available in forest inventories. In addition, 

the trajectories of the scanner do not drift from their correct 

values in the two plots, e.g., the trajectory in Fig. 6 (a) is closed 

without a loop-closure detection process during global 

optimization, and the open trajectory in Fig. 6 (b) is still 

recovered by the proposed method, which suggests the 

reliability of the trajectories. 

C. Mapping accuracy 

Due to the impact of occlusion, the GNSS system is not 

reliable in below-canopy environments. In the forest, the 

locations of tree stems were available for evaluating 

planimetric accuracy. Therefore, to quantitatively evaluate the 

performance of the proposed method, the mapping results were 

compared to those from multi-scan TLS data, of which the 

stem position deviations, including mean absolute deviation 

(Mean), standard deviation (STD), and the maximum 

deviation (Max), were used to assess planimetric accuracy of 

the mapping results. In the two datasets, 17 trees and 20 trees 

were selected, and the centers of the tree stems at 

approximately 1.3 m above ground are regarded as the stem 

position. Then, the deviations between the stem position in the 
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mapping results and the corresponding positions in the multi-

scan TLS data are summarized in Table Ⅰ. 

TABLE Ⅰ 

PLANIMETRIC ACCURACY 

Datasets Number of 

sample stems 

Planimetric deviations (m) 

Mean STD Max 

1 17 0.0180 0.0067 0.0282 

2 20 0.0157 0.0064 0.0319 

From Table Ⅰ, the stem position deviations indicated highly 

accurate results of mapping. The mean absolute deviations and 

the maximum deviations were at the centimeter level, of which 

the mean absolute deviations varied between 0.015 m and 

0.020 m, and the maximum deviations were approximately 

0.03 m. The standard deviations were at the millimeter level, 

which indicated a stable distribution. In other words, 

individual trees achieved similar mapping results. In addition 

to the stem position, the branch position can reflect the 

mapping accuracy in the vertical direction. Therefore, to 

further assess the performance, the deviations between the 

branch position in the mapping results and the corresponding 

positions in the multi-scan TLS data were calculated for 

evaluating the vertical accuracy. In practice, some remarkable 

feature points on the branches were selected. The vertical 

accuracies are summarized in Table Ⅱ. 

TABLE Ⅱ 

VERTICAL ACCURACY 

Datasets Number of 

sample points 

Vertical deviations (m) 

Mean STD Max 

1 18 0.0182 0.0109 0.0391 

2 18 0.0152 0.0088 0.0300 

For forest measurements, high accuracy is generally 

required for the registration in the horizontal direction, which 

needs to meet the requirements of structural parameter (e.g., 

DBH) measurements. From Table Ⅱ, in the test plots, the mean 

absolute deviations and the maximum deviations were at the 

centimeter level, of which the mean absolute deviations varied 

between 0.015 m and 0.020 m, and the maximum deviations 

were greater than 0.03 m. The standard deviations were 

approximately 0.01 m, which indicated a certain stability of the 

results. In general, the requirement of the vertical accuracy is 

lower than the horizontal accuracy for forest measurements 

(e.g., tree height), so the accuracies indicated effectiveness of 

the mapping results. Overall, the proposed global optimization 

framework based on two incremental maps can achieve BLS-

based forest mapping, of which the two incremental maps 

provide effective global consistency constraints for each BLS 

point cloud. In particular, the trunk skeletons map maintained 

the accuracies of positioning and mapping in the horizontal 

direction, and the incremental BLS point clouds provided 

global consistency constraint for forest mapping in the vertical 

direction. 

IV. DISCUSSION 

A. Comparison of motion estimation 

In this paper, line and point features were used to solve the 

planimetric and vertical errors of registration in forest 

environments, respectively. To assess the effectiveness of the 

features in motion estimation, we analyzed two frame BLS 

point clouds registration results according to stems and ground 

position deviations and compared the proposed method with 

two methods: the ICP and LOAM methods. 

To evaluate the planimetric accuracy, 12 trees and 8 trees 

were selected from the two datasets, respectively, to calculate 

the stem position deviations. Due to the sparsity of the stem 

point cloud, we projected stem points to a plane and estimated 

the centers of the circles by the least square method. Then, the 

centers were regarded as stem positions, and the distances 

between the stem positions in the registered point cloud and 

their corresponding stem positions in reference were calculated. 

The stem position deviations were summarized in Table Ⅲ. 

TABLE Ⅲ 

PLANIMETRIC DEVIATIONS 

Datasets Methods Number of 

stems 

Planimetric deviations (m) 

Mean STD Max 

1 

LOAM 12 0.0908 0.0371 0.1430 

ICP 12 0.0359 0.0167 0.0593 

Proposed 

method 
12 0.0192 0.0097 0.0408 

2 

LOAM 8 0.0465 0.0296 0.1019 

ICP 8 0.0384 0.0144 0.0639 

Proposed 

method 
8 0.0251 0.0076 0.0339 

In Table Ⅲ, the results from the LOAM and ICP methods 

show greater deviations than those of the proposed method, 

especially the LOAM method. The mean absolute deviations 

calculated by the LOAM methods are 0.0908 m and 0.0465 m 

for the two datasets, and the standard deviations are 

approximately 0.03 m and the maximum deviations are greater 

than 0.1 m, which show large deviations. The mean absolute 

deviations of the ICP method varies between 0.035 m and 0.04 

m, and the standard deviations and maximum deviations are 

approximately 0.015 m and 0.06 m, respectively. In contrast, 

the proposed method performs well, of which the mean 

absolute deviations are 0.0192 m and 0.0251 m in the two 

datasets, the standard deviations are at the millimeter level, and 

the maximum deviation is 0.0408 m. The LOAM method 

estimates motion, combining the line and plane features, and 

requires initial motion information, which is generally 

provided by an IMU system. However, there is no initial 

motion information for the LOAM method in this paper, and 

the stable geometrical features are difficult to extract directly 

from the forest environments. Consequently, because there is 

no strong constraint in the horizontal direction, the inaccurate 

corresponding pairs in the adjacent BLS point clouds cause the 

LOAM method to fall into a local minima and caused large 

planimetric errors. In addition, the point-to-point ICP method 

was adopted to estimate the motion of the BLS system, which 

considers all points in registration and generally requires high 

overlap of point clouds. Although the BLS point clouds were 

acquired in adjacent locations, there are certain errors in the 

matching of the two adjacent BLS point clouds because of the 

sparsity of the BLS data. In contrast, the proposed line features 

(the trunk skeleton lines) are stable and can provide a strong 

constraint for scan matching in the horizontal direction, so the 

proposed method obtained small stem position deviations. 
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In addition to the planimetric error, we also analyzed the 

vertical error based on the branch position deviations. In the 

two datasets, some remarkable feature points on the ground 

were selected to verify the proposed method. We then 

calculated the distance between the sample points in the 

registered point cloud and their correspondences in reference. 

The vertical deviations are summarized in Table Ⅳ. 

TABLE Ⅳ 

VERTICAL DEVIATIONS 

Datasets Methods Number of 

points 

Vertical deviations (m) 

Mean STD Max 

1 

LOAM 22 0.0067 0.0032 0.0158 

ICP 21 0.0612 0.0439 0.1439 

Proposed 

method 
24 0.0081 0.0051 0.0231 

2 

LOAM 19 0.0091 0.0059 0.0230 

ICP 20 0.0772 0.0308 0.1332 

Proposed 

method 
20 0.0072 0.0052 0.0248 

As seen in Table Ⅳ, the vertical deviations from the LOAM 

method and the proposed method show approximate 

performance, in which the mean deviations and the standard 

deviations are at the millimeter level in the two datasets and 

indicate highly accurate scan matching. In contrast, the ICP 

method shows large vertical deviations, of which the mean 

absolute deviations are greater than 0.06 m and the maximum 

deviations are greater than 0.1 m in the two datasets. The 

LOAM method and the proposed method extracted some 

uniform distributed features from the object surface, including 

some points of the ground and branches. Due to strong 

constraints from the ground and branches, the LOAM method 

and the proposed method perform well in the vertical direction. 

In contrast, due to the specific attributes of the scanner, the 

BLS point cloud is sparse in the vertical direction, and there is 

low overlap between the point clouds acquired from different 

perspectives. Consequently, uneven ground and sparse branch 

points are difficult to provide effective constraints and accurate 

corresponding pairs for scan matching. 

Combining the results in Table Ⅲ and Table Ⅳ, the major 

difference between the LOAM method and the proposed 

method is shown in the planimetric deviations. The proposed 

method estimates the motion of the BLS system without initial 

motion information, of which the proposed trunk skeletons 

features provide accurate corresponding pairs and effectively 

solve the problem of inaccurate registration in the horizontal 

direction and then ensure the planimetric accuracy of forest 

mapping. Meanwhile, compared to the ICP method, the point-

to-plane correspondence of the proposed method can provide 

effective constraint and maintain the vertical accuracy. Overall, 

the proposed method can be suggested as a reliable mapping 

method in forest environments. 

B. Data performance 

The BLS system integrated a single scanner which was 

placed horizontally, such that abundant below-canopy data 

was acquired, but the canopy and above-canopy information 

were limited by the field of view of the scanner. Therefore, to 

analyze applications of the mapping results in forest 

measurements, we selected an important forest parameter, 

DBH below the canopy, to assess the effectiveness of the 

mapping results. We calculated the DBH values in the test 

plots and compared with those from the multi-scan TLS data. 

The DBH of individual trees is determined by extracting a 

cross section of the point cloud that falls between 1.2 m and 

1.4 m above the ground level. First, we filtered the ground and 

non-ground points [39] and extracted points that represented 

the tree stem hull at the breast height from the non-ground 

points and then used the least square method to fit a circle. 16 

trees and 14 trees were selected for the measurement of DBH 

values in the two test plots, respectively. The accuracy of the 

DBH values is assessed by treating the reference as a variable 

that is dependent upon the fitted measurement and running a 

simple linear regression analysis to determine the coefficient 

of determination (𝑅2) for the two datasets (Fig. 7). 

 
(a) 

 
(b) 

Fig. 7. Scatter plots of the DBH values. The y-axis represents the reference of DBH values from the multi-scan TLS point cloud and the x-axis represents the fitted 

DBH from the results of the proposed method. (a) and (b) represent dataset 1 and 2, respectively. 
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In Fig. 7, the results of the linear regression analysis 

revealed that the coefficient of determination between the 

fitted DBH, measured from the data via the proposed method 

and the fitted DBH from the multi-scan TLS data, are greater 

than 0.85 in the test plots, which indicated a significant 

correlation between the DBH measured from the proposed 

method and the multi-scan TLS data. In dataset 1, the root 

mean square error (RMSE) is 1.38 cm and the mean absolute 

error (MAE) is 1.15 cm, of which the total error is 

approximately 95.5%. In dataset 2, the RMSE between the 

fitted DBH values and the field measured DBH values is 1.99 

cm and the MAE is 1.78 cm, and the total error is 

approximately 93.9%. Overall, in the test plots, the total errors 

are more than 90.0%, which indicated reliable stem mapping 

results. Therefore, the results suggested the effectiveness of the 

proposed line features and optimization framework for 

maintaining the planimetric accuracy of the mapping results. 

V. CONCLUSIONS 

LiDAR-based mapping has been one of the most important 

developments for forest measurements. To achieve fast forest 

mapping, this paper designed a single scanner BLS system and 

proposed a new mapping method. The system is simple and 

specific to forest environments. Subsequently, practical 

experiments were implemented to evaluate the effectiveness 

and reliability of the designed BLS system and the proposed 

method. In practice, the BLS system took only a few minutes 

to scan a forest plot, and its efficiency is significantly higher 

than that of the TLS method. To achieve accurate scan 

matching, the line features derived from the tree trunk 

skeletons was proposed and used to estimate the motion of the 

BLS system, and the line feature effectively solved the 

inaccurate registration problem caused by insufficient point 

overlap and inaccurate matching pairs in the horizontal 

direction. Compared to the existing methods, the matching 

results from the proposed method were more accurate. In 

addition, the global optimization framework based on the 

incremental BLS point clouds and the tree trunk skeleton 

points provided effective global consistency constraints for the 

BLS-based SLAM in the forest environments and ensured 

positioning accuracies without a GNSS-IMU system or loop-

closure detection process, of which the incremental trunk 

skeleton points maintained accurate registration of all 

individual trees, especially tree stems. 

Fast acquisition of abundant structural information is always 

expected in forest measurements. Although the proposed 

method achieved fast data acquisition in forest plots, the data 

acquired by a single scanner were limited below the canopy. In 

the future, therefore, to acquire more complete information, 

two scanners will be considered, of which one is placed 

horizontally for the SLAM technique and below-canopy 

information acquisition and the other vertically for canopy 

information acquisition. 
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