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Negative Binomial Matrix Factorization
Olivier Gouvert, Thomas Oberlin, Member, IEEE, and Cédric Févotte, Senior Member, IEEE

Abstract—We introduce negative binomial matrix factoriza-
tion (NBMF), a matrix factorization technique specially designed
for analyzing over-dispersed count data. It can be viewed as
an extension of Poisson factorization (PF) perturbed by a
multiplicative term which models exposure. This term brings a
degree of freedom for controlling the dispersion, making NBMF
more robust to outliers. We describe a majorization-minimization
(MM) algorithm for a maximum likelihood estimation of the
parameters. We provide results on a recommendation task and
demonstrate the ability of NBMF to efficiently exploit raw data.

Index Terms—Non-negative matrix factorization, Poisson fac-
torization, majorization-minimization, over-dispersion, collabora-
tive filtering

I. INTRODUCTION

Poisson factorization (PF) is a special case of non-negative
matrix factorization (NMF) with applications in dictionary
learning for signal & image processing [1], [2], [3], text
information retrieval [4], [5] or recommender systems [6],
[7]. In this setting, the data is assumed to be drawn from
the Poisson distribution making it specially well suited for
count/integer-valued data. More precisely, each entry yui of
the data matrix Y is generated from the process:

yui ∼ Poisson([WHT ]ui), (1)

where W ∈ RU×K+ is the dictionary matrix and H ∈ RI×K+

is the activation matrix. Usually, K � min(U, I) which
implies a low-rank data approximation. A limitation of using
the Poisson distribution is that the variance is fixed and equal
to the mean: var(yui) = E(yui), making it poorly adapted for
over-dispersed data.

As such, we propose in this letter a new probabilistic matrix
factorization (MF) model, coined negative binomial matrix
factorization (NBMF), which is especially designed for over-
dispersed count data. In particular, NBMF offers an additional
degree of freedom for controlling data dispersion, which is
beneficial when analyzing raw data.

In particular, we illustrate this ability by applying NBMF to
collaborative filtering (CF). CF is a common application of MF
methods, which aims at analyzing user preferences in order to
make recommendations. Since the Netflix Prize [8], CF has
been giving state-of-the-art results for recommender systems
by exploiting user historical data. These data can either be
explicit (ratings given by users to items) or implicit (count data
from users listening to songs, clicking on web pages, watching
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Fig. 1. Left: Probability mass function of the NB distribution: y ∼ NB(α, p),
such that E(y) = 4.5. Right: The associated divergence for y = 1.

videos, etc). Count data can be summarized into a matrix Y ∈
NU×I , where yui corresponds to the number of times a user
u interacts with an item i, U and I are the number of users
and items respectively, and N is the set of non-negative integer
values. This type of data, easy to collect, is known to be very
sparse, noisy and bursty [9], [10]. Therefore, to remain robust
to outliers, a pre-processing stage is often carried out before
applying PF [7], [11]: all positive values are thresholded to 1,
producing binary data, i.e., Y ∈ {0, 1}U×I . On the contrary,
we propose to process the raw data with NBMF, avoiding the
loss of information induced by any pre-processing stage.

This paper is organized as follows. In Section II, we
introduce NBMF. In Section III, we discuss its connections
with the state of the art. In Section IV, we study the
maximum likelihood estimator of NBMF and discuss the
fit function/divergence it implies. Finally, in Section V, we
illustrate the benefits of NBMF with experiments on a real
dataset.

II. NEGATIVE BINOMIAL MATRIX FACTORIZATION

In this section, we introduce NBMF, which is a NMF
method especially designed for over-dispersed count data.
We chose to illustrate the concepts and properties of NBMF
for data generated by users interacting with items. However,
NBMF can be applied to a wider range of data.

A. Model

We assume that, for each user u ∈ {1, . . . , U} and item
i ∈ {1, . . . , I}, our observations yui = [Y]ui are sampled
from the generative process

yui ∼ NB

(
α,

[WHT ]ui
[WHT ]ui + α

)
, (2)

where W represents the preferences of users and H represents
the attributes of items [12]. NB(α, p) is the negative binomial
(NB) distribution parametrized by a dispersion coefficient α ∈
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R+ and a probability parameter p ∈ [0, 1]. Its probability mass
function, displayed in Figure 1, is given by:

P(Y = y) =
Γ(y + α)

y! Γ(α)
py(1− p)α, (3)

where Γ(.) is the gamma function. When α ≤ 0, the mode of
the NB distribution is located in 0. When α tends to infinity
and the average is fixed, we recover the Poisson distribution.

Like in PF and many mean-parametrized matrix factoriza-
tion models [13], the expected value of the observations is
given by: E(yui) = [WHT ]ui, which gives an intuitive under-
standing of the model. Contrary to the Poisson distribution,
the NB distribution has a second parameter α which enables
to add variance to the model:

var(yui) = [WHT ]ui

(
1 +

[WHT ]ui
α

)
> E(yui). (4)

It is important to note that, contrary to the method of
the same name introduced in [14], we place the factorization
[WHT ]ui on the probability parameter of the NB distribution
and not on the shape parameter.

The NB distribution can also be viewed as a Poisson-gamma
mixture. Note that this formulation is different from [3] where
gamma priors are put on W and/or H. Using this property,
we can write the following equivalent hierarchical model:

aui ∼ Gamma(α, α), (5)

yui|aui ∼ Poisson(aui[WHT ]ui), (6)

where the latent variables aui control local variabilities. We
denote by A the U × I matrix with coefficients [A]ui = aui.
By construction, we have E(aui) = 1 and var(aui) = α−1.

B. Interpretation of the Latent Variable A

The matrix A captures local variations that cannot be ex-
plained by the product WHT , by attenuating or accentuating
them. In the field of recommender systems, A can be viewed
as an exposure variable [11] which models how much a user
is exposed to an item. For example, in the context of song
recommendation, we have the following interpretations:
• If aui � 1, the user is under-exposed to the item. It may

be explained by several reasons: the user does not frequent the
places/communities where the song is played, he is not aware
of the release of a new song, etc.
• If aui � 1, the user is over-exposed to the item. This over-

exposure can be “active”, e.g., the user listens to the song on
repeat, or “passive”, e.g., the item is heavily broadcasted on
the radio, is highlighted on a website, etc.
• If aui ≈ 1, the exposure does not affect the listening

pattern of the user which is fully described by WHT .

III. RELATED WORKS

A. Negative Binomial Regression

Regression for count data based on the Poisson distribution
has been considered by [15]. It has been augmented by a latent
variable a to model over-dispersion in [16], [17], [18]:

yi ∼ Poisson(ai exp(xTi b)), (7)

where yi ∈ N is the response variable, xi is the covariate vec-
tor for sample i and b is the vector of regression coefficients.
When ai is given a gamma prior and marginalized, we get NB
regression:

yi ∼ NB
(
α, (1 + α exp(−xTi b))−1

)
. (8)

Equation (8) defines a generalized linear model [19] in which
the data expectation is not linear in the parameters. We work
instead with the mean-parametrized form of Equation (2),
which is more natural to the MF and dictionary learning
settings. Furthermore, we also learn the “covariates” (similar
to W in our case) and assume all variables to be non-negative.

B. Robust NMF

The latent variable A can be interpreted as a variable that
accounts for outliers. Indeed, A is a multiplicative perturbation
which can explain unexpectedly high or low values (see
Section II-B). In [20], the authors proposed a different way for
handling outliers in NMF models and in particular in Poisson
factorization (in the context of hyperspectral image unmixing).
The outliers are modeled with an additive latent variable.
The data is assumed Poisson-distributed with expectation
[WHT ]ui + sui where sui is imposed to be sparse and non-
negative. The non-negativity implies that only unexpectedly
large data values can be captured with such a model.

C. Exposure and Poisson Modeling

NBMF can be cast as a particular instance of the following
general model:

A ∼ p(A; Θ), (9)

yui|aui ∼ Poisson(aui[WHT ]ui), (10)

where p(A; Θ) is a distribution governed by its own parame-
ters Θ.

There are a few examples of such models in the literature,
as described next.
•When A is deterministic with ∀(u, i), aui = 1, we recover

the well-known PF model [3], [4], [5], [6], [7].
• Zero-inflated models. In [21], aui is drawn from a

Bernoulli distribution: aui ∼ Bern(µ). Marginalizing out
this latent variable leads to the zero-inflated Poisson distri-
bution [22]:

yui ∼ (1− µ)δ0 + µPoisson([WHT ]ui). (11)

In practice, it appears that the Bernoulli distribution puts too
much weight on 0. The gamma distribution offers a softer
alternative. [21] also proposes more sophisticated hierarchical
models for µ (which becomes µui) to include external sources
of knowledge (social network or geographical informations).
Such ideas could also be incorporated in our setting. Note that
a zero-inflated NB model has also been introduced in [23], but
the parametrization of this model differs from Eq. (11).
• Coupled compound PF. In [24] the authors consider matrix

completion with PF and missing-not-at-random phenomenas.
Their approach relies on the following assumption

aui ∼ Poisson([UVT ]ui), (12)
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which is more restrictive in terms of support and structure than
our proposal. The general purpose is also different.
• Random graphs. In reference [25], the exposure is mod-

eled with bipartite random graphs and it is arbitrarily assumed
that half of the unconsumed items are missing feedbacks.

D. Exposure and Gaussian modeling

Besides the models with a Poisson likelihood, the notion
of exposure was also introduced in the context of Gaussian
modeling.
• Exposure matrix factorization. In [11], the authors develop

the so-called exposure matrix factorization (ExpoMF). This
model posits a Gaussian distribution for the binary observa-
tions with factorized matrix expectation. A binary variable
modeling exposure is introduced. It models whether a user
knows an item or not:

aui ∼ Bern(µ), (13)

yui|aui ∼ N (0, aui[WHT ]ui). (14)

The authors of this paper emphasize the fact that weighted MF
(WMF) [9] applied to binary data is a special case of ExpoMF.
They developed an EM algorithm to infer the parameters of
the model. A similar model has been introduced in [26], in the
context of gene expression analysis. Contrary to those works,
we choose to work with the Poisson distribution which is better
adapted to count data [4]. In addition, we do not apply pre-
processing to the data.
• Semi-blind source separation. In semi-blind source sepa-

ration, a similar model has been developed to allow for more
flexibility in the modeling [27], [28]. It assumes that the time-
frequency coefficients yui of each source follow a Student’s t
distribution. The parameters of the distribution are structured
by an NMF model. This model is equivalent to the hierarchical
model:

aui ∼ IG(α/2, α/2) (15)

yui|aui ∼ N (0, aui[WHT ]ui). (16)

The latent variable A has a role similar to our exposure
variable, allowing to obtain a marginal distribution with a
heavier tail.

IV. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we study maximum likelihood (ML) esti-
mation in the proposed model (2) and discuss the data fitting
term that arises from our model.

A. A New Divergence

The ML estimator of W and H is obtained by minimizing
the objective function defined by:

CML(W,H) = − log p(Y;W,H) (17)

=
∑
ui

dα(yui|[WHT ]ui) + cst, (18)

where cst is a constant with respect to (w.r.t.) W and H and

dα(a|b) = a log
(a
b

)
− (α+ a) log

(
α+ a

α+ b

)
. (19)

We exhibit a new divergence, denoted by dα, which is
associated to the mean-parametrized NB distribution with fixed
dispersion coefficient α. It is displayed in Figure 1 for various
values of α. To the best of our knowledge, this divergence
does not have a name nor corresponds to a well-known case
from the literature. As expected, we recover in the limit case
the generalized Kullback-Leibler divergence associated with
the Poisson distribution:

lim
α→∞

dα(a|b) = a log
(a
b

)
− a+ b = KL(a|b). (20)

B. Block-Descent Majorization-Minimization

As it turns out, maximum likelihood reduces to minimiza-
tion of

C(W,H) = Dα(Y|WHT ) (21)

where Dα(·|·) is the entry-wise matrix divergence induced by
dα(·|·). Equation (21) defines a new NMF problem. A standard
approach to minimize C(W,H) is alternate block-descent
optimization in which W and H are updated in turn until con-
vergence of the objective function. The returned solution may
only be a local one owing to the non-convexity of C(W,H).
The individual updates for W and H can be obtained using
majorization-minimization (MM) like in many NMF cases,
and such as NMF with the β-divergence [29]. The roles of
W and H can be exchanged by transposition (Y ≈WHT is
equivalent to YT ≈ HWT ) and we may for example address
the update of H given W. MM amounts to optimizing an
upper bound G(H|H̄) of C(W,H), constructed so as to be
tight at the current iterate H̄ (G(H̄|H̄) = C(W, H̄)). This
produces a descent algorithm where the objective function is
decreased at every iteration [30].

In our setting, a tight upper bound can be constructed
by majorizing the convex and concave parts of C(W,H),
following the approach proposed in [29] for NMF with the
β-divergence. The convex part (terms in − log(x)) may be
majorized using Jensen’s inequality. The concave part (terms
in log(x + c)) can be majorized using the tangent inequality.
This procedure leads to the following multiplicative update
that preserves non-negativity given positive initializations:

hik = h̄ik

∑
u

yui
[WH̄T ]ui

wuk∑
u

yui + α

[WH̄T ]ui + α
wuk

. (22)

Similarly, the update for W is given by:

wuk = w̄uk

∑
i

yui
[W̄HT ]ui

hik∑
i

yui + α

[W̄HT ]ui + α
hik

. (23)

As expected, the multiplicative updates of KL-NMF [31] are
obtained in the limit α→∞. This algorithm scales with the
number of entries UI in the matrix Y, and not with the number
of non-zero entries like for KL-NMF algorithm. This increase
of computational complexity can be a drawback in applications
where the matrix Y is large but sparse.
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TABLE I
RECOMMENDATION PERFORMANCE OF THE THREE COMPARED ALGORITHMS ON THE TASTE PROFILE DATASET. IN BOLD, THE BEST NDCG SCORES.

NDCG@20
Model ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5 ≥ 6

NBMF (α = 1) 0.223 (± 0.005) 0.234 (± 0.006) 0.242 (± 0.006) 0.243 (± 0.009) 0.239 (± 0.008) 0.246 (± 0.009)
NBMF (α = 10) 0.224 (± 0.005) 0.237 (± 0.005) 0.247 (± 0.006) 0.250 (± 0.008) 0.247 (± 0.008) 0.254 (± 0.009)

NBMF (α = 100) 0.222 (± 0.005) 0.235 (± 0.005) 0.245 (± 0.006) 0.248 (± 0.008) 0.245 (± 0.008) 0.252 (± 0.009)
KL-NMF-raw 0.221 (± 0.005) 0.235 (± 0.005) 0.244 (± 0.006) 0.247 (± 0.008) 0.244 (± 0.009) 0.250 (± 0.009)
KL-NMF-bin 0.265 (± 0.006) 0.251 (± 0.006) 0.239 (± 0.007) 0.226 (± 0.009) 0.212 (± 0.010) 0.213 (± 0.009)

Bayesian inference of NBMF can also be considered, by
introducing gamma priors on the latent variables W and H
[3], [7]. In particular, coordinate ascent variational inference
(CAVI) algorithm is detailed in the technical report [32].

V. EXPERIMENTAL RESULTS

A. Experimental Setup

a) Dataset: We apply our algorithm to the Taste Profile
dataset provided by The Echo Nest [33]. This dataset contains
the listening history of users in the form of song play counts.
As in [11], we select a subset of the original data by only
keeping users who listened to at least 20 different songs, and
songs which have been listened to at least by 50 different users.
This pre-processing ensures enough information for each user
and item, while it avoids the cold-start problem inherent in
CF. This leads to a dataset with a number of users U = 1509
and a number of items I = 805.

b) Recommendation Task: The goal of recommender
system is to propose to each user a personalized list of new
items (items he has not consumed yet) that he may like.
To evaluate our algorithm, we randomly divide the observed
matrix Y into two matrices Ytrain and Ytest. Ytrain is composed
of 80% of the non-zero values of Y (the other values are
set to zero, i.e., are assumed not to have been listened to
in the train set), while Ytest is composed of the remaining
20%. For each user, we propose a list of recommendations
composed of m items never consumed in Ytrain, i.e., such
that ytrain

ui = 0. The list is constructed by decreasing order of
the score: sui = [ŴĤT ]ui, where Ŵ are the estimated user
preferences and Ĥ are the estimated item attributes.

c) Normalized discounted cumulative gain: We use the
normalized discounted cumulative gain (NDCG) to measure
the quality of these lists of recommendations [34]. For each
user, we calculate the discounted cumulative gain (DCG),
defined by:

DCGu =

m∑
l=1

rel(u, l)

log2(l + 1)
, (24)

where rel(u, l) is the ground-truth relevance of the l-th item
of the list of the user u. The denominator penalizes relevant
items which are at the end of the proposed list. It accounts
for the fact that a user will only browse the beginning of the
list, and will not pay attention to items which are ranked at
the end. The NDCG is a normalized version of the DCG:

NDCGu =
DCGu

IDCGu
∈ [0, 1], (25)

where IDCGu is the DCG score obtained by an ideal list of
recommendations.

In our experiments, we chose the following definition of the
ground-truth relevance:

rel(u, l) = 1[yui(l) ≥ s], (26)

where i(l) is the index of the l-th item of the list, and s is a
fixed threshold. When s = 1, we recover the classic NDCG
metric for binary data. When s > 1, we focus only on items
which have been listened to at least s times. It totally ignores
listening counts lower than s for which the confidence may
not be high enough. Note that the introduction of the threshold
s only affects evaluation and not training.

d) Compared methods: We compare our algorithm
(called NBMF), described by the update rules in Eq. (22)-(23),
with two versions of KL-NMF [31]. One with pre-processing
stage where we binarize Ytrain, denoted by KL-NMF-bin; and
one without where we work directly on the raw data (as for
NBMF), denoted by KL-NMF-raw.

All the three algorithms are run on 10 random splittings
of the dataset, with 10 random initializations. For NBMF and
KL-NMF-raw, we initialize the algorithms with KL-NMF-bin.
We found out that this was the best initialization strategy as
compared to using random initialization or the result of KL-
NMF-raw. We fix the number of latent factors to K = 50. The
algorithms are stopped when the relative decrement of the cost
function is less than 10−5.

B. Recommendation Results

Table I displays the NDCG score obtained for each algo-
rithm on the Taste Profile dataset. The size of the lists of
recommendations is fixed to m = 20, and 5 different values
of threshold are compared. First, we discuss the difference
between KL-NMF algorithm performed on raw data or on
binarized data (two last lines of the table). We can see that KL-
NMF-bin achieves the best performances for small threshold
(s = 0 or 1). This confirms the usefulness of the pre-
processing stage up to a certain threshold. Then, we display
on Table I, the results of NBMF algorithm for three different
values of α ∈ {1, 10, 100}. We remind that, when α goes to
infinity, the NBMF algorithm is equivalent to KL-NMF-raw.
The NBMF algorithm seems to reach peak performance for
α = 10. For this value, NBMF returns better results than KL-
NMF-raw for all the values of threshold s. As for KL-NMF-
raw, NBMF returns the best NDCG scores for s ≥ 2. This
confirms the loss of information caused by the pre-processing
stage.
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