
HAL Id: hal-02867300
https://hal.science/hal-02867300

Submitted on 13 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Textlets: Supporting Constraints and Consistency in
Text Documents

Han L Han, Miguel Renom, Wendy Mackay, Michel Beaudouin-Lafon

To cite this version:
Han L Han, Miguel Renom, Wendy Mackay, Michel Beaudouin-Lafon. Textlets: Supporting Con-
straints and Consistency in Text Documents. CHI ’20 - 38th SIGCHI conference on Human Factors in
computing systems, Apr 2020, Honolulu, HI, USA, United States. pp.1-13, �10.1145/3313831.3376804�.
�hal-02867300�

https://hal.science/hal-02867300
https://hal.archives-ouvertes.fr


Textlets: Supporting Constraints and Consistency
in Text Documents

Han L. Han Miguel A. Renom Wendy E. Mackay Michel Beaudouin-Lafon
Université Paris-Saclay, CNRS, Inria,

Laboratoire de Recherche en Informatique
F-91400 Orsay, France

{han.han, renom, mackay, mbl}@lri.fr

ABSTRACT
Writing technical documents frequently requires following
constraints and consistently using domain-specific terms. We
interviewed 12 legal professionals and found that they all use
a standard word processor, but must rely on their memory
to manage dependencies and maintain consistent vocabulary
within their documents. We introduce Textlets, interactive ob-
jects that reify text selections into persistent items. We show
how Textlets help manage consistency and constraints within
the document, including selective search and replace, word
count, and alternative wording. Eight participants tested a
search-and-replace Textlet as a technology probe. All success-
fully interacted directly with the Textlet to perform advanced
tasks; and most (6/8) spontaneously generated a novel replace-
all-then-correct strategy. Participants suggested additional
ideas, such as supporting collaborative editing over time by
embedding a Textlet into the document to flag forbidden words.
We argue that Textlets serve as a generative concept for creat-
ing powerful new tools for document editing.

Author Keywords
Text editing; Document processing; Reification

CCS Concepts
•Human-centered computing → Graphical user inter-
faces; Interaction techniques;

INTRODUCTION
Text editing was once considered a ‘killer app’ of personal
computing [6]. Editing text is usually the first skill a novice
computer user masters, and all personal computers are sold
with a word processor. Many professions require advanced
text editing skills to ensure consistent use of terms and expres-
sions within structured documents, such as contracts, patents,
technical manuals and research articles.

For example, lawyers begin each contract with a list of de-
fined terms, and must use them consistently thereafter. This is

©ACM, 2020. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems CHI 2020, April 25 – 30, 2020,
Honolulu, HI, USA.
ISBN 978-1-4503-6708-0/20/04.
http://dx.doi.org/10.1145/3313831.3376804

critical, since ‘minor’ wording changes can have serious legal
implications. For example, American patents define “com-
prises” as “consists at least of”; whereas “consists of” means

“consists only of”, indicating a significantly different scope
of protection. Sometimes terms are disallowed, e.g. the US
Patent and Trademark Office (USPTO) does not accept “new”,

“improved” or “improvement of” at the beginning of a patent
title. Word limits are also common, such as the European
Patent Office’s 150-word limit for patent abstracts.

Despite their many features, standard word processors do
not address all of these professional needs. For example,
although spell checking is common, flagging forbidden words
or ensuring consistent use of particular terms must be done
manually. Real-time counts of words and characters can be
displayed for the whole document, but not for a single section.

Text editing was an active research topic in the 1980s, when
personal computers and word processors first became main-
stream. Although current research focuses on ‘new’ technol-
ogy, we argue that document editing should also remain a
topic of central importance, as it touches the lives of hundreds
of millions of users. We take a fresh look, seeking to apply
modern interaction design principles to increase the power of
expression, while preserving simplicity of interaction.

We focus on a group of ‘extreme’ users––authors of technical
documents––and seek to answer the following questions:

1. How do current software tools support professional techni-
cal writers?

2. How do professional users manage constraints and consis-
tency when editing technical documents?

3. How can we create tools that better support these needs?

After reviewing the literature, we describe an interview study
with contract and patent writers and highlight the problems
they face in their professional editing tasks. We then introduce
the concept of Textlet, which reifies the notion of selection
in text documents. We show examples of novel tools based
on this concept to address the needs identified in the study.
Next, we describe the design of two prototypes that implement
different types of textlets, and report on the use of one proto-
type as a technology probe to better understand how textlets
support selective search and replacement of text. We conclude
by arguing that Textlets can serve as a generative concept for
creating powerful new tools for document editing.

http://dx.doi.org/10.1145/3313831.3376804


RELATED WORK
We review research related to both word processing and code
editing tools and practices. The latter is a particularly inter-
esting form of technical document that requires professional
software developers to manage multiple internal constraints,
and the specific tools developed to ensure internal consistency
in code text may inform our design. We also discuss the
theoretical foundations underlying the design of Textlets.

Text Editing Practices
Text editing was an active research topic in the 1980s when
word processors became mainstream. For example, Card
et al. [11] modeled expert users’ behavior in manuscript-
editing tasks; Tyler et al. [49] investigated the acquisition
of text editing skills; and Rosson [42] explored the effects of
experience on real-world editing behavior. Others examined
paper-based editing practices to improve computer-based text
editing [44, 40, 33] and collaborative writing [2, 14, 39].

More recent studies identify issues with modern word proces-
sors. For example, Srgaard et al. [45] found that users rarely
take advantage of text styles, and argue that this is because
styles do not impose restrictions on the document structure.
Alexander et al. [1] found that although users often revisit
document locations, they seldom use the specific revisitation
tools found in Microsoft Word and Adobe Reader. Chapuis
et al. [12] examined users’ frustration with unexpected copy-
paste results due to format conversion. This work identifies a
clear mismatch between the advanced features offered by mod-
ern word processors and actual user practice, and highlights
the need for new tools and concepts. While the above work
focuses on general editing tasks, we are particularly interested
in how authors manage constraints and ensure consistency
when editing structured technical documents.

Tools to Support Text Editing
Researchers have created a variety of text editing tools to
support annotation [53, 51, 43], navigation [1, 30, 50] and
formatting [38]; as well as distributing editing tasks [7, 47]
and taking advantage of a text’s structure [36]. We focus here
on copy-paste [46, 8], and search-and-replace [35, 3], both es-
pecially relevant to supporting internal document consistency.

Chapuis et al. [12] propose new window management tech-
niques to facilitate copy-paste tasks. Citrine [46] extracts
structure from text, e.g. an address with different components,
that can be pasted with a single operation. Multiple selec-
tion [37] offers smart copy-paste that is sensitive to source
and destination selections, while Entity Quick Click [8] ex-
tracts information to reduce cursor travel and number of clicks.
Cluster-based search-and-replace [35] groups occurrences by
similarity, allowing entire clusters to be replaced at once.
Beaudouin-Lafon’s [3] instrumental search-and-replace tool
highlights all items at once, so users can make changes in any
order, not only as they occur in the document.

Commercial applications such as Grammarly1 check gram-
mar and spelling by suggesting alternative wording, style and

1https://grammarly.com

tone, among other features. However they do not ensure con-
sistent use of specific terms, e.g. always referring to a party
in a contract with a single name. Other software tools auto-
matically generate consistent references, including Mendeley2

and EndNote3 for researchers, and Exhibit Manager4 for legal
professionals. Although automated reference management
solves some problems, users still lack flexibility for others, e.g.
creating a custom citation format. These tools are separate
from the word processor, potentially distracting users from
their documents and fragmenting workflow. Our goal, then,
is to create unified tools that support user-defined constraints
and ensure consistency in text documents.

Code Editing Practices
Code editing has been widely studied, especially copy-
paste [26, 24], use of online resources [9] and drawings [13],
and performing maintenance tasks [27]. A key challenge that
emerges from these studies is how to manage dependencies.
For example, Kim et al. [26] found that programmers rely on
their memory of copy-pasted dependencies when they apply
changes to duplicated code. Ko et al. [27] identified both
‘direct’ dependencies, e.g. going from a variable’s use to its
declaration, and ‘indirect’ ones, e.g. going from a variable’s
use to the method that computed its most recent value, and
proposed ways of visualizing these dependencies in the editor.
While technical document constraints are less stringent than
in computer code, we hope to exploit certain commonalities.

Tools to Support Code Editing
We see program code as an extreme case of a technical docu-
ment, with many internal constraints. For example, Toomim
et al.’s [48] technique supports editing duplicated code and
visualizing links among duplicates. To help programmers use
web examples more efficiently, Codelets [41] treat snippets
of code examples as ‘first-class’ objects in the editor, even
after they are pasted into the code. Kery et al.’s [25] tool for
lightweight local versioning supports programmers perform-
ing exploratory tasks, while AZURITE [52] lets programmers
selectively undo fine-grained code changes made in the edi-
tor. Barista [29] supports enriched representations of program
code, while Whyline [28] and HelpMeOut [20] support debug-
ging tasks. Our challenge is how to build upon these concepts
and tools but for non-programmers who manage less highly
constrained technical documents.

Theoretical Foundations
We seek to create generic tools rather than ad hoc solu-
tions, which requires adopting a principled design approach.
Beaudouin-Lafon’s [3] Instrumental Interaction model extends
and generalizes the principles of direct manipulation, and is
operationalized by three design principles [5]: Reification
turns commands into first class objects or instruments; poly-
morphism applies instruments to different types of objects;
and reuse makes both user input and system output accessible
for later use. Although they have been explored in the context
of graphical editing [15, 34]; our focus here is on text editing.
2https://mendeley.com
3https://endnote.com
4https://exhibitmanager.com

https://grammarly.com
https://mendeley.com
https://endnote.com
https://exhibitmanager.com


STUDY 1: INTERVIEW WITH LEGAL PROFESSIONALS
Editing technical documents requires a complex editing pro-
cess [16], especially to maintain the document’s constraints
and internal consistency [18]. We conducted critical object
interviews [32] to better understand how professionals manage
such constraints and consistency in their technical documents.

Participants
We interviewed 12 participants (three women, nine men; aged
24-50). Their occupations include: contract manager, legal
affairs director, candidate to a Ph.D. in law, lawyer, patent
attorney, and patent engineer. All use Microsoft Word on
either the Windows (11/12) or MacOS (1/12) platforms; only
one uses the latest 2019 version.

Procedure
All interviews were conducted in English, each lasting from
45-60 minutes. We ran four pilot interviews with colleagues to
establish the protocol, then visited participants in their offices
and asked them to show us specific examples of their current
digital and physical documents. We asked them to describe
a recent, memorable event related to editing that document,
either positive or negative. The first two authors conducted all
interviews, alternating asking questions.

Data Collection
All interviews were audio recorded and transcribed. We also
took hand-written notes. We were not allowed to videotape or
take photographs for confidentiality reasons.

Data Analysis
We analyzed the interviews using reflexive thematic analy-
sis [10]. We generated codes and themes both inductively
(bottom-up) and deductively (top-down), looking for break-
downs, workarounds and user innovations. After interviewing
eight participants, the first two authors conducted the first
analysis together, grouping codes into larger categories and
focusing on participants’ editing behavior. We discussed any
disagreements and rechecked the interview transcripts to reach
a shared understanding. We also created story portraits [23]
to graphically code the data, which helped us engage with the
collected data and resolve disagreements. We arrived at the
final themes after three iterations.

RESULTS AND DISCUSSION
We identified six themes: maintaining term consistency, man-
aging dependencies by hand, reusing content, visiting and
revisiting document locations, managing annotations, and col-
laboration.

Maintaining term consistency
All participants rely on their memories to maintain consistency
across document terms, which are often defined the beginning
of the document. This causes problems, e.g. when P7 (legal
affair director) struggled to use the full name of a party across
the document and P5 (patent attorney) often made the wrong
choice between two words with highly similar meanings.

Sometimes terms must be changed, e.g. shifting from British
to American English or if the client prefers another word. To
avoid introducing inconsistencies, lawyers must update each

Figure 1. Patent claims use three different numbering systems (left).
Patent illustration (right).

term and its variations, e.g. singular vs. plural, and adjust verbs
(P1), articles (P1,6,7,9) and pronouns (P9) accordingly.

Although all participants use “search and replace” to make
consistent edits, most (9/12) avoid “replace all”: “It is too risky.”
(P4); “I will not let the computer do it for me.” (P6); and “I
prefer to do it manually.” (P5). Instead, they use a one-by-one
search-navigate-check-replace strategy to manually replace
each term. They ensure correctness by viewing and assessing
each term’s context: “We have to conjugate the verb with
the subject. It’s like a lot [of work].” (P4) Checking context
is also essential for avoiding partial matches, i.e. when the
search term matches a subset of a longer word (P3,11), which
requires performing additional search-and-replace operations.

In summary, participants maintain consistency across terms
primarily by hand, which they find cumbersome and prone to
error. Most avoid “replace all” because they do not trust the
results and cannot easily check them.

Managing dependencies by hand
We define a dependency as two or more sections of text that
must be kept identical or consistent. Most participants (8/12)
rely on their memories to manage document dependencies,
and synchronize them by hand. We identified three types of
dependency problems: managing consistency across pasted
copies, numbering items, and managing cross-references.

All patent attorneys (4/4) copy text from the Claims section to
the Summary of the Invention when drafting the latter. How-
ever, when they change the claims, they often forget to update
the summary accordingly: “Because it is not automatically
updated with the claims, I can easily forget to update.”(P6).

Patents contain three types of numbering systems (Fig. 1):
claim number, claim dependency number (when the current
claim depends upon another claim), and reference number (to
specific parts of the illustration). Most patent attorneys (3/4)
manage these numbers by hand instead of using Word’s cross-
reference feature, typically leaving a gap between consecutive
references. This lets them add additional numbers later, while
ensuring that the reference numbers remain in ascending order.

Most lawyers and patent writers insist on maintaining full
control of the text, especially the critically important claims
section, even if the process is tedious. Even participants who
are comfortable using automatic features do not rely on au-
tomatic numbering: P7 said: “most of the time, I prefer if



something can be automatically achieved” yet avoids auto-
matic numbering: “I cannot really tell you why. One reason
might be that if I have automatic numbering set up, this would
have become paragraph 2 and all the numbering of the claims
would have been changed...I would not be very happy.”.

In summary, their key reasons for avoiding automatic number-
ing include 1) their inability to differentiate automatic from
normal numbering, unless they select the text; 2) incorrect dis-
play of references, e.g. when items are added to a list, until a
manual update is triggered; and 3) invisibility of dependencies
after an update, since they lack feedback and cannot be sure if
the changes are correct.

Reusing content
All participants reuse previous document elements to cre-
ate new documents, incorporating text, styles and templates.
When copy-pasting a piece of text for reuse, they must often
edit the content between copy and paste operations or adapt
the format after pasting, e.g. using the brush tool (P6) or a
macro (P7). If visual formatting results from applying a style,
pasting new text can bring “bad” styles into the document and
pollute existing styles: “When you copy-paste into a document,
you can import the style of the [original] document. Too many
unnecessary styles makes the document heavier and you have
to remember which style to use. This is a mess.” (P4)

Most participants (10/12) use templates to create new docu-
ments, including pre-written text, preset styles or both. Al-
though useful for writing letters, filling cover pages, generating
tables and managing formatting consistency, participants still
struggle with formatting issues caused by style conflicts. In
summary, they often reuse content, but are not satisfied with
the corresponding introduction of format inconsistencies.

Visiting and revisiting document locations
Participants rarely write or edit documents sequentially and
often revisit different parts of the document. For example, P7
created a set of keyboard shortcuts to “jump to different parts
of the document” because he needs to switch often. This is
consistent with Alexander et al.’s findings concerning users’
revisitation behavior [1].

Participants also need better revisitation support when system-
atically going through the whole document, e.g. incorporating
edits one by one or performing search-and-replace tasks. The
latter often involves checking an earlier replacement, after the
fact. Unfortunately, Word imposes sequential interaction, so
users cannot return to the previous replacement: “The prob-
lem is that I cannot check. It made the replacement and it
goes to the next occurrence, so I don’t see what just happened.”
(P7). P8’s workaround to address this problem involves turn-
ing on “track changes” to leave an inspectable trace of each
replacement. In summary, participants experience problems
navigating their documents, especially with respect to tracking
recent or oft-visited parts of the document.

Managing annotations
Some participants (4/12) appropriate and customize their tools
to support comments and annotation, rather than using the ded-
icated features of their word processor. For example, P5 uses

footnotes to add comments for his clients because he dislikes
how the text gets smaller when using Word’s Track Changes.
P7 avoids Track Changes altogether and uses different col-
ors to encourage active reading and convey the importance of
certain comments to his clients.

For documents with two or more co-authors, some participants
(4/12) complained that the Track Changes feature introduces
more problems than it solves (P2, P4) and makes it difficult to
understand the modifications (P5, P7). Instead, some (3/12)
use the comparison function after making changes, to make
modifications visible to their clients.

Interestingly, P9 also used the comparison function to ‘cheat’:
He modified the document with Track Changes on a Saturday
night but did not want his client to know he worked over the
week-end. So he accepted all the changes and then compared
it to the original document on Monday morning, making it ap-
pear that the changes had been made on Monday. In summary,
participants find annotation tools frustrating and constraining,
and some creatively use other features to meet their needs.

Collaboration
Most participants (11/12) collaboratively edit documents. We
categorize their collaboration strategy as branching (versioning
and partitioning) and merging.

When versioning, participants exchange documents via email
and save successive versions to keep track of changes made to
the document. They use simple suffixes to identify versions
over email, e.g. V1, V2, V3, so documents with similar content
hang around and are hard to find again. P12 complained
that she created eight versions of the same document even
though she made only minor changes. The notion of File
Biography [31] could help them manage these issues. Local
versioning, explored for code editing in Variolite [25], would
also be useful but standard word processors do not support it.

Some participants partition the master document for co-
authors to edit and merge it later. The problem in the merge
stage is style pollution, as discussed above, due to foreign
styles being imported through copy-paste (P4) or forgetting to
format text (P2). Because the style panel in Microsoft Word
is not displayed by default when users open a document, it
is often hidden from users. As a result, formatting and style
inconsistencies are often undetected.

When a version of a document is sent out and then returns with
proposed changes, participants have to merge these changes
into the master document. Even though they use the Track
Changes feature of Microsoft Word, they usually make the
changes by hand, going through each document and deciding
which edits to incorporate. They do not accept all the changes
for various reasons: “It might destroy the way [the text] was
presented” (P5), “We do not consider all comments” (P6),

“[clients’] comments are difficult to understand” (P7), or the
changes require other modifications to be made in other parts
of the text (P7). In summary, we found that participants manu-
ally version their documents, even for minor edits, and merge
documents by hand, incorporating changes one by one, as they
struggle with style pollution.



Summary
Study 1 shows not only that professional technical writers must
maintain consistent use of terms, but also that they manage
the resulting dependencies mostly by hand. They struggle
to maintain formatting consistency when reusing text and
lack tools for keeping track of their navigation within their
document, flexibly generating annotations, and collaborating
asynchronously. Based on these results and the theoretical
framework provided by Instrumental Interaction [3], we pro-
pose a general solution to address some of their needs.

TEXTLETS: REIFYING SELECTION
General-purpose word processors such as Microsoft Word
have hundreds of features. As we saw in Study 1, even when
users know that a feature exists, such as ‘replace all’ or ‘auto-
matic numbering’, they often prefer making changes by hand
to stay in control. Rather than proposing specific new fea-
tures to address the various use cases we observed, we seek a
general approach that fits how they actually deal with text.

Word processors rely heavily on the concept of selection: the
user selects a piece of text and then invokes a command using
a menu, toolbar or keyboard shortcut that affects the content
of the selection. However, the selection is transient: selecting
a new piece of text causes the previous selection to be lost.

We introduce the concept of textlet as the reification [5] of a
text selection into a persistent, interactive, first-class object.
A textlet represents a piece of the text document identified
as interesting to the user. They can be highlighted in the
document itself, listed in a side panel, or visualized through
other interface elements, e.g. a scrollbar, for easy access.

To create a textlet, a user simply selects a piece of text and
invokes a command, e.g. Ctrl+T. The selected text is high-
lighted and the textlet is listed in the side panel where a behav-
ior (see below) can be assigned to it.

Textlets can also be created automatically by a higher-level
object called a grouplet. For example, to create textlets that
represent all the occurrences of a word in the document, the
user creates a search grouplet (or searchlet), e.g. with the
traditional Find command Ctrl+F. The searchlet appears in
the side panel and the user can type the search string. A textlet
is automatically created for each match of the search string
and appears as an item underneath the searchlet. This list is
automatically updated when editing the document or when
changing the search string.

The power of textlets comes from the behaviors associated
with them. The most basic behavior is to (re)select the piece
of text from the textlet, e.g. by double-clicking the textlet
representation in the side panel. Other behaviors include the
ability to change or automatically generate the content of the
text, to change its style, and to attach annotations or addi-
tional information, such as character or word count. Creating
textlets with different behaviors leverages the power of poly-
morphism [5] because a single concept (reified text selection)
addresses a variety of commands (searching, counting, refer-
encing), providing users with a unifying concept to manage
text documents. This slightly extends the definition in [5],
which focused on polymorphic instruments.

The rest of this section illustrates the power of textlets by
describing how different behaviors can address some of the
issues observed in Study 1. Table 1 summarizes the use cases
and the solutions we have implemented.

Textlets for Consistent Reuse
Study 1 showed that technical writers often reuse portions of
text or entire templates when creating new documents. They
rely on copy-paste to incorporate parts of other documents,
but this requires precisely (re)selecting the text to be copied.

With textlets, users can create text snippets specifically for
reuse, such as common vocabulary and phrases, list templates,
or pre-written paragraphs with placeholders. Reusing a snippet
simply involves a drag-and-drop or click-based interaction
with the textlet. Placeholders can themselves be textlets to
highlight the parts that need to be filled in, so that they can be
easily identified, selected, and replaced with the proper text.

These snippets can be collected in dedicated documents or
embedded into other documents. Study 1 identified collab-
orative practices where users share a set of constraints and
consistency criteria. By collecting reusable textlets in sepa-
rate documents, they can easily share these documents and
facilitate consistency across users and documents.

Textlets for Term Consistency
We observed that technical writers need to go back and forth
in their documents to check for consistency or make consistent
changes across the document. To that end, they often use the
search command, but they do not trust the search-and-replace
tool enough to perform replace-all actions blindly, and prefer
to check the term and its context before each replacement.

Searchlets, briefly introduced earlier, can address these use
cases by automatically searching for all the occurrences of a
text in the document. A searchlet is a grouplet that creates
occurrence textlets for each match they find in the document.
These occurrences are listed under the searchlet in a side panel
and automatically updated when the document changes. This
supports fast navigation to each occurrence in the document,
e.g. with a click on the occurrence in the side panel.

Searchlets support flexible search-and-replace. After specify-
ing a replacement text for the searchlet, the user can replace
all occurrences at once, or replace them one by one, in any
order. At any time, including after a replace-all, it is possible
to revert individual occurrences, giving users full control and
visibility over their actions. Multiple searchlets can be active
simultaneously, so that users can keep earlier searches around
and get back to them later.

When users navigate the document to check for consistency
and to make changes, they often lose track of where they were
when they started the check. Searchlets facilitate navigation
among occurrences, but do not address the need for location
tracking in the document. Building on previous work such
as Read Wear [21, 1] and Footprints [50], a history grouplet
can record recent selections and let the user navigate among
them. Previous selections can appear as individual textlets in
a side panel or, to save space, the grouplet can display arrows
to navigate the history of selections.



Use Case Issue Solution

Consistent Reuse
Recurrent copy-paste to start new documents
from scratch requires re-selecting the text in one
or more documents.

All textlets save their text, which can be reused using simple
actions such as drag-and-drop.

Term Consistency
Repeatedly navigating across a document using
search terms leaves no traces of scroll positions,
making it hard to go back and forth.

Searchlets create occurrence textlets that let users navigate by
interacting directly with them on the side panel.

Reference Consistency
Automated numbered lists and cross-references
take control away from users. Numbered items
and references do not update automatically.

Numberlets are counters that can be manipulated and applied to
numbered lists, sections, figures, etc. References to numberlets
can be created by copy-pasting them in the document. Item
numbers and references are always up to date.

Length Constraints
Standard word processors require selecting text
each time to count words in a specific area and
get other metrics.

Countlets add a persistent decoration to the text of interest that
displays a word count and updates it as users edit the content.

Exploratory Writing
Keeping track of alternatives is difficult.
Undo/redo is not adapted to go back and forth
between versions.

Variantlets store alternative versions of textlets that can be easily
retrieved, compared and edited.

Table 1. How different textlet behaviors address some issues observed in Study 1.

Textlets for Reference Consistency
Standard word processors include tools for managing certain
types of dependencies automatically, most notably numbered
lists and cross-references. Study 1 showed that participants
distrust and struggle with automatically numbered lists, and
thus avoid automated cross-reference management tools.

Documents often include numbered items such as sections,
figures, patent claims or references. Both the numbered items
and the references are good candidates for textlets: Both are
computed textlets, i.e. their content is computed and updated
as the document changes, but the user can still interact with
them. A numberlet is a grouplet that creates numbered items
and ensures that the number sequence matches the document’s
item order. Each numbered item is itself a grouplet for creating
and managing textlets representing references to that item.

Numberlets, numbered items and references can be listed in
the side panel for easy navigation. Creating new numbered
items and new references involves a simple drag-and-drop or
clicking on the corresponding textlet.

This design may seem complex compared to the automatic
numbering and cross-referencing features of standard word
processors, but it leaves users in control by turning numbered
items and references into objects that they can see and manip-
ulate while the system maintains consistency during document
editing. It is also more powerful and flexible than the prede-
fined types of references offered by standard word processors.
For example, Microsoft Word 16 for Mac can cross-reference
Headings, Bookmarks, Footnotes, Endnotes, Equations, Fig-
ures and Tables, but not Articles or Claims, which are used
extensively by contract and patent writers. Numberlets let
users control what types of numbered items they need, provid-
ing flexibility within a unified interface.

Textlets for Length Constraints
Word count and character count limits are common in technical
documents. For example, patent offices limit the number of
claims in a patent, the number of words in the abstract, and
the number of characters in the patent title. Standard word

processors include tools to count words and characters in a
selection, but they require users to reselect the text and recount
after every modification. Microsoft Word shows the total word
count of the entire document and current selection in real time,
but counting the characters in, e.g. a section of the document
requires selecting the text and bringing up a modal dialog.

Counting textlets, or countlets, solve this problem by counting
the number of words or characters in a segment of the doc-
ument and displaying it in the document itself and/or a side
panel. As the user edits the text, the counter updates, avoiding
the need for special commands or re-selection. The user can
set a threshold above which the textlet will signal that the text
is too long. Additional metrics could easily be included, such
as the text’s estimated reading time. Such timelets would be
useful, e.g. for journalists and authors of video subtitles.

Textlets for Exploratory Writing
Study 1 showed how professional technical writers often need
to manage multiple alternatives for parts of a document, before
deciding or agreeing on which one to keep. Although standard
word processors support change tracking, this is insufficient,
since it tracks all edits, not the intermediate versions the user
may want to keep. Participants must either make copies of
the entire document, or use colored text or comments to list
alternatives within the document.

Variant textlets, or variantlets, let users keep track of the
changes made to a selection rather than the entire document.
We were inspired by Explorable Multiverse Analyses [17],
where alternative analyses can be embedded in a research
paper and selected by the reader to view them in context. A
variantlet saves the original content of the selected text. After
editing the text, the user can swap it with the original version
for immediate comparison, and swap again with the edited
version. More sophisticated behaviors can be added to manage
multiple alternatives, such as displaying the alternatives side
by side or displaying the changes in a manner similar to the
track changes mode of word processors. Variantlets provide
greater control on version management by supporting local



Figure 2. First prototype with the side panel showing a variantlet, a countlet and a numberlet containing a numbered item and a reference, and their
visualization in the document (left). Second prototype with multiple searchlets that highlight corresponding occurrences in the document (right).

versioning rather than traditional document-level versioning.
A similar concept is featured in Variolite [25] for code editing.

Generative Power
The previous examples show the power of textlets to support a
variety of tasks. We have also identified other behaviors for
textlets that could be useful for a wider range of use cases:

● Attaching comments, summaries, translations, word-scale
graphics [19] or emojis and adding decorations to a textlet,
e.g. highlighting or badges, to annotate the document;
● Supporting arbitrary computed content, such as Victor’s Re-

active Documents5, where a textlet is defined by a formula
that refers to other textlets, as in a spreadsheet;
● Controlling the style and formatting of the text by associat-

ing style attributes with the textlet;
● Crowdsourcing the text of a textlet or a collection of textlets

for reviewing or grammar checking, as in Soylent [7]; and
● Organizing textlets freely in a canvas to help analyze or

annotate the content of a document

The generative power [4] of textlets comes from the combina-
tion of a set of behaviors:
● Navigating to the text of the textlet in the document;
● Selecting the text of the textlet, leveraging all the existing

commands that act on the selection;
● Replacing/modifying text either based on user edits or auto-

matically;
● Modifying the style of the text;
● Adding decorations that are not part of the text itself; and
● Representing and manipulating textlets in a separate view,

such as a list in a side panel.

Generative power also comes from the ability to create textlets
not only directly, by selecting text in the document, but also au-
tomatically, by using grouplets that identify and live-update a
set of matching textlets. Grouplets let users deal with dynamic
collections of text in a concrete way, whereas standard word
processors typically offer advanced, specialized commands
that users hesitate to learn and use. Although textlets may
involve more actions than these specialized commands, we
argue that users are more likely to try them, and will save time
compared to the manual solutions users resort to.

5http://worrydream.com/Tangle/

PROOF-OF-CONCEPT IMPLEMENTATION
In order to demonstrate the concept of textlets, we created a
proof-of-concept implementation with four types of textlets:
word count (countlets), text variants (variantlets), numbered
references (numberlets), and search-and-replace (searchlets).
These textlets address multiple use cases described in Study 1.

We created two prototypes as plugins to the ProseMirror6 web-
based word processing toolkit. The first prototype (Fig. 2a)
was developed internally as our first proof of concept and
implements countlets, variantlets and numberlets. The second
prototype (Fig. 2b) implements searchlets and was developed
in an iterative process with the participants in Study 2, where
it was used as a technology probe [22].

Overall Interface
The main window contains the text document, with a tradi-
tional toolbar for basic formatting at the top, and a side panel
dedicated to textlets on the right. The panel features a toolbar
for creating new textlets and the list of textlets themselves. It
also features grouplets, with their list of textlets below them.
A textlet is created using any of three techniques:
a) Selecting the text content in the document and clicking a

creation tool in the toolbar;
b) Clicking a creation tool in the toolbar and selecting the text

content in the document; or
c) Entering a keyboard shortcut.

These techniques are also used to create grouplets, depending
upon their type: some grouplets require a text selection, others
not, and some may require additional information. Each textlet
has a context menu that lets users navigate to the original text
in the document, select that text, and delete the textlet. The
menu also contains textlet-specific behaviors, such as search
and inspector for the searchlet (see below).

Countlets
Our implementation of countlets (Fig. 3) decorates the selected
text with a handle at each end. These handles let users change
the scope of the textlet. The right handle also displays the
word count of the text in the textlet, which is updated in real
time as the user edits the content. A right-click on the countlet
lets users set a threshold. The counter is displayed in red
6http://prosemirror.net

http://worrydream.com/Tangle/
http://prosemirror.net


when its value is higher than the threshold. Deleting the textlet
simply removes the word count.

Figure 3. Countlet: a textlet for counting words.

Variantlets
Our implementation of variantlets (Fig. 4) supports a single al-
ternative text. When the user creates the variantlet, its content
is stored. The user can edit the content, and swap it with the
stored one by clicking a button in the side panel representation
of the variantlet. The user can thus easily view and edit the
two variants. Combining a variantlet with a countlet lets the
user instantly compare the two lengths by switching between
the two alternatives. A more complete implementation of the
variantlet should include an additional button to save addi-
tional versions and a way to navigate through the versions and
swap any one of them with the selection.

Figure 4. Variantlet: a textlet for editing local versions.

Numberlets
Our implementation of numberlets (Fig. 5) uses grouplets to
create counters, new numbered items for a given counter, and
new references to a given numbered item. The user creates a
new counter by selecting a piece of text that contains a number
or a hash sign (#), e.g. Article #. This text serves as a template
for the numbering scheme. The new counter appears in the
side panel as a button. Clicking this button inserts a new
numbered item (the numberlet) at the cursor position, with the
proper number. This numberlet is added to the side panel and
is also a grouplet: clicking it inserts a reference to that item
in the text at the cursor position, as well as the corresponding
reference textlet (or reflet) in the side panel.

Numbered items and references are updated when the content
of the document changes. The numbering of items follows
their order of appearance in the document, and is therefore
updated when moving text around. If a numbered item is re-
moved and there are dangling references to it, these references
show the error. All updates are immediately visible in both
the text and the side panel, ensuring consistent numbering at
all times. An additional feature (not implemented) should let
users drag a reference textlet below another numbered item to
change the reference to that item. This would make it possible
to re-attach dangling references.

Figure 5. Numberlet: a textlet for numbering and referencing.

Searchlets
Our implementation of searchlets (Fig. 6) supports flexible
search and replace by extending Beaudouin-Lafon’s search-
and-replace instrument [3]. A searchlet is created by clicking
the creation tool then specifying the search text, or selecting
the search text in the document and clicking the creation tool.
Users can also create a blank searchlet and then enter the
search string. Enabling the search behavior finds all occur-
rences of the search text, highlights them in the document and
displays the number of occurrence in the panel. The usual
“word matching” and “case sensitive” options become avail-
able in the menu to refine the search (Fig. 2b).

Figure 6. Searchlet: a textlet for searching and replacing text.

Navigating Occurrences
Enabling the inspector behavior generates the list of occur-
rences below the searchlet in the panel, highlights them in the
document, and gives access to the replace capability (Fig. 6).
Changing the search string or the search settings re-runs the
search and updates the list of occurrences underneath it. Edit-
ing the document also dynamically updates the list of occur-
rences: typing the searched text in the document creates a
new occurrence and changing the text of an occurrence in the
document removes it from the list of textlets if it does not
match anymore.

Each occurrence is a textlet that displays the text surrounding
the match in the document and updates it in real time. An
occurrence can be expanded by clicking it to better show the
context (Fig. 6). The user can then click the ellipsis buttons to
show more context.

Occurrences can be moved, including under another searchlet,
giving users flexibility to organize the search results as they
see fit. For example, occurrences of different mispellings of
a word can be identified with different searchlets and then
grouped under one searchlet, after which they can all be re-
placed at once. When moved, occurrences adopt the color
of their new host searchlet. They also “belong” to their new
host for the purposes of the replace-all action. In the current
implementation, they disappear from the list when the search
string or the search settings of the new host are changed.

Replacing Text
Selecting “Replace Matches” in the searchlet context
menu (Fig. 2b) shows a text input field for typing a replace
string and a button for replacing all occurrences in the list.
Each occurrence textlet also includes three buttons that: re-
place only that occurrence, revert to the previous text, or ig-
nore this occurrence from future replace-all operations. These
actions can also be performed in the document itself using
keyboard shortcuts.



Replaced occurrences stay in the textlet’s occurrence list until
a new search string is entered for that searchlet. This lets users
work with the occurrences and make changes to the document
after they perform a replace operation without losing track of
the positions that were originally matched.

Searchlets extend Beaudouin-Lafon’s previous work [3] by
supporting multiple simultaneous searches. Each occurrence
is reified as an item in the side panel, which supports additional
functions such as disabling an occurrence in a global replace,
or moving an occurrence to another searchlet. Our design is
also grounded in our observations of the real-world challenges
experienced by a group of professional users.

STUDY 2: SEARCH-AND-REPLACE TEXTLET
We used our second prototype as a technology probe [22]
to evaluate searchlets with an observational study. We did
not run a comparative study with, e.g., Microsoft Word as a
baseline because many features that we implemented do not
exist in Word or are clearly faster, e.g., a persistently-displayed
character count with countlets, versus highlighting text and
invoking Word’s word count command.

Our goals were to gather feedback, identify potential novel and
unexpected uses, and discuss new ideas with the participants
in order to refine our design. The study focused on searchlets,
but we also showed the participants the other textlets from the
first prototype. We incorporated suggestions incrementally so
that successive participants used slightly different versions of
the probe.

Participants
We recruited eight participants: three patent attorneys, one
patent inventor (one woman, three men; aged 29-50 who use
various versions of Microsoft Word) and four researchers (one
woman, three men; aged 24-26 who use LaTeX). Three of
the patent attorneys had participated in Study 1. We included
researchers because we believe that textlets address the needs
of a wider range of users than those in Study 1 and authors of
research articles must also manage consistency in their papers.

Apparatus
The prototype is a Web application accessed with the partici-
pant’s choice browser on their own computer. We provided a
13” MacBook Pro laptop running macOS 10.14 and Firefox
68.0 for participants who did not have a computer at hand.
We created two sets of documents to match the participant’s
background: two patents and two research papers.

Procedure
We started by describing the features of the Textlets prototype,
and gave participants 10 minutes to experiment with it. We
used a think-aloud protocol and asked participants to perform
two similar tasks on two documents: one using the editor of
their choice and the other using the Textlets prototype. We
counterbalanced for document order across participants.

Each task consisted of three small exercises with increasing
difficulty: 1) replace a word by another and then change it
back; 2) replace a word by another but only in certain contexts;
and 3) replace two words with similar meanings with another

word, including all relevant variations. Thus replacing “mouse”
with “rodent” also requires changing “mice” with “rodents”.

The two tasks, each with three exercises, took approximately
20 minutes. After an interview, participants completed a short
questionnaire. The session ended with a debriefing to identify
additional use cases and discuss ideas for improvement. We
also showed participants the countlets and variantlets from
the first prototype, and asked them to describe scenarios for
which they might be useful.

Data Collection
We recorded audio, took hand-written notes during the session,
and collected the answers to the questionnaire.

Results and Discussion
All participants successfully interacted with the textlet proto-
type and found the tasks representative of their everyday work.
The textlet side panel was “faster to use” (P1, P3). It avoids
jumping to the main text (P1, P2, P3, P6), so that they can
focus on the relevant document parts, thus reducing mental
workload. Most participants (6/8) preferred making changes
directly with a searchlet over Word’s non-interactive side
panel. Two participants (P1, P2) asked for even greater in-
teractivity with searchlets, such as one-by-one replacement
directly from the panel, which we added in a later version, and
merging two searchlets to apply the same replacement to their
occurrences. We added other small improvements based on
participants’ feedback, including better colors and icons, and
decluttering the textlet interface by using a menu instead of a
series of buttons.

Replace-all-then-correct Strategy
Most participants (7/8) used a one-by-one search-check-
replace strategy with both Microsoft Word and LaTeX: They
search for the word, go to each occurrence in the main docu-
ment to check the context and then perform the replacement,
either by clicking a button or retyping.

Participants used a different strategy with textlets, which we
characterize as search-overview-replace. They started by cre-
ating one or more searchlets, scanned the overview of the
occurrences to see the variations and assessed which ones
to replace. P1 said: “I can see immediately what variations
are in the text [from the side panel]. So I see it will work by
replacing all matches”.

The combination of overview and contextual information
around each match encouraged participants to spontaneously
develop two different strategies for the final search-overview-
replace step: Six participants used a replace-all-then-correct
strategy, first replacing all occurrences, then checking each
replacement in the overview list for errors, which they cor-
rected either with the ‘revert’ button or by retyping in the
document. The other two participants (P6, P7) used an ignore-
replace-all strategy, first pressing the ‘ignore’ button to skip
outliers, then applying ‘replace-all’, similar to the ‘perfect
selection’strategy in [35]. In summary, although participants
were reluctant to use replace-all with their regular word pro-
cessor, they felt comfortable using the searchlets’ replace-all
and quickly developed strategies for selective replacement.



Persistent Selection: Keep Track, Individual Undo
Although both Microsoft Word and TexWorks (LATEXeditor)
provide an overview list of all search occurrences, they do not
track them by position. By contrast, searchlets create persis-
tent occurrences that help users keep track of what happened.
P5 felt more confident with the prototype, saying: “Here
(pointing at the side panel) I can see the changes in context. It
helps me [and] reassures me that I did the right thing.”

Furthermore, searchlets let users check the results of their
previous replacements. The overview of occurrences persists
in the panel even as users edit the document. This differs from
other word processors that clear the search whenever the user
types in the document, which forces users to tediously re-enter
the search text. For example, P3 said: “I have this list of all the
occurrences. When I want to do some replacements, I choose
some of them and I keep the whole list that I can always check
[in the side panel]. This is quite important...I do not need to
proof-read the whole text.”

Because each occurrence is also a textlet with its own history
of changes, it can be undone individually and ignored in a
replace-all command while still remaining in the overview list.
These novel behaviors contributed to most participants (6/8)
spontaneously adopting a replace-all-then-correct strategy. For
example, P3 said while performing a task: “Maybe it is better
to replace all and check the ones that do not work.”. This
suggests that making changes persistent, visible and reversible
increases users’ trust in the system.

Representing Constraints
One participant suggested embedding a group of searchlets
as “a highlight [feature] for forbidden words.”(P4), arguing
that making co-authors aware of these words as the document
circulates would help them maintain consistency and improve
collaborative editing. Textlets can thus embody constraints and
serve as an active guideline when embedded in a document.

Feedback for countlet and variantlet
Participants also described situations in which they wanted
to use countlets and variantlets. For example, P3 wanted to
count the words in patent abstracts: “I think this could be very
useful because many times you are going to count words and
[the system] does not keep it.” P4 wanted to use variantlets
as a local versioning tool: “If you can version one paragraph
[instead] of the whole document, it could be very useful. In
that case, you can track which part you have changed.”

Scalability and Limitations
A potential limitation of our approach is scalability: Searchlets
that generate large numbers of matches or large numbers of
textlets and grouplets in the side panel could cause problems
when dealing with large documents. We did not observe such
problems during the study, probably due to its short-term na-
ture. Several features mitigate scalability issues: users can
collapse grouplets, e.g. search results, to save space, or dis-
able them to remove highlighting in the main text. Scrolling
between the document and the side panel could also be syn-
chronized, and future textlets could combine behaviors, e.g.
countlet +variantlet, to save space.

One participant found that searchlets might be less useful in
simple cases with few matches or variations of the same word:

“[With] only 3 matches, I would like to change it directly in
the main text” (P3). Another participant wanted searchlets
to support regular expressions. Both features could easily be
supported in a future prototype.

Summary
This study demonstrated the value of searchlets, the most com-
plex textlet we developed, as well as the potential of other
textlets. By turning search matches into persistent objects
that users can manipulate directly, users were willing to use
functions, such as replace-all, that they otherwise avoid with
traditional word processors. They also spontaneously devised
novel strategies and appropriated the textlet concept in un-
expected ways, such as embedding searchlets for forbidden
words. This study provides evidence for the validity of the
textlet concept, and encourages us to further develop and as-
sess the textlets we have developed, as well as design new
ones.

CONCLUSION AND FUTURE WORK
Writing technical documents frequently requires following
constraints and consistently using domain-specific terms. We
interviewed 12 legal professionals and showed that technical
writers are reluctant to use advanced features of their word
processors, and must instead rely on their memory to manage
dependencies and maintain consistent vocabulary within their
documents. We introduced a simple, immediately accessible
but powerful concept called Textlets, interactive objects that
reify text selections into persistent items.

Textlets are a deceptively simple but powerful idea, based on
the premise that creating persistent, interactive objects to rep-
resent abstract or transient concepts such as the selection can
empower users. We showed five use cases where textlets can
be applied to support consistent reuse, term and reference con-
sistency, word count constraint, and exploratory writing. We
presented two prototypes that implement a proof-of-concept
of four textlets, and used one as a technology probe to assess a
search-and-replace textlet. All participants successfully used
the prototype to perform advanced tasks, and most sponta-
neously generated a novel replace-all-then-correct strategy.
Several also invented novel uses and ideas for new textlets.

Future work will focus on creating a more advanced prototype
that can be tested in a longitudinal study. We also plan to
design and evaluate new textlets for commenting, formatting
and computing text. Our findings on collaboration practices
also open the door to investigating the potential of textlets for
collaborative work. Beyond the examples illustrated in this
article, textlets offer a generative concept for creating powerful
new tools for document editing.

ACKNOWLEDGMENTS
This work was partially supported by European Research
Council (ERC) grant n° 695464 ONE: Unified Principles of
Interaction.



REFERENCES
[1] Jason Alexander, Andy Cockburn, Stephen Fitchett,

Carl Gutwin, and Saul Greenberg. 2009. Revisiting
Read Wear: Analysis, Design, and Evaluation of a
Footprints Scrollbar. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’09). ACM, New York, NY, USA, 1665–1674.
DOI:http://dx.doi.org/10.1145/1518701.1518957

[2] Ronald M. Baecker, Dimitrios Nastos, Ilona R. Posner,
and Kelly L. Mawby. 1993. The User-centered Iterative
Design of Collaborative Writing Software. In
Proceedings of the INTERACT ’93 and CHI ’93
Conference on Human Factors in Computing Systems
(CHI ’93). ACM, New York, NY, USA, 399–405. DOI:
http://dx.doi.org/10.1145/169059.169312

[3] Michel Beaudouin-Lafon. 2000. Instrumental
Interaction: An Interaction Model for Designing
post-WIMP User Interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’00). ACM, New York, NY, USA,
446–453. DOI:
http://dx.doi.org/10.1145/332040.332473

[4] Michel Beaudouin-Lafon. 2004. Designing Interaction,
Not Interfaces. In Proceedings of the Working
Conference on Advanced Visual Interfaces (AVI ’04).
ACM, New York, NY, USA, 15–22. DOI:
http://dx.doi.org/10.1145/989863.989865

[5] Michel Beaudouin-Lafon and Wendy E. Mackay. 2000.
Reification, Polymorphism and Reuse: Three Principles
for Designing Visual Interfaces. In Proceedings of the
Working Conference on Advanced Visual Interfaces (AVI
’00). ACM, New York, NY, USA, 102–109. DOI:
http://dx.doi.org/10.1145/345513.345267

[6] Tim Bergin. 2006. The Origins of Word Processing
Software for Personal Computers: 1976-1985. Annals of
the History of Computing, IEEE 28 (11 2006), 32–47.
DOI:http://dx.doi.org/10.1109/MAHC.2006.76

[7] Michael S. Bernstein, Greg Little, Robert C. Miller,
Björn Hartmann, Mark S. Ackerman, David R. Karger,
David Crowell, and Katrina Panovich. 2015. Soylent: A
Word Processor with a Crowd Inside. Commun. ACM 58,
8 (July 2015), 85–94. DOI:
http://dx.doi.org/10.1145/2791285

[8] Eric A. Bier, Edward W. Ishak, and Ed Chi. 2006. Entity
Quick Click: Rapid Text Copying Based on Automatic
Entity Extraction. In CHI ’06 Extended Abstracts on
Human Factors in Computing Systems (CHI EA ’06).
ACM, New York, NY, USA, 562–567. DOI:
http://dx.doi.org/10.1145/1125451.1125570

[9] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R. Klemmer. 2009. Two Studies of
Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’09). ACM, New York, NY, USA,
1589–1598. DOI:
http://dx.doi.org/10.1145/1518701.1518944

[10] Virginia Braun and Victoria Clarke. 2019. Reflecting on
reflexive thematic analysis. Qualitative Research in
Sport, Exercise and Health 11, 4 (2019), 589–597. DOI:
http://dx.doi.org/10.1080/2159676X.2019.1628806

[11] S. K. Card, T. P. Moran, and A. Newell. 1987. Computer
Text-editing: An Information-processing Analysis of a
Routine Cognitive Skill. In Human-computer
Interaction, R. M. Baecker and W. A. S. Buxton (Eds.).
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, Chapter Computer Text-editing: An
Information-processing Analysis of a Routine Cognitive
Skill, 219–240.
http://dl.acm.org/citation.cfm?id=58076.58096

[12] Olivier Chapuis and Nicolas Roussel. 2007.
Copy-and-paste Between Overlapping Windows. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’07). ACM, New
York, NY, USA, 201–210. DOI:
http://dx.doi.org/10.1145/1240624.1240657

[13] Mauro Cherubini, Gina Venolia, Rob DeLine, and
Andrew J. Ko. 2007. Let’s Go to the Whiteboard: How
and Why Software Developers Use Drawings. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’07). ACM, New
York, NY, USA, 557–566. DOI:
http://dx.doi.org/10.1145/1240624.1240714

[14] Elizabeth F. Churchill, Jonathan Trevor, Sara Bly, Les
Nelson, and Davor Cubranic. 2000. Anchored
Conversations: Chatting in the Context of a Document.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’00). ACM, New
York, NY, USA, 454–461. DOI:
http://dx.doi.org/10.1145/332040.332475

[15] Marianela Ciolfi Felice, Nolwenn Maudet, Wendy E.
Mackay, and Michel Beaudouin-Lafon. 2016. Beyond
Snapping: Persistent, Tweakable Alignment and
Distribution with StickyLines. In Proceedings of the
29th Annual Symposium on User Interface Software and
Technology (UIST ’16). ACM, New York, NY, USA,
133–144. DOI:
http://dx.doi.org/10.1145/2984511.2984577

[16] Andrew L Cohen, Debra Cash, and Michael J Muller.
1999. Awareness, planning and joint attention in
collaborative writing: From fieldwork to design. LOTUS
CODE# 1999.02 (1999), 94–101.

[17] Pierre Dragicevic, Yvonne Jansen, Abhraneel Sarma,
Matthew Kay, and Fanny Chevalier. 2019. Increasing
the Transparency of Research Papers with Explorable
Multiverse Analyses. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems
(CHI ’19). ACM, New York, NY, USA, Article 65, 15
pages. DOI:http://dx.doi.org/10.1145/3290605.3300295

[18] David K Farkas. 1985. The concept of consistency in
writing and editing. Journal of Technical Writing and
Communication 15, 4 (1985), 353–364.

http://dx.doi.org/10.1145/1518701.1518957
http://dx.doi.org/10.1145/169059.169312
http://dx.doi.org/10.1145/332040.332473
http://dx.doi.org/10.1145/989863.989865
http://dx.doi.org/10.1145/345513.345267
http://dx.doi.org/10.1109/MAHC.2006.76
http://dx.doi.org/10.1145/2791285
http://dx.doi.org/10.1145/1125451.1125570
http://dx.doi.org/10.1145/1518701.1518944
http://dx.doi.org/10.1080/2159676X.2019.1628806
http://dl.acm.org/citation.cfm?id=58076.58096
http://dx.doi.org/10.1145/1240624.1240657
http://dx.doi.org/10.1145/1240624.1240714
http://dx.doi.org/10.1145/332040.332475
http://dx.doi.org/10.1145/2984511.2984577
http://dx.doi.org/10.1145/3290605.3300295


[19] P. Goffin, J. Boy, W. Willett, and P. Isenberg. 2017. An
Exploratory Study of Word-Scale Graphics in Data-Rich
Text Documents. IEEE Transactions on Visualization
and Computer Graphics 23, 10 (Oct 2017), 2275–2287.
DOI:http://dx.doi.org/10.1109/TVCG.2016.2618797

[20] Björn Hartmann, Daniel MacDougall, Joel Brandt, and
Scott R. Klemmer. 2010. What Would Other
Programmers Do: Suggesting Solutions to Error
Messages. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’10). ACM,
New York, NY, USA, 1019–1028. DOI:
http://dx.doi.org/10.1145/1753326.1753478

[21] William C. Hill, James D. Hollan, Dave Wroblewski,
and Tim McCandless. 1992. Edit Wear and Read Wear.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’92). ACM, New
York, NY, USA, 3–9. DOI:
http://dx.doi.org/10.1145/142750.142751

[22] Hilary Hutchinson, Wendy Mackay, Bo Westerlund,
Benjamin B. Bederson, Allison Druin, Catherine
Plaisant, Michel Beaudouin-Lafon, Stéphane Conversy,
Helen Evans, Heiko Hansen, Nicolas Roussel, and Björn
Eiderbäck. 2003. Technology Probes: Inspiring Design
for and with Families. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’03). ACM, New York, NY, USA, 17–24. DOI:
http://dx.doi.org/10.1145/642611.642616

[23] Ghita Jalal, Nolwenn Maudet, and Wendy E. Mackay.
2015. Color Portraits: From Color Picking to Interacting
with Color. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems
(CHI ’15). ACM, New York, NY, USA, 4207–4216.
DOI:http://dx.doi.org/10.1145/2702123.2702173

[24] Cory J. Kapser and Michael W. Godfrey. 2008. "Cloning
Considered Harmful" Considered Harmful: Patterns of
Cloning in Software. Empirical Softw. Engg. 13, 6 (Dec.
2008), 645–692. DOI:
http://dx.doi.org/10.1007/s10664-008-9076-6

[25] Mary Beth Kery, Amber Horvath, and Brad Myers.
2017. Variolite: Supporting Exploratory Programming
by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(CHI ’17). ACM, New York, NY, USA, 1265–1276.
DOI:http://dx.doi.org/10.1145/3025453.3025626

[26] Miryung Kim, Lawrence Bergman, Tessa Lau, and
David Notkin. 2004. An Ethnographic Study of Copy
and Paste Programming Practices in OOPL. In
Proceedings of the 2004 International Symposium on
Empirical Software Engineering (ISESE ’04). IEEE
Computer Society, Washington, DC, USA, 83–92. DOI:
http://dx.doi.org/10.1109/ISESE.2004.10

[27] Andrew J. Ko, Htet Aung, and Brad A. Myers. 2005.
Eliciting Design Requirements for Maintenance-oriented
IDEs: A Detailed Study of Corrective and Perfective
Maintenance Tasks. In Proceedings of the 27th
International Conference on Software Engineering

(ICSE ’05). ACM, New York, NY, USA, 126–135. DOI:
http://dx.doi.org/10.1145/1062455.1062492

[28] Andrew J. Ko and Brad A. Myers. 2004. Designing the
Whyline: A Debugging Interface for Asking Questions
About Program Behavior. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’04). ACM, New York, NY, USA, 151–158. DOI:
http://dx.doi.org/10.1145/985692.985712

[29] Andrew J. Ko and Brad A. Myers. 2006. Barista: An
Implementation Framework for Enabling New Tools,
Interaction Techniques and Views in Code Editors. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’06). ACM, New
York, NY, USA, 387–396. DOI:
http://dx.doi.org/10.1145/1124772.1124831

[30] Sari A. Laakso, Karri Pekka Laakso, and Asko J. Saura.
2000. Improved Scroll Bars. In CHI ’00 Extended
Abstracts on Human Factors in Computing Systems
(CHI EA ’00). ACM, New York, NY, USA, 97–98. DOI:
http://dx.doi.org/10.1145/633292.633350

[31] Siân E. Lindley, Gavin Smyth, Robert Corish, Anastasia
Loukianov, Michael Golembewski, Ewa A. Luger, and
Abigail Sellen. 2018. Exploring New Metaphors for a
Networked World Through the File Biography. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). ACM, New
York, NY, USA, Article 118, 12 pages. DOI:
http://dx.doi.org/10.1145/3173574.3173692

[32] Wendy E Mackay. 2002. Using video to support
interaction design. DVD Tutorial, CHI 2, 5 (2002).

[33] Catherine C. Marshall. 1997. Annotation: From Paper
Books to the Digital Library. In Proceedings of the
Second ACM International Conference on Digital
Libraries (DL ’97). ACM, New York, NY, USA,
131–140. DOI:
http://dx.doi.org/10.1145/263690.263806

[34] Nolwenn Maudet, Ghita Jalal, Philip Tchernavskij,
Michel Beaudouin-Lafon, and Wendy E. Mackay. 2017.
Beyond Grids: Interactive Graphical Substrates to
Structure Digital Layout. In Proceedings of the 2017
CHI Conference on Human Factors in Computing
Systems (CHI ’17). ACM, New York, NY, USA,
5053–5064. DOI:
http://dx.doi.org/10.1145/3025453.3025718

[35] Robert C. Miller and Alisa M. Marshall. 2004.
Cluster-based Find and Replace. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’04). ACM, New York, NY, USA, 57–64.
DOI:http://dx.doi.org/10.1145/985692.985700

[36] Robert C. Miller and Brad A. Myers. 2002a. LAPIS:
Smart Editing with Text Structure. In CHI ’02 Extended
Abstracts on Human Factors in Computing Systems
(CHI EA ’02). ACM, New York, NY, USA, 496–497.
DOI:http://dx.doi.org/10.1145/506443.506447

http://dx.doi.org/10.1109/TVCG.2016.2618797
http://dx.doi.org/10.1145/1753326.1753478
http://dx.doi.org/10.1145/142750.142751
http://dx.doi.org/10.1145/642611.642616
http://dx.doi.org/10.1145/2702123.2702173
http://dx.doi.org/10.1007/s10664-008-9076-6
http://dx.doi.org/10.1145/3025453.3025626
http://dx.doi.org/10.1109/ISESE.2004.10
http://dx.doi.org/10.1145/1062455.1062492
http://dx.doi.org/10.1145/985692.985712
http://dx.doi.org/10.1145/1124772.1124831
http://dx.doi.org/10.1145/633292.633350
http://dx.doi.org/10.1145/3173574.3173692
http://dx.doi.org/10.1145/263690.263806
http://dx.doi.org/10.1145/3025453.3025718
http://dx.doi.org/10.1145/985692.985700
http://dx.doi.org/10.1145/506443.506447


[37] Robert C. Miller and Brad A. Myers. 2002b. Multiple
Selections in Smart Text Editing. In Proceedings of the
7th International Conference on Intelligent User
Interfaces (IUI ’02). ACM, New York, NY, USA,
103–110. DOI:
http://dx.doi.org/10.1145/502716.502734

[38] Brad A. Myers. 1991. Text Formatting by
Demonstration. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’91). ACM, New York, NY, USA, 251–256. DOI:
http://dx.doi.org/10.1145/108844.108904

[39] Sylvie Noël and Jean-Marc Robert. 2004. Empirical
Study on Collaborative Writing: What Do Co-authors
Do, Use, and Like? Comput. Supported Coop. Work 13,
1 (Jan. 2004), 63–89. DOI:
http://dx.doi.org/10.1023/B:COSU.0000014876.96003.be

[40] Kenton O’Hara and Abigail Sellen. 1997. A Comparison
of Reading Paper and On-line Documents. In
Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems (CHI ’97). ACM, New
York, NY, USA, 335–342. DOI:
http://dx.doi.org/10.1145/258549.258787

[41] Stephen Oney and Joel Brandt. 2012. Codelets: Linking
Interactive Documentation and Example Code in the
Editor. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’12). ACM,
New York, NY, USA, 2697–2706. DOI:
http://dx.doi.org/10.1145/2207676.2208664

[42] Mary Beth Rosson. 1983. Patterns of Experience in Text
Editing. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’83). ACM,
New York, NY, USA, 171–175. DOI:
http://dx.doi.org/10.1145/800045.801604

[43] Bill N. Schilit, Gene Golovchinsky, and Morgan N.
Price. 1998. Beyond Paper: Supporting Active Reading
with Free Form Digital Ink Annotations. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’98). ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 249–256. DOI:
http://dx.doi.org/10.1145/274644.274680

[44] Abigail Sellen and Richard Harper. 1997. Paper As an
Analytic Resource for the Design of New Technologies.
In Proceedings of the ACM SIGCHI Conference on
Human Factors in Computing Systems (CHI ’97). ACM,
New York, NY, USA, 319–326. DOI:
http://dx.doi.org/10.1145/258549.258780

[45] Pål Srgaard and Tone Irene Sandahl. 1997. Problems
with Styles inWord Processing: AWeak Foundation for
Electronic Publishing with SGML. In Proceedings of the
30th Hawaii International Conference on System
Sciences: Digital Documents - Volume 6 (HICSS ’97).

IEEE Computer Society, Washington, DC, USA, 137–.
http://dl.acm.org/citation.cfm?id=938438.938857

[46] Jeffrey Stylos, Brad A. Myers, and Andrew Faulring.
2004. Citrine: Providing Intelligent Copy-and-paste. In
Proceedings of the 17th Annual ACM Symposium on
User Interface Software and Technology (UIST ’04).
ACM, New York, NY, USA, 185–188. DOI:
http://dx.doi.org/10.1145/1029632.1029665

[47] Jaime Teevan, Shamsi T. Iqbal, and Curtis von Veh.
2016. Supporting Collaborative Writing with Microtasks.
In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA, 2657–2668. DOI:
http://dx.doi.org/10.1145/2858036.2858108

[48] Michael Toomim, Andrew Begel, and Susan L. Graham.
2004. Managing Duplicated Code with Linked Editing.
In Proceedings of the 2004 IEEE Symposium on Visual
Languages - Human Centric Computing (VLHCC ’04).
IEEE Computer Society, Washington, DC, USA,
173–180. DOI:
http://dx.doi.org/10.1109/VLHCC.2004.35

[49] Sherman W. Tyler, Steven Roth, and Timothy Post. 1982.
The Acquisition of Text Editing Skills. In Proceedings
of the 1982 Conference on Human Factors in Computing
Systems (CHI ’82). ACM, New York, NY, USA,
324–325. DOI:
http://dx.doi.org/10.1145/800049.801803

[50] Alan Wexelblat and Pattie Maes. 1999. Footprints:
History-rich Tools for Information Foraging. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’99). ACM, New
York, NY, USA, 270–277. DOI:
http://dx.doi.org/10.1145/302979.303060

[51] Dongwook Yoon, Nicholas Chen, and François
Guimbretière. 2013. TextTearing: Opening White Space
for Digital Ink Annotation. In Proceedings of the 26th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’13). ACM, New York, NY, USA,
107–112. DOI:
http://dx.doi.org/10.1145/2501988.2502036

[52] Young Seok Yoon and Brad A. Myers. 2015. Supporting
Selective Undo in a Code Editor. In Proceedings of the
37th International Conference on Software Engineering -
Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA,
223–233.
http://dl.acm.org/citation.cfm?id=2818754.2818784

[53] Qixing Zheng, Kellogg Booth, and Joanna McGrenere.
2006. Co-authoring with Structured Annotations. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’06). ACM, New
York, NY, USA, 131–140. DOI:
http://dx.doi.org/10.1145/1124772.1124794

http://dx.doi.org/10.1145/502716.502734
http://dx.doi.org/10.1145/108844.108904
http://dx.doi.org/10.1023/B:COSU.0000014876.96003.be
http://dx.doi.org/10.1145/258549.258787
http://dx.doi.org/10.1145/2207676.2208664
http://dx.doi.org/10.1145/800045.801604
http://dx.doi.org/10.1145/274644.274680
http://dx.doi.org/10.1145/258549.258780
http://dl.acm.org/citation.cfm?id=938438.938857
http://dx.doi.org/10.1145/1029632.1029665
http://dx.doi.org/10.1145/2858036.2858108
http://dx.doi.org/10.1109/VLHCC.2004.35
http://dx.doi.org/10.1145/800049.801803
http://dx.doi.org/10.1145/302979.303060
http://dx.doi.org/10.1145/2501988.2502036
http://dl.acm.org/citation.cfm?id=2818754.2818784
http://dx.doi.org/10.1145/1124772.1124794

	Introduction
	Related Work
	Text Editing Practices
	Tools to Support Text Editing
	Code Editing Practices
	Tools to Support Code Editing
	Theoretical Foundations

	Study 1: Interview with Legal Professionals
	Participants
	Procedure
	Data Collection
	Data Analysis


	Results and Discussion
	Maintaining term consistency
	Managing dependencies by hand
	Reusing content
	Visiting and revisiting document locations
	Managing annotations
	Collaboration
	Summary

	Textlets: Reifying Selection
	Textlets for Consistent Reuse
	Textlets for Term Consistency
	Textlets for Reference Consistency
	Textlets for Length Constraints
	Textlets for Exploratory Writing
	Generative Power

	Proof-of-Concept Implementation
	Overall Interface
	Countlets
	Variantlets
	Numberlets
	Searchlets
	Navigating Occurrences
	Replacing Text


	Study 2: Search-and-Replace Textlet
	Participants
	Apparatus
	Procedure
	Data Collection

	Results and Discussion
	Replace-all-then-correct Strategy
	Persistent Selection: Keep Track, Individual Undo
	Representing Constraints
	Feedback for countlet and variantlet

	Scalability and Limitations
	Summary

	Conclusion and Future Work
	Acknowledgments
	References 

