Y. Alapan, Y. Matsuyama, J. A. Little, and U. A. Gurkan, Dynamic deformability of sickle red blood cells in microphysiological flow, Technology, vol.04, pp.71-79, 2016.

N. Mohandas, M. R. Clark, M. S. Jacobs, and S. B. Shohet, Analysis of factors regulating erythrocyte deformability, J. Clin. Invest, vol.66, pp.563-573, 1980.

L. Pauling, H. A. Itano, S. J. Singer, and I. C. Wells, Sickle Cell Anemia, a Molecular Disease, Science, vol.110, pp.543-548, 1949.

M. H. Steinberg, Sickle Cell Anemia, the First Molecular Disease: Overview of Molecular Etiology, Pathophysiology, and Therapeutic Approaches, The Scientific World Journal, vol.8, pp.1295-1324, 2008.

M. J. Stuart and R. L. Nagel, Sickle-cell disease, Lancet, vol.364, pp.1343-1360, 2004.

F. B. Piel, M. H. Steinberg, and D. C. Rees, Sickle Cell Disease, N. Engl. J. Med, vol.376, pp.1561-1573, 2017.

R. E. Ware, M. De-montalembert, L. Tshilolo, and M. R. Abboud, Sickle cell disease, Lancet, vol.390, pp.311-323, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-00696264

J. Narla and N. Mohandas, Red cell membrane disorders, Int. J. Lab. Hematol, vol.39, pp.47-52, 2017.

O. Baskurt, New guidelines for hemorheological laboratory techniques, Clin. Hemorheol. ans Microcirc. IOS Press, vol.42, pp.75-97, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00709840

J. L. Maciaszek, B. Andemariam, G. Huber, and G. Lykotrafitis, Epinephrine Modulates BCAM/Lu and ICAM-4 Expression on the Sickle Cell Trait Red Blood Cell Membrane, Biophys. J, vol.102, pp.1137-1143, 2012.

G. Tomaiuolo, Biomechanical properties of red blood cells in health and disease towards microfluidics, Biomicrofluidics, vol.8, pp.1-19, 2014.

Y. Alapan, J. A. Little, and U. A. Gurkan, Heterogeneous red blood cell adhesion and deformability in sickle cell disease, Sci. Rep, vol.4, p.7173, 2014.

J. M. Higgins, D. T. Eddington, S. N. Bhatia, and L. Mahadevan, Review of an in vitro microfluidic model of sickle cell vaso-occlusion, Transfus. Clin. Biol, vol.15, pp.12-13, 2008.

S. S. Shevkoplyas, S. C. Gifford, T. Yoshida, and M. W. Bitensky, Prototype of an in vitro model of the microcirculation, Microvasc. Res, vol.65, pp.132-136, 2003.

M. Tsai, In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology, J. Clinical Investigation, vol.122, issue.1, pp.408-418, 2012.

P. Gambhire, High Aspect Ratio Sub-Micrometer Channels Using Wet Etching: Application to the Dynamics of Red Blood Cell Transiting through Biomimetic Splenic Slits, Small, vol.13, issue.32, p.1700967, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01577332

R. Skalak and P. I. Branemark, Deformation of Red Blood Cells in Capillaries, Science, vol.164, pp.717-719, 1969.

E. Varlet-marie, I. Aloulou, J. Mercier, and J. Brun, Prediction of hematocrit and red cell deformability with whole body biological impedance, Clin. Hemorheol. Microcirc, vol.44, pp.237-244, 2010.

Y. Zheng, J. Nguyen, C. Wang, and Y. Sun, Electrical measurement of red blood cell deformability on a microfluidic device, Lab Chip, vol.13, pp.3275-3283, 2013.

M. Clark, N. Mohandas, and S. Shohet, Osmotic gradient ektacytometry: comprehensive characterization of red cell volume and surface maintenance, Blood, vol.61, pp.899-910, 1983.

M. Bessis, N. Mohandas, and C. Feo, Automated Ektacytometry: A New Method of Measuring Red Cell Deformability and Red Cell Indices, Automation in Hematology, pp.153-165, 1981.

N. Toepfner, Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood, Elife, vol.7, p.29213, 2018.

M. A. Lizarralde-iragorri, A microfluidic approach to study the effect of mechanical stress on erythrocytes in sickle cell disease, Lab Chip, vol.18, pp.2975-2984, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01875109

F. Reichel, High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability, Biophys. J, vol.117, pp.14-24, 2019.

R. Huisjes, Density, heterogeneity and deformability of red cells as markers of clinical severity in hereditary spherocytosis, Haematologica, vol.105, pp.338-347, 2020.

R. Huisjes, Squeezing for Life -Properties of Red Blood Cell Deformability, Frontiers in Physiology, vol.9, pp.1-22, 2018.

M. A. Carden, R. M. Fasano, and E. R. Meier, Not all red cells sickle the same: Contributions of the reticulocyte to disease pathology in sickle cell anemia, Blood Rev, vol.40, p.100637, 2020.

P. Bartolucci, Erythrocyte density in sickle cell syndromes is associated with specific clinical manifestations and hemolysis, Blood, vol.120, pp.3136-3141, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00727759

O. O. Ilesanmi and O. State, Pathological basis of symptoms and crises in sickle cell disorder: implications for counseling and psychotherapy, Hematology Reports, vol.2, issue.1, p.2, 2010.

M. Simeonova, D. Wachner, and J. Gimsa, Cellular absorption of electric field energy: influence of molecular properties of the cytoplasm, Bioelectrochemistry, vol.56, pp.215-218, 2002.

J. R. Macdonald, Double layer capacitance and relaxation in electrolytes and solids, Trans. Faraday Soc, vol.66, p.943, 1970.

S. Grimnes and Ø. G. Martinsen, Analysis. Bioimpedance and Bioelectricity Basics, pp.161-204, 2008.

Y. Polevaya, I. Ermolina, M. Schlesinger, B. Ginzburg, and Y. Feldman, Time domain dielectric spectroscopy study of human cells, Biochim. Biophys. Acta -Biomembr, vol.1419, pp.257-271, 1999.

X. Tieying, Microfluidic device using reusable parylen-pdms packaging for the red blood cell transit time analysis in mechanical constrictions, using impedance measurement, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01972640

H. Lorenz, SU-8: a low-cost negative resist for MEMS, J. Micromechanics Microengineering, vol.7, pp.121-124, 1997.

I. Grout and A. K. Bin-a'ain, Introductory laboratories in semiconductor devices using the Digilent Analog Discovery, Proceedings of 2015 12th International Conference on Remote Engineering and Virtual Instrumentation (REV, pp.1-6, 2015.

B. Wilson and V. Mannama, Current-mode rectifier with improved precision, Electron. Lett, vol.31, pp.247-248, 1995.

Y. Zhou, Characterizing Deformability and Electrical Impedance of Cancer Cells in a Microfluidic Device, Anal. Chem, vol.90, pp.912-919, 2018.