Tight Nonparametric Convergence Rates for Stochastic Gradient Descent under the Noiseless Linear Model - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2020

Tight Nonparametric Convergence Rates for Stochastic Gradient Descent under the Noiseless Linear Model

Résumé

In the context of statistical supervised learning, the noiseless linear model assumes that there exists a deterministic linear relation $Y = \langle \theta_*, X \rangle$ between the random output $Y$ and the random feature vector $\Phi(U)$, a potentially non-linear transformation of the inputs $U$. We analyze the convergence of single-pass, fixed step-size stochastic gradient descent on the least-square risk under this model. The convergence of the iterates to the optimum $\theta_*$ and the decay of the generalization error follow polynomial convergence rates with exponents that both depend on the regularities of the optimum $\theta_*$ and of the feature vectors $\Phi(u)$. We interpret our result in the reproducing kernel Hilbert space framework; as a special case, we analyze an online algorithm for estimating a real function on the unit interval from the noiseless observation of its value at randomly sampled points. The convergence depends on the Sobolev smoothness of the function and of a chosen kernel. Finally, we apply our analysis beyond the supervised learning setting to obtain convergence rates for the averaging process (a.k.a. gossip algorithm) on a graph depending on its spectral dimension.
Fichier principal
Vignette du fichier
neurips_2020.pdf (950.46 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02866755 , version 1 (15-06-2020)
hal-02866755 , version 2 (26-10-2020)

Identifiants

Citer

Raphaël Berthier, Francis Bach, Pierre Gaillard. Tight Nonparametric Convergence Rates for Stochastic Gradient Descent under the Noiseless Linear Model. 2020. ⟨hal-02866755v1⟩
5146 Consultations
180 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More