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A finite volume WENO scheme for immiscible inviscid two-phase flows

Zhe Li∗, Guillaume Oger, David Le Touzé

aEcole Centrale Nantes, LHEEA Research Department (ECN and CNRS), Nantes, France

Abstract

This article presents a two-phase finite volume (FV) method based on the concept of equilibrium volume fraction

for simulating inviscid two-phase flows. A reduced three-equation hyperbolic system is adopted as the governing

equations, which is closed with a barotropic equation of state for both phases. A modified weighted essentially

non-oscillatory (WENO) scheme is proposed for reconstructing the fluid state at cell-interfaces, which can

avoid strictly pressure or velocity oscillations near material interfaces in the test-case of the advection of an

isolated interface, while retaining the convergence order of the WENO scheme in 1D and 2D cases. Besides,

with the generalized Riemann invariants (GRI), the eigenstructure of the hyperbolic system is analyzed and an

approximate Riemann flux solver is proposed based on the linearization of the GRI. The semi-discrete system

is explicitly integrated in time by means of the classical 4th-order Runge-Kutta (RK4) scheme. The proposed

scheme is validated in a series of two-phase test-cases, such as advection of a two-phase vortex, linear sloshing,

long-time wave propagation and dam-break flows, for which good agreements are obtained with the references.

Keywords: Two-phase finite volume method, WENO reconstruction, approximate Riemann flux solver,

free-surface flows, oscillation-free

1. Introduction

Multiphase flows are widely present in nature as well as in industrial applications, such as ocean waves,

sloshing/impacting problems in a liquid tank and atomization of a fuel jet, etc. This type of fluid flows is usually

immiscible and of high density ratios between the two phases, which makes it challenging for computational fluid

dynamics (CFD) methods to handle high density ratios and to maintain sharp phase-interfaces in a relatively

efficient way.

Given these physical characteristics of two-phase flows, it is of primary importance to choose an appropriate

mathematical model to describe the necessary physics, which is expected to be mathematically well-posed and

easy to solve using a numerical scheme. Insightful reviews on the mathematical models for two-phase flows
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can be found in [9, 26, 33]. In the present work, we adopt a weakly-compressible two-phase model based on

a hyperbolic system of three equations, which are the mass conservation equation for both phases and the

momentum conservation equation for the two-phase mixture, closed with a barotropic equation of state (EOS).

Notice that, although without energy equation, this reduced three-equation system is sufficient for representing

the physics in the targeted weakly-compressible two-phase flows, in which the physical compressibility is not

of interest. Thus, highly-compressible multiphase flows, such as strong shock waves, are not considered in the

scope of the present work. Initially tested by Chanteperdrix [6], this model has been recently applied by Grenier

et al. [16] for simulating two-phase free-surface flows with an implicit low-Mach scheme. In this two-phase

model, it is assumed that both phases have the same velocity and the pressure equilibrium is instantaneously

accomplished, i.e. at any given location the pressure of the two phases are always the same. As stated by

Drew [9], this instantaneous pressure equilibrium is an adequate assumption for the fluid flows where the speed

of sound in each phase is large compared with velocities of interest, which is the case in the present work

for weakly-compressible flows. More importantly, it can be proven that the adopted ‘single-pressure & single-

velocity’ model is a well-posed hyperbolic system [33], hence it has less mathematical difficulties to solve using

a numerical scheme. Recently, this assumption has also been applied in a general formulation for various types

of multiphase flows [29]. Here it is worth noting that surface tension and viscosity effects are not considered in

the present paper and will be studied in the future work. The reason for this choice is that without physical

surface tension and viscous terms in the governing equations, it is straightforward to assess the properties such

as the stability and the numerical dissipation of the proposed scheme.

In the present work, we consider to apply a high-order (≥ 3) scheme in order to have a good compromise

between the CPU time and precision [5]. To do so, we propose a finite volume (FV) formulation based on a 5th-

order weighted essentially non-oscillatory (WENO) scheme for simulating weakly-compressible two-phase flows.

Initially proposed by Liu et al. [22], WENO schemes [30] have been widely adopted for capturing discontinuities

with appropriate stencils and for attaining desired high order accuracies in smooth regions. Promising results

have been obtained in several recent works [7, 12, 17, 19, 31, 28, 32, 41], in which WENO schemes were used for

handling high-Mach compressible multiphase flows in the presence of the interaction between phase interfaces

and shock waves. One of the difficulties in these types of numerical simulations is that pressure oscillations

may occur near the phase interface, which are not only non-physical (purely numerical error) but also may

cause numerical instabilities. Indeed, as stated by Abgrall et al. [1, 2], it is generally a major difficulty for a

multiphase numerical scheme to avoid this type of pressure oscillations, even in the case of the advection of an

isolated material interface with uniform pressure and velocity fields, which is named as ‘the Abgrall test-case’

hereafter in the present paper.

In 2006, Johnsen and Colonius [19] have proposed a FV-WENO scheme which can avoid pressure oscillations
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near the material interface in the Abgrall test-case, by reconstructing the primitive variables instead of the

conservative variables in the WENO reconstruction step. The desired formal convergence order of WENO

scheme (3rd- and 5th-orders) have been obtained in a 1D test-case. In 2014, Coralic and Colonius [7] have shown

that, despite of the advantage of oscillation-free feature, if one directly reconstructs the primitive variables [19],

the convergence order of the WENO scheme is limited to 2nd-order in a 2D vortex advection test-case. In order

to avoid pressure oscillations near material interfaces and to retain the convergence order of the WENO scheme

simultaneously, Coralic and Colonius [7] proposed a reconstruction procedure, summarized as: (i) first-time

WENO reconstruction of the conservative variables to obtain the primitive variables at the Gauss quadrature

points within each FV-cell; (ii) Gauss quadrature to have the cell-average values of the primitive variables; (iii)

second-time WENO reconstruction of the primitive variables to get the fluid state at each cell-interface. Notice

that, in the dimension-by-dimension fashion [34], each WENO reconstruction requires twice ‘sweeps’ in 2D

cases in each direction in order to get the interpolated values at cell-interfaces. Thanks to this reconstruction

procedure, they succeeded in obtaining a 5th-order convergence in a 2D vortex advection test-case.

Here we propose a FV-WENO scheme which can avoid pressure oscillations and retain the convergence

order, using only once the WENO reconstruction. First, we choose to reconstruct the conservative variables in

order to retain the convergence order of the WENO scheme. Second, we summarize two necessary conditions

for ensuring the oscillation-free feature of a numerical scheme in the Abgrall test-case

• Condition-I: Given uniform (constant in space) velocity and pressure fields, the velocity and pressure

reconstructed by means of the WENO scheme at cell-interfaces should remain constant;

• Condition-II: With the numerical flux computed by an approximate Riemann flux solver, the velocity

and pressure fields at next instant (updated using an time integration scheme) should remain constant in

space.

One may notice that it is easy to satisfy Condition-I when using the primitive variables (pressure and velocity)

in the reconstruction step. However, this choice will degrade the convergence order of WENO schemes down to

2nd-order in multi-dimensional cases, as shown in [7]. In the present work, we propose a modified WENO scheme

satisfying Condition-I by means of: (i) the use of a common smoothness indicator for the conservative variables

ρ̃1 and ρ̃2; (ii) the reconstruction of the mixture density ρ for deriving the velocity at cell-interfaces. The main

advantages of the proposed scheme are its relatively simple algorithmics and small computational efforts it

requires. Nevertheless, the proposed numerical framework cannot be directly applied to simulate violent and

challenging cases involving significant volume changes, which is hence out of the scope of the present paper. In

addition, inspired of the works of Tokareva and Toro [35, 36], we utilize the generalized Riemann invariants (GRI)

[37] to provide an analysis on the mathematical property of the adopted three-equation hyperbolic system and
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then propose a linearized two-phase Riemann flux solver based on the GRI. Furthermore, the classical 4th-order

Runge-Kutta scheme is applied to integrate in time the semi-discrete system of equations in an explicit way. It

is shown that the proposed linearized Riemann flux solver and the 4th-order Runge-Kutta time integrator satisfy

Condition-II, i.e. the constant velocity and pressure fields are retained at next instant. As a consequence, the

proposed FV-WENO scheme satisfies the above two conditions, which means that the oscillation-free feature is

ensured. It is here worth noting that, as did in [7, 34], two Gauss quadrature points are used for the surface

integral of flux at cell-interfaces. Despite the lower theoretical accuracy order that could be expected, we have

observed a 5th-order convergence of the proposed scheme in the advection of a multiphase vortex test-case,

which is consistent with the results presented in [7, 34].

The rest of the paper is organized as follows. Section 2 presents the adopted three-equation mathematical

model for describing weakly-compressible two-phase flows with a barotropic closure law. The finite volume

formulation is briefly presented in Section 3. In Section 4, the reason of pressure oscillations in the present

numerical framework is firstly given, followed by the proposed modifications to the WENO reconstruction

scheme. Based on the GRI, a linearized Riemann flux solver is presented in Section 5. A short discussion on

the stability issues and some limiters is given in Section 6. The proposed FV-WENO scheme is validated using

a series of numerical test-cases in the presence of two-phase free-surface flows, which are shown in Section 7.

Finally, the conclusions are drawn in Section 8.

2. Mathematical models

2.1. A three-equation model for weakly-compressible two-phase flows

In the present work, we adopt a three-equation model [6, 16] for describing weakly-compressible inviscid

two-phase fluid flows. The system of governing equations consists of the mass conservation equation for the two

phases and the momentum conservation equation for the mixture, given as

∂ρ̃1

∂t
+∇ · (ρ̃1u) = 0,

∂ρ̃2

∂t
+∇ · (ρ̃2u) = 0,

∂ (ρu)

∂t
+∇ · (ρu⊗ u + pI) = ρg,

(1)

where ρ̃k(x, t) = αk(x, t)ρk(x, t) with αk(x, t) and ρk(x, t) being respectively the volume fraction and density of

the kth phase (k = 1, 2) at the location x and time t. By definition, one has
∑
k αk(x, t) = α1(x, t)+α2(x, t) = 1.

In addition, u(x, t) denotes the velocity of the mixture, which is shared by both of the two phases, as shown

in Equation (1). The density and pressure of the mixture are defined as ρ(x, t) =
∑
k αk(x, t)ρk(x, t) and

p(x, t) =
∑
k αk(x, t)pk(x, t), respectively. pk(x, t) denotes the individual pressure of the kth phase, which is
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related to ρk(x, t) by means of the chosen equation of state (EOS) discussed subsequently. I is the identity

matrix and g is the body force per unit mass.

Moreover, the instantaneous pressure equilibrium assumption is adopted, which means that the individual

pressures of the two phases are always the same, i.e. p(x, t) = p1(x, t) = p2(x, t),∀x ∈ Ωf ,∀t ∈ [0,+∞). As

commented by Drew [9], this assumption is adequate for the cases where the speed of sound is sufficiently large

compared to the velocity of interest, or in other words, the Ma number is sufficiently small, which is the case

for weakly-compressible fluid flows. As a result, the present system of governing equations can be categorized as

a ‘single-pressure & single-velocity’ two-phase model [33], which is hyperbolic with the adopted EOS, as shown

subsequently.

2.2. Barotropic closure law

The individual pressure pk is related to each density ρk by means of an EOS. As did in [16], we adopt a

barotropic EOS in order to close the system of equations (1), which is given as

pk = p0 + c2k(ρk − ρk,0), (2)

where p0, ρk,0 and ck are three constants denoting the reference pressure, the reference density and the speed of

sound for the kth phase, respectively, with k = 1, 2. This barotropic EOS can be adopted as no thermal effects

are considered in the present work, since there is no energy or temperature equation in the system of governing

equations (1).

More importantly, with this barotropic closure law, the adopted three-equation two-phase model is a hy-

perbolic system possessing real eigenvalues, which are related to the speed of propagation of information (the

speed of sound) in the fluid domain.

2.3. Speed of sound in the two-phase mixture

In the present weakly-compressible multiphase model, the speed of sound in the two-phase mixture, noted

as c(x, t), can be expressed as

c =
1√

ρ

(
α1

ρ1c21
+

α2

ρ2c22

) , (3)

of which the derivation is provided in Appendix A. As an example, Figure 1 shows the evolution of the speed

of sound in an air-water mixture, as the volume fraction of water α1 varies from 0 to 1. One may observe that

when the volume fraction α1(x, t) is close to 0.5, the local speed of sound in the mixture can be much smaller

than any of the two individual speeds of sound c1 and c2. Similar features of the speed of sound in the mixture

for other multiphase models have been reported in [21, 24, 29, 33]. This phenomenon has also been observed

experimentally by Costigan and Whalley [8] in their measurements of speed of sound in air-water flows.
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Figure 1: Speed of sound in an air-water mixture with ρ1 = 1000 kg/m3, ρ2 = 1 kg/m3, c1 = 1500 m/s and c2 = 350 m/s.

2.4. Equilibrium volume fraction

As shown in Equation (1), there is no advection equation for the volume fraction field αk(x, t) in the system

of governing equations. This means that no extra equation is needed to update the volume fraction at each new

instant. As performed in [16], given ρ̃1 and ρ̃2, we can determine the volume fraction α1 so that the pressure

equilibrium condition is ensured, by solving the following equation

p0 + c21

(
ρ̃1

α1
− ρ1,0

)
= p0 + c22

(
ρ̃2

1− α1
− ρ2,0

)
. (4)

Once α1 is obtained, the volume fraction of the second phase is computed by α2 = 1 − α1. It is then easy

to prove that with positive ρ̃1 and ρ̃2, there exists a unique valid equilibrium volume fraction α1 by solving

Equation (4). As did in [6], let us rewrite Equation (4) as

ρ̃2c
2
2γ

2 − (q − q̃)γ − ρ̃1c
2
1 = 0, (5)

where γ = α1/(1 − α1), q = ρ2,0c
2
2 − ρ1,0c

2
1 and q̃ = ρ̃2c

2
2 − ρ̃1c

2
1. Given ρ̃1 > 0 and ρ̃2 > 0, this quadratic

equation (5) possesses two real solutions
γ+ =

q − q̃ +
√

(q − q̃)2 + 4ρ̃2c22ρ̃1c21
2ρ̃2c22

> 0,

γ− =
q − q̃ −

√
(q − q̃)2 + 4ρ̃2c22ρ̃1c21

2ρ̃2c22
< 0,

(6)

of which γ+ is the unique valid solution, since α1 must satisfy the condition 0 < α1 < 1. Finally, the unique

equilibrium volume fraction is obtained as α1 = γ+/(1 + γ+).
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3. Finite volume formulation

In the present work, the finite volume method is adopted to solve the governing equations (1). The fluid

domain Ωf is discretized into a finite number of fixed control volumes, i.e. Ωf =
∑
eΩe, so that Equation (1)

can be rewritten in the following integral form for each control volume Ωe

d

dt

∫
Ωe

U dΩ +

∫
Γe

Kn dΓ =

∫
Ωe

S dΩ, (7)

where U, K, n and S denote respectively the vector of conservative variables, the flux matrix, the outward

normal vector on the surface Γe of Ωe and the vector of source term, given as

U =


ρ̃1

ρ̃2

ρu

ρv

 , K =
[
F G

]
=


ρ̃1u ρ̃1v

ρ̃2u ρ̃2v

ρuu+ p ρuv

ρvu ρvv + p

 , n =

nx
ny

 and S =


0

0

ρgx

ρgy

 . (8)

In addition, F and G denote the flux vectors in the x and y directions respectively. Equation (8) is expressed

here in 2D but its extension to 3D is straightforward.

In a fixed Cartesian mesh, Equation (7) can be written for the mesh cell over [xi−1/2, xi+1/2]×[yj−1/2, yj+1/2]

as follows

dUi,j

dt
=− 1

∆x∆y

 yj+1/2∫
yj−1/2

F(xi+1/2, y, t) dy −

yj+1/2∫
yj−1/2

F(xi−1/2, y, t) dy


− 1

∆x∆y

 xi+1/2∫
xi−1/2

G(x, yj+1/2, t) dx−

xi+1/2∫
xi−1/2

G(x, yj−1/2, t) dx

+ Si,j ,

(9)

where Ui,j = Ui,j(t) and Si,j = Si,j(t) denote respectively the cell-average values of the conservative variables

and the source term, defined as 

Ui,j(t) =
1

∆x∆y

yj+1/2∫
yj−1/2

xi+1/2∫
xi−1/2

U(x, y, t) dxdy,

Si,j(t) =
1

∆x∆y

yj+1/2∫
yj−1/2

xi+1/2∫
xi−1/2

S(x, y, t) dx dy,

(10)

with ∆x = xi+1/2− xi−1/2 and ∆y = yj+1/2− yj−1/2 being the cell spacing in x- and y-directions, respectively.

Before carrying out the time integration of Equation (9), one needs to evaluate the surface integrals on the

right hand side. As suggested in [7, 34], a two-point Gauss quadrature rule is utilized to compute the surface
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integral of flux at each cell boundary, for example

yj+1/2∫
yj−1/2

F(xi+1/2, y, t) dy '
∑
σ

wσF(xi+1/2, yσ, t), (11)

where wσ = ∆y/2 denotes the quadrature weight for the σth-Gauss point at yσ = yj ±∆y/(2
√

3) and the flux

function is evaluated with an approximate Riemann flux solver, i.e. F(xi+1/2, yσ, t) ' F̂(UL
σ,U

R
σ ) with UL

σ and

UR
σ being the reconstructed states by WENO scheme at the left and right sides of the cell-interface.

In the present work, we apply the classical 4th-order Runge-Kutta time integrator to Equation (9) in order

to update the cell-average state to the next instant, i.e. from U
n

i,j = Ui,j(t
n) to U

n+1

i,j = Ui,j(t
n+1). Because

of the explicit feature of the scheme, the time-step ∆t is chosen as [5]

∆t = CFL
min
e

(∆x,∆y)

max
e

(|u|+ c)
, (12)

where the CFL number is set equal to 0.7 in all the numerical test-cases presented in the following. As an

explicit weakly-compressible scheme [40], the present method has a certain number of advantages, such as there

is no need to solve a Poisson equation, it is easy to implement and it usually maintains good scaling properties,

although the time-step is restricted because of the explicit feature.

4. WENO reconstruction scheme

As mentioned previously, the WENO reconstruction scheme is used to interpolate the variables at each cell-

interface with high-order accuracy. In this section, the WENO reconstruction step of the proposed multiphase

scheme, which satisfies Condition-I given in Introduction, will be presented with details.

4.1. Reconstructed variables

At the beginning of each time-step, the only available data are the newly updated cell-average values of

the conservative variables which are obtained by means of the time integration. Hence, it is straightforward to

reconstruct the conservative variables at each cell-interface using the cell-average states within the stencils.

For example, in 1D cases with uniform mesh spacing, let φ(x) be any one of the conservative variables ρ̃1,

ρ̃2 and ρu, the 5th-order accurate reconstructed values of φ(x) on the left side of the cell-interface at xL
i+1/2 can

be expressed as

[φ]
L
i+1/2 =

ω0

6

(
2φi−2 − 7φi−1 + 11φi

)
+
ω1

6

(
−φi−1 + 5φi + 2φi+1

)
+
ω2

6

(
2φi + 5φi+1 − φi+2

)
, (13)

where ωl denotes the weighting coefficient for the lth-stencil (l = 0, 1, 2) and ωl = dl when there is no WENO

smoothness effect with dl being the ideal weighting coefficient which are equal to d0 = 1/10, d1 = 3/5 and
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d2 = 3/10 for [φ]Li+1/2. Moreover, we note hereafter [•]×4 as the WENO reconstruction operator that gives the

interpolated value of the variable ‘•’ on the ‘×’ side of the cell-interface at the position ‘4’.

Now, we shall demonstrate that, when there is no WENO smoothness effect, i.e. ωl = dl, the reconstructed

state at the cell-interface satisfies Condition-I.

To do so, let us take the left side of the cell-interface at xL
i+1/2 as an example. Using the formula given in

Equation (13), the reconstructed variables ρ̃1 = α1ρ1 and ρ̃2 = α2ρ2 can be obtained and rewritten as
[ρ̃1]

L
i+1/2 =

∑
m

ζm(α1ρ1)m,

[ρ̃2]
L
i+1/2 =

∑
m

ζm(α2ρ2)m,
(14)

where ζm denotes the coefficient for the mth-cell-average value (αkρk)m within the three stencils with m =

i− 2, i− 1, i, i+ 1, i+ 2. With the condition ωl = dl, one can have ζi−2 = d0/3 = 1/30, ζi−1 = −7d0/6− d1/6 =

−13/60, ζi = 11d0/6 + 5d1/6 + d2/3 = 47/60, ζi+1 = d1/3 + 5d2/6 = 9/20 and ζi+2 = −d2/6 = −1/20. Note

here that, since there is no smoothness effect, ζm is entirely determined by the mesh spacing and is the same

for obtaining [ρ̃1]Li+1/2 and [ρ̃2]Li+1/2.

Given a uniform pressure field, e.g. p(x, t) = p0, ∀x ∈ Ωf at the current instant t, one has ρ1 = ρ1,0 and

ρ2 = ρ2,0, hence 
[ρ̃1]

L
i+1/2 =

∑
m

ζm(α1)mρ1,0,

[ρ̃2]
L
i+1/2 =

∑
m

ζm(α2)mρ2,0.
(15)

These reconstructed values [ρ̃1]
L
i+1/2 and [ρ̃2]

L
i+1/2 are then used to get the equilibrium volume fraction

αL
1,i+1/2 at the cell-interface by solving Equation (4) as follows

c21

(
[ρ̃1]

L
i+1/2

αL
1,i+1/2

− ρ1,0

)
= c22

(
[ρ̃2]

L
i+1/2

1− αL
1,i+1/2

− ρ2,0

)
, (16)

which, with the help of Equation (15) and (α2)m = 1− (α1)m, can be written as

c21

ρ1,0

∑
m
ζm(α1)m

αL
1,i+1/2

− ρ1,0

 = c22

ρ2,0 − ρ2,0

∑
m
ζm(α1)m

1− αL
1,i+1/2

− ρ2,0

 , (17)

of which one obvious solution is

αL
1,i+1/2 =

∑
m

ζm(α1)m. (18)

Since it is previously shown that there is a unique valid solution, Equation (18) is just the sought solution

for the equilibrium volume fraction on the left side of the cell-interface at xL
i+1/2. It can then be easily verified

that the pressure at the cell-interface is equal to the constant value, i.e. pL
i+1/2 = p0.

9



Similarly, in order to evaluate the velocity uL
i+1/2 at xL

i+1/2, one needs to firstly get the reconstructed

conservative variable ρu as

[ρu]
L
i+1/2 =

∑
m

ζm(ρu)m, (19)

which gives the velocity at the cell-interface as

uL
i+1/2 =

[ρu]
L
i+1/2

ρL
i+1/2

=
[ρu]

L
i+1/2

[ρ̃1]
L
i+1/2 + [ρ̃2]

L
i+1/2

=

∑
m
ζm(ρu)m∑

m
ζm(α1ρ1)m +

∑
m
ζm(α2ρ2)m

=

∑
m
ζm(ρu)m∑

m
ζm(ρ)m

. (20)

Given a uniform velocity field, e.g. u(x, t) = u0,∀x ∈ Ωf , the velocity at the cell-interface is then evaluated

as

uL
i+1/2 =

u0

∑
m
ζm(ρ)m∑

m
ζm(ρ)m

= u0. (21)

As a consequence, in the absence of smoothness effect, given uniform pressure and velocity fields, the original

WENO reconstruction scheme satisfies Condition-I, which means that it can ensure that the reconstructed

pressure and velocity at each cell-interface have constant values. Similarly, one can obtain the same conclusion

for pR
i−1/2 and uR

i−1/2.

4.2. Smoothness effect

The idea of WENO reconstruction scheme is to assign a weighting coefficient for each stencil, based on its

smoothness, such that the reconstruction essentially utilizes the information from the relatively smooth stencils.

Using a well defined smoothness indicator, a WENO scheme based on three stencils can retain a 5th-order

accuracy in smooth areas of the domain, while being able to provide a lower order reconstructed value at the

locations where there exists a strong discontinuity. In the present work, we adopt the widely used WENO

smoothness indicators given by Jiang and Shu [18], defined as

βl =

xi+1/2∫
xi−1/2

∆x

(
∂Pl
∂x

)2

+ ∆x3

(
∂2Pl
∂x2

)2

dx, (22)

where βl and Pl denote the smoothness measurement and the local 2nd-order polynomial for the lth-stencil. For

l = 0, 1 and 2, one has 
β0 =

13

12

(
φi−2 − 2φi−1 + φi

)2
+

1

4

(
φi−2 − 4φi−1 + 3φi

)2
,

β1 =
13

12

(
φi−1 − 2φi + φi+1

)2
+

1

4

(
φi−1 − φi+1

)2
,

β2 =
13

12

(
φi − 2φi+1 + φi+2

)2
+

1

4

(
3φi − 4φi+1 + φi+2

)2
,

(23)
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with which the weight ωl is then obtained applying

ωl =
ξl

ξ0 + ξ1 + ξ2
, with ξl =

dl

(βl + ε)
2 , (24)

where ε is a small enough value in case of βl = 0, which is set as ε = 10−6 as suggested by Jiang and Shu

[18]. It is worth noting here that the smoothness indicators βl in Equation (23) are not dimensionless. Hence

using the same value of ε for all the variables, i.e. ρ̃1, ρ̃2 and ρu, may generate some problems for choosing the

appropriate stencils [14]. In the present work, we propose to renormalize βl with a characteristic quantity φ2
0

for each variable, in such a way that the weight is now computed by

ωl =
ξ̆l

ξ̆0 + ξ̆1 + ξ̆2
, with ξ̆l =

dl(
β̆l + ε

)2 , and β̆l =
βl
φ2

0

, (25)

where φ0 = ρ1,0, ρ2,0 and ρ1,0u0 for the reconstructed variables ρ̃1, ρ̃2 and ρu, respectively.

Using the weighting coefficient given in Equation (25) for the WENO reconstruction scheme (13), one can

avoid utilizing the information from the stencils containing strong discontinuities. However, as shown in the

following, such WENO scheme cannot ensure Condition-I, when considering the smoothness effect.

As mentioned previously, each reconstructed variable possesses its own WENO smoothness indicator βl, e.g.

let us assign β̆1,l for ρ̃1 and β̆2,l for ρ̃2. Because β̆1,l and β̆2,l are generally not identical, although they are

indeed related via the volume fraction field, the weight are generally not the same, i.e. ω1,l 6= ω2,l. Given a

uniform pressure field (p = p0), the reconstructed ρ̃1 and ρ̃2 at the cell-interface can then be expressed as
[ρ̃1]

L
i+1/2 =

∑
m

ζ1,m(α1)mρ1,0,

[ρ̃2]
L
i+1/2 =

∑
m

ζ2,m(α2)mρ2,0,
(26)

where one should note that ζ1,m 6= ζ2,m in the general case.

To obtain the volume fraction αL
1,i+1/2, [ρ̃1]

L
i+1/2 and [ρ̃2]

L
i+1/2 given by Equation (26) are then substituted

in Equation (16), which gives

c21

ρ1,0

∑
m
ζm,1(α1)m

αL
1,i+1/2

− ρ1,0

 = c22

ρ2,0 − ρ2,0

∑
m
ζm,2(α1)m

1− αL
1,i+1/2

− ρ2,0

 , (27)

of which the solution αL
1,i+1/2 is generally not equal to

∑
m ζ1,m(α1)m or

∑
m ζ2,m(α1)m, since ζ1,m 6= ζ2,m.

Hence the pressure at the cell-interface xL
i+1/2 is not equal to the constant value, i.e. pL

i+1/2 6= p0. As a

consequence, a pressure oscillation may occur from this cell-interface.

Besides, given a uniform velocity field (u = u0), the interface velocity uL
i+1/2 is obtained with Equation (20)

11



as

uL
i+1/2 =

u0

∑
m
ζρ,m(ρ)m∑

m
ζ1,m(α1ρ1)m +

∑
m
ζ2,m(α1ρ1)m

, (28)

where ζρ,m denotes the coefficient related to the smoothness of the mixture density field ρ(x, t). Obviously, one

may observe that uL
i+1/2 6= u0, because the coefficients ζρ,m, ζ1,m and ζ2,m are generally not the same.

4.3. WENO smoothness indicators in the proposed method

With the previous analysis on the smoothness effects, in the present work, we propose a modified WENO

reconstruction scheme, which is based on

(i) Common smoothness indicator for ρ̃1 and ρ̃2. As shown previously, the pressure oscillation is basically due

to the fact the β̆1,l is generally not equal to β̆2,l. Hence, we propose a common dimensionless smoothness

indicator β̆c,l, computed as

β̆c,l =

√
β̆1,lβ̆2,l, (29)

which is a reasonable choice, because β̆c,l embodies the smoothness in both ρ̃1 and ρ̃2 fields which are

correlated through the volume fraction α1, especially when the two densities ρ1 and ρ2 vary little under

the weakly-compressible hypothesis. Using this common smoothness indicator β̆c,l, the coefficients ζ1,m

and ζ2,m in Equation (27) become identical, i.e. ζ1,m = ζ2,m, which gives a unique solution of αL
1,i+1/2

that verifies pL
i+1/2 = p0.

(ii) Reconstruction of the mixture density ρ. In order to avoid the velocity oscillation, we propose to reconstruct

the mixture density at the cell-interface xL
i+1/2, instead of using the sum of [ρ̃1]

L
i+1/2 and [ρ̃2]

L
i+1/2, which

is then used to get the velocity uL
i+1/2 at the cell-interface as

uL
i+1/2 =

[ρu]
L
i+1/2

[ρ]
L
i+1/2

=

u0

∑
m
ζρ,m(ρ)m∑

m
ζρ,m(ρ)m

= u0, (30)

which means that the velocity at the cell-interface has the constant value u0. Notice that two candidates

for the value of the mixture density ρL
i+1/2 at the cell-interface are available, which are [ρ]Li+1/2 and

[ρ̃1]Li+1/2 + [ρ̃2]Li+1/2. In smooth regions, the difference between these two values is of order O(∆x5). In

order to ensure a strict oscillation-free property, it is suggested to use [ρ]Li+1/2 exclusively for evaluating

the velocity at the cell-interface.

Once again, the same conclusion can be obtained for pR
i+1/2 and uR

i+1/2. Consequently, with the above two

modifications (i) and (ii), the proposed WENO scheme can satisfy Condition-I. The influence on the convergence

order is discussed with details subsequently.
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4.4. Convergence order

One of the advantages of the WENO scheme is that the numerical solver can choose the relatively smooth

stencils, based on the smoothness indicators, by means of a unified formula for the whole computational domain.

Hence, the smoothness effect should not degrade the high convergence order in smooth areas. As shown in the

following, the proposed WENO scheme can retain the original convergence order in smooth areas.

As demonstrated by Jiang and Shu [18], the 5th-order convergence of WENO scheme can be retained, if

ωl = dl +O
(
∆x2

)
, (31)

where ωl is given in Equation (25) and dl is the optimal weight. To satisfy Equation (31), it suffices to have

β̆l = D
(
1 +O

(
∆x2

))
, (32)

where β̆l denotes the smoothness indicator given in Equation (25) and D is a non-zero quantity independent of

l.

Equation (32) can be easily verified with a Taylor expansion of Equation (23). However, Taylor expansion

cannot be directly carried out, since φi denotes the cell-average value of the function φ, but not the value of φ

at xi. Nevertheless, one can assume there exists a function ϕ(x), such that

ϕi = ϕ(xi) =
1

∆x

xi+1/2∆x∫
xi−1/2∆x

φ(x) dx = φi, (33)

with which the Taylor expansion for β̆0, β̆1 and β̆2 can be carried out at xi as

β̆0 =
1

φ2
0

ϕ′2i ∆x2 +
1

φ2
0

(
13

12
ϕ′′2i −

2

3
ϕ′iϕ

′′′
i

)
∆x4 − 1

φ2
0

(
13

6
ϕ′′i ϕ

′′′
i −

1

2
ϕ′iϕ

′′′′
i

)
∆x5 +O

(
∆x6

)
,

β̆1 =
1

φ2
0

ϕ′2i ∆x2 +
1

φ2
0

(
13

12
ϕ′′2i +

1

3
ϕ′iϕ

′′′
i

)
∆x4 +O

(
∆x6

)
,

β̆2 =
1

φ2
0

ϕ′2i ∆x2 +
1

φ2
0

(
13

12
ϕ′′2i −

2

3
ϕ′iϕ

′′′
i

)
∆x4 +

1

φ2
0

(
13

6
ϕ′′i ϕ

′′′
i −

1

2
ϕ′iϕ

′′′′
i

)
∆x5 +O

(
∆x6

)
.

(34)

Obviously, dividing the smoothness indicator βl by φ2
0 still allows one to express β̆l in the form as shown in

Equation (32), which means this renormalization does not degrade the convergence order of the WENO scheme.

Now it is necessary to assess whether the common smoothness indicator β̆c,l can retain the convergence order.

To do so, let us express the smoothness indicators β̆1,l and β̆2,l for the variables ρ̃1 and ρ̃2, respectively, asβ̆1,l = D1

(
1 +O

(
∆x2

))
,

β̆2,l = D2

(
1 +O

(
∆x2

))
,

(35)
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where D1 and D2 are two quantities independent of l. Hence, the common smoothness indicator β̆c,l can then

be expressed as

β̆c,l =

√
β̆1,lβ̆2,l =

√
D1D2 (1 +O (∆x2)), (36)

which, by means of a Taylor expansion analysis, can be rewritten as

β̆c,l = Dc

(
1 +O

(
∆x2

))
, with Dc =

√
D1D2, (37)

which means that the common dimensionless smoothness indicator β̆c,l proposed in Equation (29) satisfies the

sufficient condition (32).

Hence, in the proposed WENO scheme, all the variables can be reconstructed at the cell-interface with

5th-order accuracy, i.e. [φ]
L
i+1/2 = φ(xi+1/2) +O(∆x5), where φ = ρ̃1, ρ̃2, ρ, ρu, ρv. Furthermore, the proposed

scheme can avoid oscillations when given uniform pressure and velocity fields in an efficient way, compared with

the strategy proposed in [7] requiring twice the WENO reconstructions.

5. Approximate Riemann flux solver

Given the reconstructed variables UL
σ and UR

σ at both sides of each cell-interface, a numerical flux solver

F̂(UL
σ,U

R
σ ) is then utilized to evaluate the flux F at the cell-interface, as shown in Equation (11). In the present

work, we propose a linearized Riemann flux solver, based on the generalized Riemann invariants.

5.1. Eigenstructure of the hyperbolic system

To estimate the flux at cell-interface in the x-direction, one usually analyzes the quasi-linear x-split governing

equations expressed as
∂W

∂t
+ A

∂W

∂x
= 0, (38)

where W = [ρ̃1, ρ̃2, u, v]
>

. In addition, the matrix A is given as

A =



u 0 ρ̃1 0

0 u ρ̃2 0

c̃21
ρ

c̃22
ρ

u 0

0 0 0 u


, with


c̃1 =

∂p

∂ρ̃1
,

c̃2 =
∂p

∂ρ̃2
,

(39)

so that the pressure gradient has been expressed as

∂p

∂x
=

∂p

∂ρ̃1

∂ρ̃1

∂x
+

∂p

∂ρ̃2

∂ρ̃2

∂x
= c̃21

∂ρ̃1

∂x
+ c̃22

∂ρ̃2

∂x
. (40)

14



The matrix A possesses the following eigenvalues
λ1 = u− c,

λ2 = λ3 = u,

λ4 = u+ c,

(41)

where c denotes the speed of sound in the two-phase mixture, computed as

c =

√
ρ̃1c̃

2
1 + ρ̃2c̃

2
2

ρ
, (42)

which is equivalent to Equation (3), as shown in Appendix A. As the individual density ρk and the volume

fraction αk are positive in Equation (3), c has a real value, so do the eigenvalues. Consequently, the present

three-equation two-phase model is a hyperbolic system, of which the corresponding right eigenvectors are given

as

r1 =


ρ̃1

ρ̃2

−c

0

 , r2 =


c̃22

−c̃21
0

0

 , r3 =


0

0

0

1

 and r4 =


ρ̃1

ρ̃2

c

0

 . (43)

5.2. Generalized Riemann invariants

Based on the simple wave theory [20], the generalized Riemann invariants (GRI) condition [13, 37] states

the fact that an invariant relation holds across each eigenvalue-related wave in the x-t plane, as shown in Figure

2. For the present hyperbolic system, λ1 and λ4 are related respectively to two genuinely non-linear waves, and

λ2 and λ3 are both related to a contact wave which is linearly degenerated. In the recent works of Tokareva

and Toro [35, 36], the GRI condition has been successfully applied to solve the Baer-Nunziato equations [3] for

compressible flows.

Figure 2: Wave structure of the present hyperbolic system.

Across the λa-related wave, the variation dWa is parallel to the corresponding right eigenvector ra in the

phase space, which gives
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• across the λ1-related wave:

dρ̃1

ρ̃1
=

dρ̃2

ρ̃2
=

du

−c
=

dv

0
, hence


ρ̃1 du+ cdρ̃1 = 0,

ρ̃2 du+ cdρ̃2 = 0,

dv = 0,

(44)

• across the λ4-related wave:

dρ̃1

ρ̃1
=

dρ̃2

ρ̃2
=

du

c
=

dv

0
, hence


ρ̃1 du− cdρ̃1 = 0,

ρ̃2 du− cdρ̃2 = 0,

dv = 0,

(45)

• across the λ2- and λ3-related wave (contact wave):

dρ̃1

c̃22
=

dρ̃2

−c̃21
=

du

0
=

dv

0
and

dρ̃1

0
=

dρ̃2

0
=

du

0
=

dv

1
, hence

c̃
2
1 dρ̃1 + c̃22 dρ̃2 = 0,

du = 0.
(46)

By analyzing the GRI conditions (44), (45) and (46), we summarize several properties of the present three-

equation two-phase hyperbolic system, given as follows

(i) since dv = 0 across the λ1- and λ4-related waves, there is no variation of v across these two waves, i.e.

v∗,L = vL and v∗,R = vR;

(ii) the velocity component u is constant in the star region, because across the contact wave, one has du = 0

which indicates that u∗,L = u∗,R = u∗;

(iii) the pressure p is constant in the star region, because across the contact wave, the variation of the pressure

is equal to zero, since

dp =
∂p

∂ρ̃1
dρ̃1 +

∂p

∂ρ̃2
dρ̃2 = c̃21 dρ̃1 + c̃22 dρ̃2 = 0, (47)

which gives p∗,L = p∗,R = p∗;

(iv) with the adopted EOS (2) and the property (iii), the density for each phase remains constant across the

contact wave, i.e. ρ∗,Lk = ρ∗,Rk = ρ∗k, with k = 1, 2.
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5.3. Linearized two-phase Riemann flux solver

Based on the GRI conditions, we propose a linearized Riemann flux solver, inspired of the work in [36].

The idea is to linearize the GRI conditions across the λ1- and λ4-waves, which are both related to the speed of

sound c, in order to obtain an approximate state in the star region of the two-phase Riemann problem at each

cell-interface.

Given Equation (44), the variation of pressure across the λ1-wave can be expressed as

dp = c̃21 dρ̃1 + c̃22 dρ̃2,

= c̃21

(
− ρ̃1

c
du

)
+ c̃22

(
− ρ̃2

c
du

)
,

= − ρ̃1c̃
2
1 + ρ̃2c̃

2
2

c
du,

= −ρcdu.

(48)

Similarly, based on Equation (45), across the λ4-wave, one has dp = ρcdu. Now, we adopt a linearization

step by taking ρc ' ρLcL across the λ1-wave and ρc ' ρRcR across the λ4-wave, which gives
(
pL − p̂∗

)
+ ρLcL(uL − û∗) = 0,(

pR − p̂∗
)
− ρRcR(uR − û∗) = 0,

(49)

where p̂∗ and û∗ denote respectively the approximate values of p∗ and u∗, which can then be computed as
p̂∗ =

ρLcLρRcR(uL − uR) + (ρRcRpL + ρLcLpR)

ρLcL + ρRcR
,

û∗ =
(pL − pR) + (ρLcLuL + ρRcRuR)

ρLcL + ρRcR
.

(50)

As shown in the property (iv) given previously, we can get the density for each phase in the star region with

the EOS (2), i.e. ρ̂∗k = ρk,0 + (p̂∗ − p0)/c2k, with k = 1, 2.

Besides, from the GRI conditions (44) and (45), one can obtainρdu+ cdρ = 0, across the λ1-wave,

ρdu− cdρ = 0, across the λ4-wave,
(51)

which can be linearized, giving  ρL(û∗ − uL) + cL(ρ̂∗,L − ρL) = 0,

ρR(û∗ − uR)− cR(ρ̂∗,R − ρR) = 0,
(52)

where ρ̂∗,L and ρ̂∗,R denote the approximate density of the mixture at the left and right star region, respectively,

which are given as 
ρ̂∗,L = ρL − ρL

cL
(û∗ − uL),

ρ̂∗,R = ρR +
ρR

cR
(û∗ − uR).

(53)
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Now, given ρ̂∗k, ρ̂∗,L and ρ̂∗,R, we can obtain the volume fraction in the star region by means of the definition

of the density of mixture  ρ̂
∗,L = α̂∗,L1 ρ̂∗1 + (1− α̂∗,L1 )ρ̂∗2,

ρ̂∗,R = α̂∗,R1 ρ̂∗1 + (1− α̂∗,R1 )ρ̂∗2.
(54)

Finally, we have the approximate states of variables within the whole star region, i.e. Û∗,L and Û∗,R, which

allow us to obtain the numerical flux F̂σ at the σth-Gauss point as

F̂σ =

F(Û∗,Lσ ), if û∗ ≥ 0,

F(Û∗,Rσ ), if û∗ < 0,
(55)

where F(U) is the flux function given in Equation (8). It is here worth noting that Equation (55) is sufficient

for weakly-compressible two-phase flows, because the speed of sound is much greater than the fluid velocity. In

case of local hypersonic flow, we need to include another two situations

F̂σ =

F(UL), if SL > 0,

F(UR), if SR < 0,
(56)

where SL and SR denote the estimation of the speed of wave related to the eigenvalues λ1 = u−c and λ4 = u+c,

as shown in Figure 2. In the literature [4, 38], several ways have been proposed for estimating the speeds of

waves, e.g. SL = min(uL − cL, uR − cR) and SR = max(uL + cL, uR + cR).

Now, we shall show that the proposed linearized two-phase Riemann flux solver satisfies Condition-II given

in Introduction, i.e. by means of the present numerical flux and the adopted RK4 time integrator, the velocity

and pressure of the updated state at the next instant still remain constant.

To do so, let us recall that the proposed WENO scheme satisfies Condition-I, hence one has pL = pR = p0

and uL = uR = u0 at all the cell-interfaces. By means of Equation (50), one can obtain that p̂∗ = p0 and

û∗ = u0, which gives ρ̂∗,L = ρL and ρ̂∗,R = ρR with Equation (53). In addition, since p̂∗ = p0, one has ρ̂∗1 = ρ1,0

and ρ̂∗2 = ρ2,0 with the EOS. Consequently, by solving Equation (54), one can have α̂∗,L1 = αL
1 and α̂∗,R1 = αR

1 .

Hence, the numerical flux for the ith-cell at xi−1/2 and xi+1/2 are computed as (e.g. u0 > 0)

F̂i−1/2 = F(Û∗,Li−1/2) =


αL

1,i−1/2ρ1,0u0

αL
2,i−1/2ρ2,0u0

ρL
i−1/2u

2
0 + p0

 and F̂i+1/2 = F(Û∗,Li+1/2) =


αL

1,i+1/2ρ1,0u0

αL
2,i+1/2ρ2,0u0

ρL
i+1/2u

2
0 + p0

 , (57)
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with which the first intermediate state U
(1)

i for the RK4 scheme can be obtained as

U
(1)

i =


(α1ρ1)

(1)

i

(α2ρ2)
(1)

i

(ρu)
(1)

i

 =


(α1ρ1)

n

i

(α2ρ2)
n

i

(ρu)
n

i

− ∆t

2∆x



αL

1,i+1/2ρ1,0u0

αL
2,i+1/2ρ2,0u0

ρL
i+1/2u

2
0 + p0

−

αL

1,i−1/2ρ1,0u0

αL
2,i−1/2ρ2,0u0

ρL
i−1/2u

2
0 + p0


 =


(α1)

(1)

i ρ1,0

(α2)
(1)

i ρ2,0

(ρ)
(1)

i u0

 , (58)

with 
(α1)

(1)

i = (α1)
n

i −
∆t

2∆x

(
αL

1,i+1/2 − α
L
1,i−1/2

)
u0,

(α2)
(1)

i = (α2)
n

i −
∆t

2∆x

(
αL

2,i+1/2 − α
L
2,i−1/2

)
u0,

(ρ)
(1)

i = (ρ)
n

i −
∆t

2∆x

(
ρL
i+1/2 − ρ

L
i−1/2

)
u0.

(59)

Equation (58) shows that, after one intermediate time integration, α1, α2 and ρ vary in time, while ρ1, ρ2

(hence p) and u remain constant for all the cells. It can then be easily proven that all the intermediate states

as well as the state at the next time-step U
n+1

i have constant pressure and velocity fields. Hence the proposed

linearized Riemann flux solver and the adopted time integration scheme satisfy Condition-II.

6. Stability and limiters

As presented in Section 2, in order to prove the uniqueness of the solution of the volume fraction, one

needs to verify that ρ̃1 and ρ̃2 are both positive. Indeed, maintaining the positivity of ρ̃1 and ρ̃2 are of great

importance in the present scheme, not only because of their physical meaning, but also due to the fact that

negative values of ρ̃1 or ρ̃2 could not give real eigenvalues, which sometimes leads to ill-posed problems with

unphysical instabilities [26]. However, it is well known that the conventional WENO scheme cannot guarantee

that the reconstructed values of ρ̃1 or ρ̃2 are positive at cell-interfaces. In the literature, there exist several

positivity-preserving schemes and limiters [25, 43, 44].

In the present work, for the sake of efficiency, we choose to apply a simple limiter for the reconstructed ρ̃1

and ρ̃2 at each Gauss point. For both of the two phases (k = 1, 2), if the reconstructed value [ρ̃k]Lσ or [ρ̃k]Rσ is

less than a critical value 0.9εαρk,0, where εα = 10−4, then it is set to be the cell-average value (ρ̃k)i,j . Although

this operation might theoretically degrade the convergence order, it is observed that in practice this limiter

is activated only in areas where there exist strong discontinuities of the volume fraction field α1. In the two

subsequent test-cases, it is shown that this limiter does not affect 5th-order convergence of the present WENO

scheme.

Besides, we observe that numerical instabilities may occur in relatively violent two-phase flows, in the

presence of solid wall boundaries, such as the dam-break flow. This is because the cells near solid walls

have only one available stencil for the WENO reconstruction. Using the stencil selection algorithm based on
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the comparison of smoothness, one always takes this stencil for reconstruction, even though it contains huge

discontinuities, which is the case for the dam-break flow, especially when the water front impacts on the solid

wall at the corner of the tank. Hence, for this type of two-phase flows, we adopt a limiter similar as the one used

in [34], which sets the reconstructed value [φ]
L
σ to be the cell-average value (φ)i,j , if

∣∣∣[ρ̃k]
L
σ − (ρ̃k)i,j

∣∣∣ > 0.9(ρ̃k)i,j .

7. Numerical results

In the following test-cases, all the two-phase flows have a density ratio of 1000, i.e. ρ1,0/ρ2,0 = 1000, k = 1 for

water with ρ1,0 = 1000 kg/m3 and k = 2 for air with ρ2,0 = 1 kg/m3. In addition, as the physical compressibility

is not of primary importance in all following test-cases, an artificial speed of sound in each fluid ck is chosen

according to the weakly-compressible hypothesis, by comparing with the characteristic fluid velocity in each

test-case, for the sake of numerical efficiency. As presented in Introduction, viscous effects are not considered

in the governing equations, hence in the following numerical examples, either there is no viscous term in the

analytical solution or the viscosity effects are not dominant in the considered physical problems. Accordingly,

the free-slip boundary condition is imposed on solid walls, if there are. This is realized by using a mirrored

state, e.g. UR
σ , when computing the numerical flux on the solid wall, which possesses the same densities and

tangential component but opposite normal velocity component as the ones of the reconstructed state UL
σ.

7.1. Interface advection

7.1.1. 1D advection

In order to verify numerically the oscillation-free feature of the proposed scheme in the Abgrall test-case, we

first consider an 1D interface advection, of which the initial condition is given as

α1(x, 0) =


1− εα, if

L

2
− r0 < x <

L

2
+ r0,

εα, otherwise,

(60)

where εα = 10−4, L = 1 m denotes the length of the 1D computational domain with x ∈ [0, L] and r0 = L/10

is the radius of the 1D liquid droplet. In addition, ρ1(x, 0) = ρ1,0 = 1000 kg/m3 and ρ2(x, 0) = ρ2,0 = 1 kg/m3,

so that p(x, 0) = p0 = 0 Pa. The speed of sound for both fluids are set as c1 = c2 = 70 m/s and the whole fluid

domain is initialized with a uniform velocity field, i.e. u(x, 0) = u0 = 1 m/s. Periodic boundary conditions are

imposed at the two extremities, at x = 0 and x = L.

Figure 3 shows the density fields of the mixture at the initial (t = 0 s) and the final (t = 1 s) instants of

the numerical simulation, obtained with the proposed scheme using 64 uniform cells for spacial discretization.

The 1D droplet of water moves from left to right and gets back to its initial position after 1 s. It can be clearly

observed that the phase-interface becomes smeared or diffused as time evolves. Figure 4 shows the pressure
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and velocity oscillations in the numerical results obtained with the present and original WENO schemes. We

observe that the present WENO scheme can ensure zero oscillation in the pressure and velocity fields. As for the

computational efficiency, we observe that the present WENO scheme is approximately 1.65 times more costly

than the original WENO scheme. The extra cost is majorly due to the reconstruction of the mixture’s density

and the computation of the common WENO smoothness for ρ̃1 and ρ̃2.
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Figure 3: 1D interface advection test-case: density of the mixture at t = 0 s and t = 1 s.
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Figure 4: 1D interface advection test-case carried out with the present and original WENO schemes at t = 1 s: (a) pressure field;

(b) velocity field.

As mentioned in Introduction, the objective of reconstructing conservative variables is to attain high con-

vergence order, i.e. 5th-order in the present work. In order to carry out a convergence study, we initialize the
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shape of the 1D water droplet with a smoother function

α1(x, 0) = (1− 2εα) exp

(
−|x− L/2|

2

r2
0

)
+ εα, (61)

which is shown in Figure 5-(a). Notice that all the other variables remain the same as in the previous sharp

interface advection test-case. The convergence study is carried out using five mesh resolutions with the number

of cells N = 64, 128, 256, 512 and 1024. The L1, L2 and L∞ errors of the mixture’s density at t = 1 s are

computed as 

L1-Error =
1

N

∑
i

∣∣ρnum
i − ρref

i

∣∣
ρ1,0

,

L2-Error =

√√√√ 1

N

∑
i

∣∣ρnum
i − ρref

i

∣∣2
ρ2

1,0

,

L∞-Error = max
i

(∣∣ρnum
i − ρref

i

∣∣
ρ1,0

)
,

(62)

where ρnum
i and ρref

i denote respectively the numerical and reference cell-average values of the mixture’s density

of the ith-cell. Table 1 shows the errors and the convergence orders evaluated by computing

Order = ln

(
Errorq

Errorq+1

)/
ln(2), (63)

where Errorq denotes the error corresponding to the qth-mesh resolution. As shown in Table 1 and Figure 5-(b),

the present numerical scheme possesses the expected 5th-order convergence in this 1D advection test-case.

Table 1: Numerical errors in the 1D advection test-case.

Number of cells L1-Error L1-Order L2-Error L2-Order L∞-Error L∞-Order

64 8.7542e-4 - 1.5857e-3 - 4.7826e-3 -

128 3.7302e-5 4.5527 6.8293e-5 4.5372 2.1892e-4 4.4493

256 1.2148e-6 4.9405 2.2702e-6 4.9108 8.7785e-6 4.6403

512 3.7243e-8 5.0276 7.1105e-8 4.9967 2.9355e-7 4.9023

1024 1.0935e-9 5.0899 2.1816e-9 5.0265 8.8813e-9 5.0467

7.1.2. 2D advection

Next, we assess the oscillation-free feature of the proposed numerical scheme in a 2D interface advection

test-case. The initial volume fraction field α1 within the (i, j)th-cell is imposed as

α1 =

1− εα, if (xi,j − x0)2 + (yi,j − y0)2 < r2
0,

εα, otherwise,
(64)
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Figure 5: Convergence study in the 1D advection test-case: (a) initial volume fraction field; (b) convergence order.

where xi,j and yi,j denote the coordinates in x- and y- directions of the barycenter of each cell, and x0 and

y0 the coordinates of the center of the computational domain [−L,L] × [−L,L] with L = 1 m. As in the 1D

test-case, periodic conditions are imposed at the four boundaries. The initial uniform velocity and pressure

fields are set as u(x, y, 0) = 2 m/s, v(x, y, 0) = 2 m/s and p(x, y, 0) = 0 Pa. The speed of sound is chosen as

c1 = c2 = 30 m/s.

Figure 6 shows the initial and final density fields of the mixture in the simulation using a mesh of size

64∆x × 64∆y. From the pressure field at the final instant as shown in Figure 7, one can observe that a strict

zero pressure oscillation is ensured by the proposed scheme in this 2D interface advection test-case, as in the

previous 1D advection.

7.2. Multiphase vortex advection

As presented in [7], a numerical scheme possessing a 5th-order convergence property in 1D test-cases might

fail to converge with a 5th-order in multi-dimensional cases, such as the one in [19]. Hence, it is necessary to

assess the convergence order of the present scheme in 2D where the gradients of all variables have non-zero

values. For this purpose, we carry out a convergence study with a 2D multiphase vortex advection test-case, of

which the analytical solution is provided in Appendix B.

The initial volume fraction and pressure fields at t = 0 s within the periodic computational domain [−L,L]×

23



­1 ­0.5 0 0.5 1
­1

­0.5

0

0.5

1

ρ

900

800

700

600

500

400

300

200

100

(a)

­1 ­0.5 0 0.5 1
­1

­0.5

0

0.5

1

ρ

900

800

700

600

500

400

300

200

100

(b)

Figure 6: Density fields of the mixture in the 2D interface advection test-case: (a) t = 0 s; (b) t = 1 s.
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Figure 7: Pressure field at the final instant (t = 1 s) in the 2D interface advection test-case.
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[−L,L] are imposed as 

α1(r, θ, 0) = (1− 2εα) exp

(
−r

2

r2
0

)
+ εα,

p(r, θ, 0) = P

(
1− exp

(
−r

2

r2
0

))
,

u(r, θ, 0) = U − sin θ

√
r

ρ

∂p

∂r
,

v(r, θ, 0) = V + cos θ

√
r

ρ

∂p

∂r
,

(65)

where r and θ denote the cylindrical coordinates with x = r cos θ and y = r sin θ, εα = 10−4, r0 = 0.2L with

L = 1 m, and P = 0.1ρ2,0c
2
2 with c1 = c2 = 30 m/s. The density of both phases ρ1 and ρ2 can be obtained with

the EOS. Finally, U = V = 2 m/s denote the two components of the advection velocity. The initial volume

fraction field and the relative velocity vector with respect to the moving frame are shown in Figure 8-(a).

Table 2: Numerical errors in the 2D multiphase vortex advection test-case.

Number of cells L1-Error L1-Order L2-Error L2-Order L∞-Error L∞-Order

64 3.9112e-4 - 1.2847e-3 - 8.8276e-3 -

128 1.9138e-5 4.3531 6.0041e-5 4.4193 4.5100e-4 4.2908

256 6.2019e-7 4.9476 1.9616e-6 4.9358 1.5642e-5 4.8496

512 1.7145e-8 5.1769 5.6494e-8 5.1178 4.6175e-7 5.0822

Table 2 shows the errors and convergence orders of different norms computed using the formulas (62) and

(63). In addition, based on these values of errors, the convergence slopes are also given in Figure 8-(b). As

expected, a 5th-order convergence is obtained in this 2D multiphase vortex advection test-case using the proposed

scheme. Here it is worth noting that, in this convergence study, all physical fields including the volume fraction

α1 should be sufficiently smooth. In the presence of discontinuities, the convergence order will be limited to

1st-order at most.

7.3. Linear sloshing

Now, we consider a 2D linear sloshing test-case [6, 16], of which the configuration is shown in Figure 9.

Initially, air and water are both at rest under the gravity effect in a closed tank which is composed of four

free-slip solid walls. As t > 0, a constant horizontal acceleration a is applied to the whole fluid domain in the

positive x-direction, which is equivalent to the case where the tank suddenly moves in the negative x-direction

with an acceleration −aex. The geometrical and physical parameters are given in Table 3.
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Figure 8: 2D multiphase vortex advection test-case: (a) initial configuration in the moving frame; (b) convergence order.

Figure 9: Initial configuration of the linear sloshing test-case.
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Table 3: Geometrical and physical parameters of the linear sloshing test-case.

Parameter Value

Tank width (L) 1 m

Initial water height (h1) 1 m

Initial air height (h2) 1.25 m

Gravity (g) 9.81 m/s2

Horizontal acceleration (a) 0.01g

Speed of sound in water (c1) 100 m/s

Speed of sound in air (c2) 100 m/s

Based on the linearized potential flow theory, the analytical solution of the interface elevation η(x, t) is given

as [6, 16]

η(x, t) =
a

g

(
x− L

2
+

+∞∑
n=0

4

Lκ2
2n+1

cos(ω2n+1t) cos(κ2n+1x)

)
, (66)

where 
κn =

nπ

L
,

ωn =

√
gκn(ρ1,0 − ρ2,0)

ρ1,0 coth(κnh1) + ρ2,0 coth(κnh2)
.

(67)

Figure 10 shows the time histories of the air-water interface elevation on the left and right walls of the tank,

which are obtained using three uniform meshes of size 64∆x× 144∆y, 128∆x× 288∆y and 256∆x× 576∆y. In

addition, the shapes of the air-water interface, plotted by means of the contour line of α1 = 0.5 at four instants

t = 1 s, 2 s, 3 s and 4 s, are provided in Figure 11. A good agreement can be observed between the present

numerical result and the analytical solution, which shows the capacity of the proposed two-phase FV-WENO

scheme to simulate accurately free-surface flows of high density ratio in such type of linear sloshing cases with

small wave amplitude.

7.4. Wave propagation

The objective of the following test-case is to assess the capability of the present weakly-compressible two-

phase finite volume scheme for handling long-period wave propagations near the free-surface (air-water interface),

which is a challenging task for most either incompressible or compressible two-phase CFD methods due to the

numerical diffusion effects introduced by the numerical schemes.

The configuration of this test-case is shown in Figure 12 and the parameters are given in Table 4. We

consider the wave propagation in a 2D channel of infinite length. Periodic boundary conditions are applied on
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Figure 10: Time history of the interface elevations ηL = η(0, t) and ηR = η(L, t) on the left and right walls in the linear sloshing

test-case with three mesh resolutions: 64∆x× 144∆y, 128∆x× 288∆y and 256∆x× 576∆y.

the left and right hand sides of the computational domain. Free-slip boundary conditions are imposed on the

upper and lower solid walls of the channel. Based on the parameters given in Table 4, the analytical solution

can be obtained using the non-linear potential flow theory [10, 27], which is given as
η(x, t) =

a0

2
+

+∞∑
n=1

an cos (κn(x− cpt)) ,

Φ(x, y, t) = b0(x− cpt) +

+∞∑
n=1

bn
cosh (κn(y + h))

cosh(κnh)
sin (κn(x− cpt)) ,

(68)

where η and Φ denote respectively the free-surface elevation and the potential function, the wave number

κn = 2πn/λ and the phase velocity cp = λ/T with T ' 0.7018 s being the wave propagation period obtained

from the non-linear potential flow theory. Once the coefficients an and bn are determined, the velocity and

pressure fields can then be obtained as

u(x, y, t) =
∂Φ(x, y, t)

∂x
,

v(x, y, t) =
∂Φ(x, y, t)

∂y
,

p(x, y, t)

ρ1,0
= R− gy − 1

2
c2p −

∂Φ(x, y, t)

∂t
− u2(x, y, t) + v2(x, y, t)

2
,

(69)

where R is the Bernoulli constant.

The initial state in the water is imposed by means of Equation (69) with t = 0. However, since there

is no analytical solution available in the air, in the present work, we choose to adopt a simple strategy in

which both the pressure and velocity fields are initially equal to zero in the air. Due to the high density ratio
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Figure 11: Shape of the air-water interface in the linear sloshing test-case using the mesh resolution 256∆x×576∆y at four instants:

(a) t = 1 s; (b) t = 2 s; (c) t = 3 s; (d) t = 4 s.
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Figure 12: Configuration of the wave propagation test-case.

Table 4: Geometrical and physical parameters of the wave propagation test-case.

Parameter Value

Length of the computational domain (L) 8.082 m

Water depth (h) 0.6 m

Height of the channel 2h

Wave length (λ) 0.1L

Wave height (H) 0.0576 m

Gravity (g) 9.81 m/s2

Speed of sound in water (c1) 30 m/s

Speed of sound in air (c2) 30 m/s
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(ρ1,0/ρ2,0 = 1000) between water and air, the numerical solution in the water is expected not to be significantly

affected by this choice of initial condition.

The computational domain is discretized with a uniform mesh of size 1024∆x×512∆y. This spatial resolution

leads to λ = 102.4∆x and H = 24.576∆y with ∆x/∆y = 3.3675. The total physical simulation time is set

as 40T , which is sufficiently long to assess the numerical diffusion. In the present work, this test-case has

been carried out using the proposed WENO scheme and the 2nd-order accurate MUSCL [39] scheme with the

‘minmod’ slope-limiter. Both of the two numerical results are compared with the analytical solution obtained

with the non-linear potential flow theory.

Figure 13 shows the shapes of the free-surface at each 10 periods (10T ), which are drawn using the contour

line of α1 = 0.5. In this comparison, one may observe that the present WENO scheme almost retains the wave

amplitude even after 40 periods (40T ), although the shape of the free-surface is slightly shifted, comparing

to the analytical solution. Whereas in the result obtained with the MUSCL scheme, the wave amplitude is

significantly damped and a large phase error can also be observed.

As for the computational cost, it is found that the numerical computation using the present WENO scheme

is approximately 9.3 times slower than the one with the MUSCL scheme. In order to have a meaningful and

fair comparison between the present WENO and MUSCL schemes, we carry out another simulation using the

MUSCL scheme with a refined mesh (Mesh2: 2048∆x × 1024∆y), which costs almost the same as the present

WENO scheme with the previous coarser mesh (Mesh1: 1024∆x× 512∆y). More precisely, in these conditions

the WENO scheme is just 1.079 times slower than the MUSCL one. Figure 14 gives the numerical result of

the MUSCL scheme using the refined mesh, which is compared with the previous ones. One may observe that

the MUSCL scheme with the refined mesh still introduces more numerical diffusion than the proposed WENO

scheme. This difference is clearly shown in Figure 15, where a fast Fourier transform with a moving window

of size T has been carried out on the free-surface elevation ηm(t) = η(L/2, t) in the middle of the domain. By

comparing the first two harmonic amplitudes, it can be easily observed that the present WENO scheme is less

diffusive and provides more accurate result.

In this specific test-case involving long-time wave propagation, the present 5th-order WENO scheme provides

promising results in good agreement with the analytical solution and appears to be superior to the adopted

2nd-order MUSCL scheme. Nevertheless, it is worth noting that MUSCL schemes are often more robust in the

presence of strong discontinuities such as shock waves.

7.5. Dam-break flow

At last, we tried to apply the proposed weakly-compressible two-phase finite volume scheme to simulate a 2D

dam-break flow involving moderately more violent impacts and higher dynamics than the previous test-cases.
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Figure 13: Shape of the free-surface in the wave propagation test-case using the proposed WENO scheme and the MUSCL scheme

with the same mesh of resolution 1024∆x× 512∆y at four instants: (a) t = 10T ; (b) t = 20T ; (c) t = 30T ; (d) t = 40T .
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Figure 14: Numerical result obtained with the MUSCL scheme using the refined mesh (Mesh2: 2048∆x × 1024∆y): (a) shape of

the free-surface at t = 40T ; (b) time evolution of the free-surface elevation ηm(t) = η(L/2, t) during the last 10 wave periods.
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Figure 15: Moving-window fast Fourier transform of the free-surface elevation ηm(t) = η(L/2, t): (a) 1st-harmonic amplitude

A1/Aana
1 with Aana

1 ' 2.8166× 10−2 m; (b) 2nd-harmonic amplitude A2/Aana
2 with Aana

2 ' 3.3283× 10−3 m.
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Figure 16 shows the initial configuration of this test-case and the computational parameters are given in Table

5.

Water

Air

Figure 16: Initial configuration of the dam-break flow test-case.

Table 5: Geometrical and physical parameters of the dam-break flow test-case.

Parameter Value

Length of the tank (L) 1.61 m

Height of the tank (D) 0.5L

Width of the water column (B) 0.6 m

Height of the water column (H) 0.3 m

Gravity (g) 9.81 m/s2

Speed of sound in water (c1) 100 m/s

Speed of sound in air (c2) 100 m/s

Initially, a column of water at rest under the gravity is located at the right lower corner of a closed tank which

is composed of four free-slip walls. The fluid domain is discretized with a uniform mesh of size 256∆x× 128∆y.

Figure 17 shows the volume fraction field α1 of water at three instants, which are compared with the experimental

measurements obtained by Lobovsky et al. [23]. As time evolves, the water column falls down under the gravity

effect and then impacts on the opposite solid wall. In addition, the water front position and the pressure

signal at the left lower corner (Sensor 1 in [23]) are shown in Figure 18. From these comparisons between

the present numerical results and the experimental measurements, one may observe that the proposed scheme

provides reasonably accurate results in good agreement with the experimental ones. Nevertheless, some pressure

oscillations can be found, as shown in Figure 18-(b), for the pressure sensor at the left lower corner of the tank.

This pressure oscillation is due to the fact that only one stencil (even not smooth) is available for the WENO

reconstruction at this corner where huge gradients can be present, especially when the water front impacts
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on the vertical solid wall. Improving the numerical stability of the present scheme near solid walls is of great

importance and will be considered in future works.

(a)

(b)

(c)

Figure 17: Comparison of flow patterns between the numerical results (left) obtained with the proposed WENO scheme and

the experimental measurements (right) carried out by Lobovsky et al. [23] (reprinted with permission from Elsevier) at three

dimensionless instants t∗ = t
√
g/H: (a) t∗ ' 1.58; (b) t∗ ' 3.27; (c) t∗ ' 6.67.

8. Conclusions

In the present paper, a finite volume WENO scheme is proposed for simulating weakly-compressible two-

phase flows. Based on a three-equation hyperbolic system of equations, the semi-discrete equations in the present
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(b)

Figure 18: Water front position and pressure signal in the dam-break flow test-case: (a) time history of the water front position;

(b) pressure signal at the left lower corner of the tank.

method are explicitly integrated in time using the Runge-Kutta scheme. A modified WENO reconstruction

scheme is proposed, which consists in using a common smoothness indicator for ρ̃1 and ρ̃2 and reconstructing

the mixture’s density ρ for obtaining the velocity at cell-interfaces. In addition, based on the linearization of

the generalized Riemann invariants, an approximate two-phase Riemann flux solver is proposed to compute the

numerical flux at cell-interfaces. It is then shown that the proposed method can retain the formal convergence

order of WENO scheme in multi-dimensional cases and avoid strictly pressure oscillations in the Abgrall test-

case. In the numerical examples of free-surface flows such as the linear sloshing and the wave propagation

test-cases, it is observed that the proposed scheme introduces a very small numerical diffusion and predicts

correctly the behaviors of free-surface waves even during a long-time simulation. In the dam-break flow test-

case, the present FV-WENO scheme provides a numerical result in good agreement with the experimental data.

Some pressure oscillations occur at the corner of the tank, due to the fact that only one stencil is available at this

place for the WENO reconstruction. In the future work, viscous and surface tension terms will be considered

for more complex two-phase flows.
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Appendix A: Speed of sound in the two-phase mixture

The speed of sound of the mixture is given in Equation (42), or as

ρc2 = ρ̃1c̃
2
1 + ρ̃2c̃

2
2, (A.1)

in which c̃21 and c̃22 are defined in Equation (39).

Using the instantaneous pressure equilibrium condition p = p1 = p2 and the barotropic EOS (2), one can

have

c̃21 =
∂p1

∂ρ̃1
=
∂p1

∂ρ1

∂ρ1

∂ρ̃1
= c21

(
1

α1
− ρ1

α1

∂α1

∂ρ̃1

)
. (A.2)

Meanwhile, the equality p1 = p2 gives

p0 + c21

((
ρ̃1

α1

)
− ρ1,0

)
= p0 + c22

((
ρ̃2

α2

)
− ρ2,0

)
, (A.3)

where α1 (or α2 = 1− α1) can be considered as a function of ρ̃1 and ρ̃2. Now, taking the partial derivative of

Equation (A.3) with respect to ρ̃1 yields

c21

α1 − ρ̃1
∂α1

∂ρ̃1

α2
1

= c22

0− ρ̃2
∂α2

∂ρ̃1

α2
2

, (A.4)
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which gives

∂α1

∂ρ̃1
=

c21
α1

ρ1c
2
1

α1
+
ρ2c

2
2

α2

. (A.5)

Substituting Equation (A.5) into Equation (A.2) gives

c̃21 =
c21
α1
−

ρ1c
4
1

α2
1

ρ1c
2
1

α1
+
ρ2c

2
2

α2

. (A.6)

Similarly, following the same procedure for the second phase (k = 2), one can obtain

c̃22 =
c22
α2
−

ρ2c
4
2

α2
2

ρ1c
2
1

α1
+
ρ2c

2
2

α2

. (A.7)

Finally, substituting Equation (A.6) and Equation (A.7) into Equation (A.1) gives

ρc2 =
ρ1c

2
1ρ2c

2
2

ρ1c21α2 + ρ2c22α1
, (A.8)

which can then be written as
1

ρc2
=

α1

ρ1c21
+

α2

ρ2c22
, (A.9)

from which one can easily find the speed of sound of the mixture Equation (3).

Appendix B: Analytical solution of the multiphase vortex advection test-case

Similar to the strategies proposed in [11, 15, 42], in the present work we derive firstly the steady analytical

solution of the governing equations (1) with a cylindrical coordinate system, in which one has x = r cos θ,

y = r sin θ and u = uθ(r, θ, t)eθ + ur(r, θ, t)er with uθ and ur being the velocity components in tangential and

radial directions, respectively. By definition, one has ur(r, θ, t) = 0 and ∂uθ/∂θ = 0. It can then be easily

verified that the two mass conservation equations are automatically satisfied. The momentum conservation

equation for the two-phase mixture then becomes

ρu2
θ = r

∂p

∂r
. (B.1)

By imposing 
α1(r, θ, t) = (1− 2εα) exp

(
−r

2

r2
0

)
+ εα,

p(r, θ, t) = P

(
1− exp

(
−r

2

r2
0

))
,

(B.2)

41



where P , r0 and εα are chosen as P = 0.1ρ2,0c
2
2, r0 = 0.2L and εα = 10−4 with c2 = 30 m/s and L = 1 m.

With these two conditions, one can obtain the velocity field uθ by solving Equation (B.1). The velocity

components u and v in x- and y-directions of the Cartisian coordinate system is expressed as
u(r, θ, t) = − sin θ

√
r

ρ

∂p

∂r
,

v(r, θ, t) = + cos θ

√
r

ρ

∂p

∂r
,

(B.3)

which will be used as the initial velocity fields.

Finally, in order to have an unsteady test-case, we add two constants U = 2 m/s and V = 2 m/s to the

previous velocity fields, so that this multiphase vortex is advected in the diagonal direction of the computational

domain with a constant speed.
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