Skip to Main content Skip to Navigation
Journal articles

Motion Compensated Dynamic MRI Reconstruction with Local Affine Optical Flow Estimation

Abstract : This paper proposes a novel framework to reconstruct dynamic magnetic resonance imaging (DMRI) with motion compensation (MC). Specifically, by combining the intensity-based optical flow constraint with the traditional compressed sensing scheme, we are able to jointly reconstruct the DMRI sequences and estimate the interframe motion vectors. Then, the DMRI reconstruction can be refined through MC with the estimated motion field. By employing the coarse-to-fine multi-scale resolution strategy, we are able to update the motion field in different spatial scales. The estimated motion vectors need to be interpolated to the finest resolution scale to compensate the DMRI reconstruction. Moreover, the proposed framework is capable of handling a wide class of prior information (regularizations) for DMRI reconstruction, such as sparsity, low rank, and total variation. The formulated optimization problem is solved by a primal-dual algorithm with linesearch due to its efficiency when dealing with non-differentiable problems. Experiments on various DMRI datasets validate the reconstruction quality improvement using the proposed scheme in comparison to several state-of-the-art algorithms.
Document type :
Journal articles
Complete list of metadatas

Cited literature [33 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02871358
Contributor : Open Archive Toulouse Archive Ouverte (oatao) <>
Submitted on : Wednesday, June 17, 2020 - 11:24:57 AM
Last modification on : Tuesday, June 23, 2020 - 3:45:12 AM

File

Zhao_24782.pdf
Files produced by the author(s)

Identifiers

Citation

Ningning Zhao, Daniel O'Connor, Adrian Basarab, Dan Ruan, Ke Sheng. Motion Compensated Dynamic MRI Reconstruction with Local Affine Optical Flow Estimation. IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, 2019, 66 (11), pp.3050-3059. ⟨10.1109/TBME.2019.2900037⟩. ⟨hal-02871358⟩

Share

Metrics

Record views

21

Files downloads

56