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Abstract
Computation and decision problems related to argumentation frameworks with

higher-order attacks have not received a lot of attention so far. This paper is a step
towards these issues: it investigates the complexity of decision problems associ-
ated with RAF, and with another kind of framework with higher-order attacks, the
Argumentation Frameworks with Recursive Attacks (AFRA). This investigation
shows that, for the higher expressiveness offered by these enriched systems, the
complexity is the same as for classical argumentation frameworks.
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Chapter 1

Introduction

Argumentation, by considering arguments and their interactions, is a way of rea-
soning that has proven successful in many contexts, multi-agent applications for
instance (e.g. [5]). Considering a formal representation of this reasoning model,
argumentation frameworks with higher-order attacks (e.g. [4, 15, 16, 2, 3]) are a
rich extension of classical Argumentation Framework (AF) by [11]: not only they
consider arguments and attacks between arguments, but also attacks on attacks.

Among these frameworks, Argumentation Frameworks with Recursive At-
tacks (AFRA) by [2, 3] are higher-order systems that produce acceptable sets of
arguments and/or attacks using the definition of a specific defeat relation. If the
base modelling ingredients are the same, but without the introduction of a spe-
cific defeat relation, Recursive Argumentation Framework (RAF) by [6] propose
a direct approach regarding acceptability, which outputs sets of arguments and/or
attacks (defined under the notion of structure), keeping the full expressiveness of
higher-order attacks. The main difference between these two approaches is the
way that is chosen for expressing the impact of an attack that can be in turn at-
tacked. In the AFRA approach, the link between the attack and its source is lost
and some drawbacks appear implying the fact that AFRA are not a conservative
generalisation of AF. That is not the case in the RAF approach and this character-
istics makes RAF particularly interesting to consider.

Classical decision problems for AF are adapted to AFRA and RAF, and their
complexity is investigated. It shows that, even if the expressive power of the
frameworks with higher-order attacks is higher, the complexity keeps the same as
in AF.
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Chapter 2

Abstract Argumentation
Frameworks

2.1 Dung’s abstract argumentation framework

In [11], Dung introduced a framework to represent argumentation in an abstract
way.

Definition 1 (Dung’s abstract argumentation framework [11]) A Dung’s abstract
Argumentation Framework (AF for short) is a pair Γ = 〈A,K〉 where A is a set of
arguments and K ⊆ A×A is a relation representing attacks over arguments.

Definition 2 (Defeat and acceptability in Dung’s framework) Let Γ= 〈A,K〉 be
an AF and S⊆ A be a set of arguments. An argument a ∈ A is said to be:

• defeated w.r.t. S iff ∃b ∈ S s.t. (b,a) ∈ K.

• accepted w.r.t. S iff ∀(b,a) ∈ K,∃c ∈ S s.t. (c,b) ∈ K.

We define the sets of defeated and accepted arguments w.r.t. S as follows:

De f (S) = {a ∈ A|∃b ∈ S s.t. (b,a) ∈ K}

Acc(S) = {a ∈ A|∀(b,a) ∈ K,∃c ∈ S s.t. (c,b) ∈ K}
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Several “semantics” defining sets of arguments (so called “extensions”) solv-
ing the argumentation have been defined on Dung’s framework. Here are some of
them.

Definition 3 (Semantics of Dung’s AF) Let Γ = 〈A,K〉 be an AF and S⊆ A be a
set of arguments. S is said to be an extension:

1. Conflict-free iff S∩De f (S) =∅.

2. Naive iff it is a ⊆-maximal conflict-free extension.

3. Admissible iff it is conflict-free and S⊆ Acc(S).

4. Complete iff it is conflict-free and S = Acc(S).

5. Preferred iff it is a ⊆-maximal admissible extension.

6. Grounded iff it is a ⊆-minimal complete extension.

7. Semi-stable iff it is a complete extension such that S∪De f (S) is maximal
w.r.t. ⊆.

8. Stable iff it is conflict-free and S∪De f (S) = A.

Given an AF Γ, we denote by σ(Γ) the set of extensions of Γ under semantics
σ , with σ being either the complete (co), the grounded (gr), the stable (st), the
semi-stable (eg) or the preferred (pr) semantics.

2.2 AFRA: Argumentation framework with recur-
sive attacks

Definition 4 (AFRA [1]) An Argumentation Framework with Recursive Attacks
(AFRA) is a pair Γ = 〈A,K〉 where A is a set of arguments and K is a set of
attacks, namely pairs (a,x) such that a ∈ A and x ∈ (A∪K).

Given an attack α = (a,x), we say that a is the source of α (denoted as s(α))
and x is the target of α (denoted as t(α)).

Definition 5 (Direct defeat [1]) Let Γ = 〈A,K〉 be an AFRA, α ∈ K be an attack
and x ∈ (A∪K) be an argument or an attack. We say that α directly defeats x iff
t(α) = x.
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Definition 6 (Indirect defeat [1]) Let Γ = 〈A,K〉 be an AFRA, α ∈ K be an at-
tack and β ∈ K be an attack. We say that α indirectly defeats β iff t(α) = s(β ).

Definition 7 (Defeat [1]) Let Γ = 〈A,K〉 be an AFRA, α ∈ K be an attacks and
x ∈ (A∪K) be an argument or an attack. We say that α defeats β , denoted as
α →K x, iff α directly or indirectly defeat β .

Let S be a subset of the elements of Γ. We denote by AFRA-De f (S) = {x|x ∈
(A∪K),∃α ∈ S s.t. α →K x} the set of all the elements defeated by S.

Definition 8 (Acceptability [1]) Let Γ = 〈A,K〉 be an AFRA, S ⊆ (A∪K) be a
subset of the elements of Γ and x ∈ (A∪K) be an argument or an attack. We
say that x is acceptable w.r.t. S (or defended by S) iff ∀α ∈ K s.t. α →K x, ∃β ∈
S s.t. β →K α .

Let S be a subset of the elements of Γ. We denote by AFRA-Acc(S) = {x|x ∈
(A∪K),∀α ∈ K s.t. α →K x, ∃β ∈ S s.t. β →K α} the set of all the elements
defended by S.

As for Dung’s Abstract Argumentation Framework, based on this notion of
acceptability, semantics have been defined for AFRAs. We will focus only on
semantics we are interested in although much semantics have been defined.

Definition 9 (AFRA Semantics [1]) Let Γ = 〈A,K〉 be an AFRA and S⊆ (A∪K)
be a subset of its elements. S is said to be an extension:

1. AFRA-conflict-free iff S∩AFRA-De f (S) =∅.

2. AFRA-admissible iff it is AFRA-conflict-free and S⊆ AFRA-Acc(S).

3. AFRA-complete iff it is AFRA-conflict-free and S = AFRA-Acc(S).

4. AFRA-preferred iff it is a ⊆-maximal AFRA-admissible extension.

5. AFRA-grounded iff it is a ⊆-minimal AFRA-complete extension.

6. AFRA-stable iff it is AFRA-conflict-free and S∪AFRA-De f (S) = (A∪K).

7. AFRA-semi-stable extension iff it is an AFRA-complete extension such that
S∪AFRA-De f (S) is maximal w.r.t. ⊆.
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Given an AFRA Γ, we denote by σ(Γ) the set of extensions of Γ under seman-
tics σ , with σ being either the complete (co), the grounded (gr), the stable (st),
the semi-stable (ss) or the preferred (pr) semantics.

There exists a way to express AFRAs as AFs.

Definition 10 (AFRA expressed as AF [1]) Let Γ= 〈A,K〉 be an AFRA. The cor-
responding AF of Γ, Γ̃ = 〈Ã, K̃〉 is defined as following:

• Ã = A∪K

• K̃ = {(a,b)|(a,b) ∈ (A∪K)2 and a→K b}

In [1] has been shown a very important result concerning AFRAs and their
corresponding AFs: there exists a one-to-one correspondence between extensions
in AFRAs and their corresponding AFs for some semantics. Here we will focus
on the semantics we are interested in but the result shown in [1] concerned much
semantics.

Proposition 1 (Semantics correspondence: AFRA expressed as AF [1]) Let Γ=
〈A,K〉 be an AFRA and Γ̃ = 〈Ã, K̃〉 its corresponding AF. Let S⊆ A∪K.

• S is an AFRA-complete extension for Γ iff S is a complete extension for Γ̃.

• S is an AFRA-preferred extension for Γ iff S is a preferred extension for Γ̃.

• S is an AFRA-grounded extension for Γ iff S is a grounded extension for Γ̃.

• S is an AFRA-stable extension for Γ iff S is a stable extension for Γ̃.

• S is an AFRA-semi-stable extension for Γ iff S is a semi-stable extension for
Γ̃.

Note that this correspondence does not correspond to a conservative general-
ization of AF. Indeed, if we consider for instance a very simple example of AFRA
with only two attacks: α from a to b and β from b to c (so this AFRA is an AF).
Then the set {α,c} is an AFRA-admissible set whereas if we read this AFRA as
an AF c cannot be accepted without a. This is due to the fact that the link between
an attack and its source is broken in the AFRA semantics.
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2.3 RAF: Recursive argumentation framework
To the best of our knowledge, the first work where the idea of higher-order in-
teractions appears is [4]. Then many different works followed. For instance,
in [15, 16], second-order attacks are used in order to explicitly represent the im-
pact of the preferences between arguments in the argumentation framework. Then
[2, 3] introduce Argumentation Frameworks with Recursive Attacks (AFRA) that
take into account the attacks on attacks and propose some semantics. A more re-
cent variant of AFRA is given in [6] with other semantics and called Recursive
Argumentation Framework (RAF).

RAF semantics need neither the introduction of additional elements in the
framework, nor its transformation into another framework (as it is done, for in-
stance, in [2, 3] that either creates a new defeat relation, or uses a “flattening
process” that transforms an AFRA into a Dung AF and then uses AF semantics).
A common point between RAF and AFRA is the fact that semantics proposed
in [6] produce sets of arguments and/or attacks and not only sets of arguments (as
it is done for instance in [14]). Note that all definitions and propositions related
to RAF are issued from [6, 7], except for the semi-stable semantics which is a
contribution of this paper.

Definition 11 (Recursive argumentation framework [6]) A recursive argumen-
tation framework Γ = 〈A,K,s, t〉 is a quadruple where A and K are (possibly in-
finite) disjoint sets respectively representing arguments and attack names, and
where s : K→ A and t : K→ A∪K are functions respectively mapping each attack
to its source and its target.

Definition 12 (Structure [6]) A pair U= 〈S,Q〉 is said to be a structure of some
Γ = 〈A,K,s, t〉 if it satisfies: S⊆ A and Q⊆ K.

Notice that by x ∈ U we mean x ∈ S∪Q.

Definition 13 (Defeat and Inhibition [6]) Let U= 〈S,Q〉 be a structure.
We denote by RAF-De f (U) the set of all arguments defeated by U, defined by:

RAF-De f (U) = {a ∈ A|∃α ∈ Q s.t. s(α) ∈ S and t(α) = a}

We denote by RAF-Inh(U) the set of all attacks inhibited by U, defined by:

RAF-Inh(U) = {α ∈ K|∃β ∈ Q s.t. s(β ) ∈ S and t(β ) = α}
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Definition 14 (Acceptability [6]) An element x∈ (A∪K) is said to be acceptable
w.r.t. some structure U iff every attack α ∈ K with t(α) = x satisfies one of the
following conditions: (i) s(α) ∈ RAF-De f (U) or (ii) α ∈ RAF-Inh(U).

By RAF-Acc(U) we denote the set containing all acceptable arguments and
attacks with respect to U.

For any pair of structures U= 〈S,Q〉 and U′ = 〈S′,Q′〉, we write U′ v U′ iff
(S∪Q) ⊆ (S′ ∪Q′) and we write U var U

′ iff S ⊆ S′. As usual, we say that a
structure U is v-maximal (resp. var-maximal) iff every U′ that satisfies U v U′

(resp. Uvar U
′) also satisfies U′ v U (resp. U′ var U).

Definition 15 (Structure semantics [6, 7]) Let U= 〈S,Q〉 be a structure over some
RAF Γ = 〈A,K,s, t〉. U is said to be:

1. RAF-conflict-free iff S∩RAF-De f (U) =∅ and Q∩RAF-Inh(U) =∅.

2. RAF-admissible iff it is RAF-conflict-free and (S∪Q)⊆ RAF-Acc(U).

3. RAF-complete iff it is RAF-conflict-free and (S∪Q) = RAF-Acc(U).

4. RAF-preferred iff it is a v-maximal RAF-admissible structure.

5. RAF-grounded iff it is a v-minimal RAF-complete structure.

6. RAF-arg-preferred iff it is a var-maximal RAF-admissible structure.

7. RAF-stable iff S = A\RAF-De f (U) and Q = K \RAF-Inh(U).

In [6], Proposition 2 and 3 and Theorem 1 have been proven.

Proposition 2 ([6]) There is always a unique RAF-grounded structure.

Proposition 3 ([6]) The set of all RAF-admissible structures forms a complete
partial order with respect to v. Furthermore, for every RAF-admissible structure
U, there exists a RAF-preferred (and a RAF-arg-preferred ) U′ such that Uv U′.

Theorem 1 ([6]) The following assertions hold:

• every RAF-complete structure is also RAF-admissible,

• every RAF-preferred structure is also RAF-complete,
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• every RAF-stable structure is also RAF-preferred.

Another semantics has been defined in [10]: the RAF-semi-stable semantics.

Definition 16 ([10]) Let Γ = 〈A,K,s, t〉 be a RAF and U= 〈S,Q〉 be some struc-
ture over it. U is said to be a RAF-semi-stable structure iff U is a RAF-complete
structure such that:

S∪Q∪RAF-De f (U)∪RAF-Inh(U) is maximal w.r.t. to inclusion.

Theorem 2 ([10]) The following assertions hold:

1. Every RAF-stable structure is a RAF-semi-stable structure.

2. Every RAF-semi-stable structure is a RAF-preferred structure.

Theorem 3 ([10]) Let Γ = 〈A,K,s, t〉 be a RAF. If there exists a RAF-stable struc-
ture, then the RAF-semi-stable structures coincide with the RAF-stable structures.

Moreover, it is proven that RAF are a conservative generalization of AF since
there is a one-to-one correspondence between the structures of a RAF without
recursive attacks and their corresponding Dung’s extensions (the proof is given
for the RAF-complete, RAF-grounded, RAF-preferred and RAF-stable semantics
in [6] then in [10] for the RAF-semi-stable semantics).
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Chapter 3

Computational complexity theory

In this section is given an overview of computational complexity theory. Key
notions are put forward nevertheless by sake of time it doesn’t go into details. For
a more complete view on computational complexity theory see [8] and for deeper
explanation on Dung’s argumentation framework complexities see [12].

3.1 Principles

Computational complexity theory is a field of computer science whose purpose is
to cluster computational problems into “complexity classes”. Problems are gath-
ered according to some criterion on the resources required to solve them. Gener-
ally the measure used to differentiate them is the time (i.e. the number of steps
taken by an algorithm) needed or the space (i.e. the amount of memory) needed
to solve them, but a clustering could be based on any other resource criterion. In
this report, we will consider only time complexity classes.

We say that a problem P belongs to the complexity class C (or P has com-
plexity C ) if there exists an algorithm that solve P satisfying the resource re-
quirements of C . Basically, the more a problem requires resources the more it
will be considered has difficult.

In order to rank them in a fair way and so, form coherent complexity classes,
problems are considered in their generic form. This means that the comparison
is not made on specific “problem instances” (i.e. the problem applied to concrete
data inputs). The resource requirements are expressed according to the problem
“input size”.

Nevertheless, considering problem’s generic form is not sufficient for a proper
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comparison. Indeed, one can say that solving a given problem on such or such ma-
chines (that differ for example on their software or hardware architecture) would
induce different resource requirements. In order to fix this issues, in computa-
tional complexity theory, we consider that algorithms are executed on some stan-
dard “model of computation”, such as the so-called “(Deterministic) Turing Ma-
chine” introduce by Alan Turing in [17].

For the sake of brevity, we will not explain in details how it works but simply
give the intuition of it. The Turing Machine is an abstract model of computational
machine. It is composed of a tape on which symbols (0 or 1) can read and written
by an head that can move the tape left and right one cell at a time. An algorithm
written for a Turing Machine is simply a set of transition going through some
so-called “states”. A state indicates what to do given the symbol read on the
current tape cell. What is initially written on the tape corresponds to the input
(i.e. an encoding of it using the Turing Machine symbols). Given an input, the
number of steps made by a Turing Machine to execute an algorithm is used as
a time measurement and the number of cells used on the tape is used as a space
measurement.

For a particular problem the input size could be expressed with a more under-
standable measure than the encoding size. For example for AFs problems, we can
use the number of arguments of a given AF or the number of attacks.

Now, saying that “a problem P1 has a lower time complexity than another
problem P2” means “for inputs of size n there exists an algorithm that solve
P1 with fewer steps than any other algorithms that solve P2”. Notice that, is
taken into account the number of steps for the worst possible case of input of size
n (i.e. the input of size n that induces the most transitions to solve the problem).
Finally, it is the asymptotic behaviour of P1 and P2 as n grows that is considered.

The comparison method being fair, problems can now be grouped in suitable
complexity classes. Those correspond basically to different orders of magnitude
of steps.

Now let consider the complexity classes of so called “decision problems”.

3.2 Decision problem theory

A decision problem is a type of computation problem that has for output a boolean.
That is, given an input the solution of the problem is whether “yes” (equivalently
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true or 1) or “no” (equivalently false or 0). We said that the problem “accept” or
“reject” the input.

One of the most famous decision problem, for its inportance in computational
complexity theory is the satisfaction problem (so-called SAT problem). It is de-
fined as following :

“Given a propositional formula φ , is φ satisfiable 1 ?”

Decision problems are probably the most studied type of computational prob-
lems. Over the decades a lot complexity classes and hierarchies between them
have been established. Let consider some interesting complexity classes for AF
problems.

3.2.1 Decision time complexity classes

3.2.1.1 Polynomial time: P and L

The polynomial time class P regroups computational problems for which there
exists an algorithm that solve them in a number of steps that is polynomially
related to the size of the input. Problems belonging to this class are considered as
“easy” or “tractable”.

P has a subclass called “logarithmic space” denoted by L that regroups the
problems of P that require an amount of space (excluded the input and the output)
that is logarithmically related to the size of the input.

3.2.1.2 Non-deterministic polynomial time: NP

The non-deterministic polynomial time class NP rely on the notion of witness.

Given an input x, a witness of x can be seen as a potential proof by example that
the answer of the decision problem is positive for x. Let illustrate this considering
the SAT problem. Given a propositional formula φ , a witness of SAT for φ is
an interpretation of φ , i.e. a value assignation of the propositional variables of
φ . Given an input x, a valid witness is a valid proof by example that the decision
problem accepts x.

A problem P is in NP if and only if:

1A propositional formula is said to be satisfiable if there exists a model of it, that is a value
(true or false) assignation of its propositional variables for which φ is true.”
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1. for all instance input x, x has a number of potential witnesses polynomial
w.r.t. |x| (the size of x),

2. each witness of a given input can be verified in a polynomial number of
steps w.r.t. |x|,

3. given an input x, P accepts x if and only if x has a valid witness.

As an example, the SAT problem is in NP.

NP can also be defined as the set of problems which can be solved in polyno-
mial time on a non-deterministic Turing Machine.

The difference between a Deterministic Turing Machine and a non-deterministic
one is that for each step several transitions are possible simultaneously. To illus-
trate this, one can imagine that at each step a new Deterministic Turing Machine
could be added (a copy of the machine in its current state) for the problem solv-
ing. While a Deterministic Turing Machine follows a single computation path, a
non-deterministic Turing Machine one follow a computation tree. A given deci-
sion problem accepts x if there exists a non deterministic algorithm such that at
least one computation branch followed by the non-deterministic Turing Machine
accepts the input.

NP problems are thus computational problems for which there exists a non-
deterministic algorithm that can solve them on non-deterministic Turing Machine
and doing so, following a computation tree having a polynomial depth and a num-
ber of leaves relative to the input size.

NP is thus the class of computational problems for which a solution (a pro-
posed proof by example) can be verified easily. Although there is no formal proof
(at the time of writing) that P 6= NP, we will consider that this inequation holds in
the following as it is the standard assumption.

3.2.1.3 The coNP class

The coNP class is class regrouping the complement problems of those of NP. As for
NP, coNP rely on same notion of witness and the same witness properties, i.e. for
each input x the number of witnesses is polynomial w.r.t. |x| and each witness of
x is verifiable in an amount of steps polynomial w.r.t. |x|. The difference between
NP and coNP is that coNP regroups the decision problems for which we want all
the witnesses for a certain property to be invalid.

As illustration, the coNP problem relative to the SAT problem is the following
one:
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“Given a propositional formula φ , is φ unsatisfiable 2 ?”

Here the property of interest is the satifiability of φ . UNSAT will accept φ if
and only if no witness of φ (i.e. no value assignation of its propositional variables)
makes φ satisfied.

3.2.1.4 The polynomial-time hierarchy

The notion of “oracle” is very important to understand what is the polynomial-
time hierarchy. An oracle is a black-box abstract machine that can solve a prob-
lem of a certain complexity class in one single step. Complexity classes can be
expressed via this notion.

Given a problem P , we say that P is in the complexity class C D , if there
exists an algorithm solving P with a complexity C and calling an oracle that
solves in one operation a sub-problem of complexity class D .

As an example, let consider the ∃2QBF problem. Let φ be a propositional
formula over the set of propositional variables Ω. Let v1 ⊂ Ω and v2 ⊂ Ω be
two subsets of propositional formula such that {v1,v2} is a partition3 of Ω. The
∃2QBF is the following decision problem:

“∃v1 such that ∀v2, φ is true?”

Which means:

“Does there exist a valuation of the variables of v1 such that for all valuations of
the variables of v2, φ is true?”

Let propose a non-deterministic algorithm to solve the ∃2QBF problem. Let
O be an oracle witnessing that a given propositional formula is valid4. O is in
coNP. Indeed, to decide if φ is valid is equivalent to decide if ¬φ is unsatisfiable.
The algorithm A that non-deterministically guesses a valuation of v1 and then
verifies if for all valuations of v2 the combined valuations (of v1 and v2) are models
of φ , can be viewed an NP algorithm using O as oracle. As A solves ∃2QBF, we
have ∃2QBF belonging to the class NPcoNP.

The polynomial hierarchy, denoted by PH, is a hierarchy of complexity classes
defined by oracles defined as following:

2A propositional formula is said to be satisfiable iff there exists a model of it.
3Ω = v1∪ v2 and v1∩ v2 =∅.
4A formula φ is said to be valid if all valuations of its propositional variables are models of φ ,

i.e. φ is always true.
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k

The polynomial hierarchy is the union of all these complexity classes:

PH =
∞⋃

k=0
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k =
∞⋃

k=0
ΠP

k

Figure 3.1 illustrates this hierarchy.
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coNP= ΠP
1

ΘP
2

ΣP
2

ΠP
2

ΘP
3

ΣP
3

ΠP
3

...

Figure 3.1: Polynomial hierarchy

Notice that calling a polynomial oracle from a non-deterministic algorithm
doesn’t add any complexity. As a consequence, we especially have NPP = NP.

Notice also that using as oracle, in an algorithm, a NP based oracle or coNP based
oracle of same class level (i.e. ΣP

k or ΠP
k for a given level k) doesn’t matter. In-

deed the answer of one of these oracles can be switched to correspond to the one
solving the complementary problem.

As a consequence, we especially have NPcoNP = NPNP = ΣP
2. And so, we have

∃2QBF belonging to ΣP
2.

3.2.1.5 The difference class: DP

The so-called “difference class” denoted by DP is a kind of conjunction of the
NP and coNP classes. A problem P belongs to DP if and only if it is composed
of two sub-problems, P1 belonging to NP and P2 belonging to coNP, and for all
input x, x is accepted by P if and only if x is accepted by P1 and P2.

As an illustration, the SAT-UNSAT problem belongs to DP. It is defined as
following:
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“Given a couple propositional formulas 〈φ ,ψ〉, is φ satisfiable and ψ

unsatisfiable?”

Following the polynomial hierarchy introduced in the previous section, the
DP-hierarchy is defined as following :

DPk = ΣP
k ∧ΠP

k , with k ∈ J1,+∞J

Notice that “∧” means “conjunction of problems” as explained above. It is not
the intersection of sets of problems.

3.2.2 Problem reduction, completeness and hardness

3.2.2.1 Problem reduction

Let P1 and P2 be to decision problems. We denote by IP1 and IP2 the sets of
all the instances of P1 and P2. Let f : IP1 → IP2 be an efficient5 procedure that
transforms any instance of P1 into one instance of P2 such that for all x ∈ IP1 ,
P1 accepts x iff P2 accepts f (x).

If such a procedure exists, it means that any algorithm solving P2 could be
used to solve P1 by firstly converting P1 instances into P2 ones.

Now if it holds that P2 is in some complexity class C , it means that P1 is also
in C considering that f is an efficient problem transformer. Likewise if P2 is not
in C , then P1 is not in C .

In computational complexity theory, polynomial reduction are considered as
efficient. Polynomial reductions are thus applicable to problems in P or complex-
ity classes above. We denote by P1 ≤P P2 the relation expressing that P1 is
polynomially reducible to P2, and by P1 ≤ f

P P2 that the relation holds by using
f . Usually, we use polynomial reductions in P while studying problems in NP and
harder complexity classes, and log-space reductions, that is procedures belonging
to L (denoted by ≤L), while studying complexity classes within P.

3.2.2.2 Completeness and hardness

We consider that a problem is hard for a certain class C if an efficient algorithm
solving it could be used to efficiently solve, by mean of reductions, all the prob-
lems in C . It is formally defined as following: let P1 be a problem of complexity

5The complexity of f should be “easy” compared to the complexity of solving P1 or P2.
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class C . P1 is said to be hard w.r.t. C , denoted by C -hard, if:

∀P2 ∈ C , P2 ≤P P1

A problem P is said to be complete for C , denoted by C -c, if P ∈ C and
P is C -hard.
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Chapter 4

Decision problems in Abstract
Argumentation

4.1 Problems definition

As mentioned in Section 3.2, in computational complexity theory, a decision prob-
lem is a problem that can be posed as a yes-no question, given some input. Here
bellow is a list of interesting abstract argumentation ones expressed for Dung’s
Abstract Argumentation Framework.

Definition 17 (Decision Problems in Abstract Argumentation)

• Credulous Acceptance AF-Credσ : Given an AF Γ = 〈A,K〉 and an argu-
ment a ∈ A. Is a contained in some S ∈ σ(Γ) ?

• Skeptical Acceptance AF-Skepσ : Given an AF Γ = 〈A,K〉 and an argument
a ∈ A. Is a contained in each S ∈ σ(Γ) ?

• Verification of an extension AF-Verσ : Given an AF Γ = 〈A,K〉 and a set of
arguments S⊆ A. Is S ∈ σ(Γ) ?

• Existence of an extension AF-Existsσ : Given an AF Γ = 〈A,K〉. Is σ(Γ) 6=
∅ ?

• Existence of a non-empty extension AF-Exists¬∅σ : Given an AF Γ = 〈A,K〉.
Does there exist a set S 6=∅ such that S ∈ σ(Γ) ?
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• Uniqueness of a solution AF-Uniqueσ : Given an AF Γ = 〈A,K〉. Is there a
unique set S ∈ σ(Γ), i.e. σ(Γ) = {S} ?

In Sections 4.3 and 4.4 those decision problems will be redefined to match
AFRA and RAF specificities but the idea behind them stays the same.

4.2 Complexities in Dung’s Abstract Argumentation
Table 4.1 gives the complexity class of the mentioned decision problems for the
grounded, complete, preferred and stable semantics.

The table is the result of numerous works (see [13] for a synthesis of these
works).

σ AF-
Credσ Skepσ Verσ Existsσ Exists¬∅σ Uniqueσ

Grounded P-c P-c P-c trivial in L trivial
Complete NP-c P-c in L trivial NP-c coNP-c
Preferred NP-c ΠP

2-c coNP-c trivial NP-c coNP-c
Stable NP-c coNP-c in L NP-c NP-c DP-c

Semi-stable ΣP
2-c ΠP

2-c coNP-c trivial NP-c in ΘP
2

Table 4.1: Complexities of Dung’s Abstract Framework

4.3 Complexities in AFRA
In this section we are going to present AFRA decision problems and study their
complexity. Firstly, we give a definition of them, secondly, we extend Proposi-
tion 1 to encompass the case of the semi-stable semantics, thirdly, we show that
there exists polynomial reductions from AFRAs to AFs and vice versa, and finally
we use these reductions to establish all the complexities in AFRAs for decision
problems and for the semantics we are interested in.

4.3.1 AFRA decision problems
As mentioned earlier, here below are the redefinitions of the AF decision problems
we are interested in.
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Definition 18 (Decision Problems in AFRA)

• Credulous Acceptance AFRA-Credσ : Given an AFRA Γ = 〈A,K〉 and an
element x ∈ A∪K. Is x contained in some S ∈ σ(Γ) ?

• Skeptical Acceptance AFRA-Skepσ : Given an AF Γ = 〈A,K〉 and an ele-
ment x ∈ A∪K. Is x contained in each S ∈ σ(Γ) ?

• Verification of an extension AFRA-Verσ : Given an AFRA Γ = 〈A,K〉 and a
set of elements S⊆ A∪K. Is S ∈ σ(Γ) ?

• Existence of an extension AFRA-Existsσ : Given an AFRA Γ = 〈A,K〉. Is
σ(Γ) 6=∅ ?

• Existence of a non-empty extension AFRA-Exists¬∅σ : Given an AFRA Γ =
〈A,K〉. Does there exist a set S 6=∅ such that S ∈ σ(Γ) ?

• Uniqueness of a solution AFRA-Uniqueσ : Given an AFRA Γ = 〈A,K〉. Is
there a unique set S ∈ σ(Γ), i.e. σ(Γ) = {S} ?

In the discussion section of [12], the authors give the intuition that complex-
ities in AFRA are similar as complexities in AF arguing that AFRA extend AF.
Since AFRA are not a conservative generalization of AF,1 this intuition needs a
more formal proof and it is that we propose here, giving the corresponding poly-
nomial transformations.

4.3.2 Polynomial reduction: AFRAs and AFs
Let consider the functions Afra2Af that transforms an AFRA into an AF and
Af2Afra that transforms an AF into an AFRA. Note that the first one has been
proposed in Definition 19 of [1] (see Definition 10).

Notice that we denote in the following the set of all possible AFRAs by
“Ωa f ra” and the set of all possible AFs by “Ωa f ”.

Definition 19 ([1]) Let Afra2Af : Ωa f ra→ Ωa f be the function transforming an
AFRA into an AF. Afra2Af is defined as following:

∀ Γ = 〈A,K〉 ∈Ωa f ra, Afra2Af : Γ 7→ Γ̃ = 〈Ã, K̃〉
1The correspondence exists only when we consider the semantics level but it is not satisfied

when we consider for instance the admissibility.
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With: Ã = A∪K and K̃ = {(a,b)|(a,b) ∈ (A∪K)2 and a→K b}

Notice that, in the definition of K̃, the element a is in fact an attack, and so
belongs to K, due to the definition of→K .

The definition of Af2Afra that transforms an AF into an AFRA is trivial since
an AFRA without higher-order attacks is an AF. So it is enough to name the attacks
of the AF in order to obtain an AFRA.

Definition 20 Let Af2Afra : Ωa f → Ωa f ra be the function transforming an AF
into an AFRA. Af2Afra is defined as following:

∀ Γ = 〈A,K〉 ∈Ωa f , Af2Afra : Γ 7→ Γ
′ = (A′,K′)

With: A′ = A and K′ = K

Note that, following the previous definition, there cannot exist direct defeat
between two attacks in the AFRA obtained by Af2Afra.

Using the function Af2Afra, the following propositions hold.

Proposition 4 Let Γ = 〈A,K〉 be an AF and Γ′ = Af2Afra(Γ) be an AFRA (with
Γ′ = 〈A′,K′〉). Let S be a subset of Γ.

S is conflict-free in Γ iff S∪{α ∈ K s.t. s(α) ∈ S} is AFRA-conflict-free in Γ′.

PROOF. Assertion 1: S is conflict-free in Γ implies that S′= S∪{α ∈K s.t. s(α)∈
S} is AFRA-conflict-free in Γ′.

Assume that it is false. So there exist x and y ∈ S′ s.t. x→K y. So x is an attack
whose source s(x) ∈ S and we have two cases:

• either y∈A′, so y∈ S (since y∈ S′) and, by definition of Af2Afra, (s(x),y)∈
K. So there are in S two arguments s(x) and y that are in conflict. Contra-
diction.

• either y∈K′, and s(y)∈ S (since y∈ S′). Since x→K y and since there is no
higher-order attack in Γ′, then x→K s(y). That means that there exists in
Γ an attack (s(x),s(y)). So there are in S two arguments s(x) and s(y) that
are in conflict. Contradiction with S conflict-free.
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Assertion 2: S′= S∪{α ∈K s.t. s(α)∈ S} is AFRA-conflict-free in Γ′ implies
that S is conflict-free in Γ.

Assume that it is false. So there exists x and y ∈ S s.t. α = (x,y) ∈ K. So
in Γ′ there exists α →K y with s(α) = x ∈ S. So α ∈ S′. Moreover, since y ∈ S
then y ∈ S′. And so there are in S′ two elements y and α that are in conflict.
Contradiction with S′ AFRA-conflict-free . �

Proposition 5 Let Γ = 〈A,K〉 be an AF and Γ′ = Af2Afra(Γ) be an AFRA (with
Γ′ = 〈A′,K′〉). Let S be a subset of Γ.

De f (S)∪ {α ∈ K s.t. s(α) ∈ De f (S)} = AFRA-De f (S∪ {α ∈ K s.t. s(α) ∈
S}).

PROOF. Notation: S′ = S∪{α ∈ K s.t. s(α) ∈ S}
Assertion 1: De f (S)∪{α ∈ K s.t. s(α) ∈ De f (S)} ⊆ AFRA-De f (S′).
Two cases are possible:

• Consider x ∈ De f (S). So x is an argument in Γ. Since x ∈ De f (S), ∃α =
(a,x)∈K s.t. a∈ S. So we have in Γ′ the defeat: α→K x with the source of
α that belongs to S. So α ∈ S′ and α defeats x in Γ′. So x ∈ AFRA-De f (S′).

• Consider now x∈ {α ∈K s.t. s(α)∈De f (S)}. So x is an attack in K whose
source belongs to De f (S). So ∃α = (a,s(x)) ∈ K s.t. a ∈ S. So we have in
Γ′ the defeat: α→K x with the source of α that belongs to S. So α ∈ S′ and
α defeats x in Γ′. So x ∈ AFRA-De f (S′).

Assertion 2: De f (S)∪{α ∈ K s.t. s(α) ∈ De f (S)} ⊇ AFRA-De f (S′).
Consider x ∈ AFRA-De f (S′). Two cases are possible:

• x∈ A′. x is defeated in Γ′, so ∃α ∈K′ s.t. α→K x and α ∈ S′ (so s(α)∈ S).
So we have the following attack in Γ: s(α) attacks x. So, since s(α) ∈ S, we
have x ∈ De f (S). Thus x ∈ De f (S)∪{α ∈ K s.t. s(α) ∈ De f (S)}.

• x ∈ K′. x is an attack. Since x ∈ AFRA-De f (S′), ∃α ∈ K′ s.t. α →K x
(indirect defeat) and α ∈ S′ (so s(α) ∈ S). So we have the following attack
in Γ: s(α) attacks s(x). So, since s(α) ∈ S, we have s(x) ∈ De f (S) and
so x ∈ {α ∈ K s.t. s(α) ∈ De f (S)}. Thus x ∈ De f (S)∪{α ∈ K s.t. s(α) ∈
De f (S)}.
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Proposition 6 Let Γ = 〈A,K〉 be an AF and Γ′ = Af2Afra(Γ) be an AFRA (with
Γ′ = 〈A′,K′〉). Let S be a subset of Γ.

Acc(S)∪{α ∈K s.t. s(α)∈ Acc(S)}= AFRA-Acc(S∪{α ∈K s.t. s(α)∈ S}).

PROOF. Notation: S′ = S∪{α ∈ K s.t. s(α) ∈ S}
Assertion 1: Acc(S)∪{α ∈ K s.t. s(α) ∈ Acc(S)} ⊆ AFRA-Acc(S′).
Two cases are possible:

• Consider x ∈ Acc(S). So x is an argument in Γ. If it is unattacked in Γ then
it is undefeated in Γ′ and so x ∈ AFRA-Acc(S′). If it is attacked in Γ, then,
since x∈ Acc(S), ∀α = (a,x)∈K, ∃β = (b,a)∈K s.t. b∈ S. So we have in
Γ′ the sequence of defeats: β →K α→K x with the source of β that belongs
to S. So β ∈ S′ and β defends x against α in Γ′. So x ∈ AFRA-Acc(S′).

• Consider now x ∈ {α ∈ K s.t. s(α) ∈ Acc(S)}. So x is an attack in K whose
source belongs to Acc(S). If this source is unattacked in Γ then x is unde-
feated in Γ′ and so x ∈ AFRA-Acc(S′). If this source is attacked in Γ then,
since it belongs to Acc(S), ∀α = (a,s(x)) ∈ K, ∃β = (b,a) ∈ K s.t. b ∈ S.
So we have in Γ′ the sequence of defeats: β →K α →K x with the source
of β that belongs to S. So β ∈ S′ and β defends x against α in Γ′. So
x ∈ AFRA-Acc(S′).

Assertion 2: Acc(S)∪{α ∈ K s.t. s(α) ∈ Acc(S)} ⊇ AFRA-Acc(S′).
Consider x ∈ AFRA-Acc(S′). Two cases are possible:

• x ∈ A′. If x is undefeated in Γ′ then it is unattacked in Γ and so x ∈ Acc(S).
If x is defeated in Γ′ then, since x ∈ AFRA-Acc(S′), ∀α ∈ K′ s.t. α →K x,
∃β ∈ S′ s.t. β →K α (indirect defeat). Note that s(β ) ∈ S. So in Γ, we have
the following sequence of attacks: s(β ) attacks s(α) that attacks x, for each
α attacking x. So, since s(β ) ∈ S, we have x ∈ Acc(S). In both cases, we
have x ∈ Acc(S)∪{α ∈ K s.t. s(α) ∈ Acc(S)}.
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• x ∈ K′. x is an attack. If x is undefeated in Γ′ that means that its source s(x)
is unattacked in Γ and so s(x)∈ Acc(S); in this case, x ∈ {α ∈K s.t. s(α)∈
Acc(S)}. If x is defeated in Γ′ then, since x ∈ AFRA-Acc(S′), ∀α ∈ K′

s.t. α →K x (indirect defeat), ∃β ∈ S′ s.t. β →K α (indirect defeat). Note
that s(β ) ∈ S. So in Γ, we have the following sequence of attacks: s(β ) at-
tacks s(α) that attacks s(x), for each α attacking the source of x. So, since
s(β ) ∈ S, we have s(x) ∈ Acc(S) and so x ∈ {α ∈ K s.t. s(α) ∈ Acc(S)}. In
both cases, we have x ∈ Acc(S)∪{α ∈ K s.t. s(α) ∈ Acc(S)}.

�

Proposition 7 Let Γ = 〈A,K〉 be an AF and Γ′ = Af2Afra(Γ) be an AFRA (with
Γ′ = 〈A′,K′〉). Let S be an extension of Γ.

For each semantics σ ∈ {complete, semi-stable, stable, preferred, grounded},
we have: S is a σ -extension of Γ iff S∪{α ∈ K s.t. s(α) ∈ S} is a σ -extension of
Γ′.

PROOF. Notation: S′ = S∪{α ∈ K s.t. s(α) ∈ S}
Assertion 1: S is a complete-extension of Γ iff S′ is a complete-extension of Γ′.

S is a complete-extension of Γ iff S is conflict-free and S = Acc(S).
Following Proposition 4, S is conflict-free iff S ∪ {α ∈ K s.t. s(α) ∈ S} is

AFRA-conflict-free.
Following Proposition 6 and S = Acc(S), we have AFRA-Acc(S′) = Acc(S)∪

{α ∈ K s.t. s(α) ∈ Acc(S)} = S∪{α ∈ K s.t. s(α) ∈ S} = S′. Moreover, if we
consider that S′ = AFRA-Acc(S′), and using Proposition 6, we have S∪ {α ∈
K s.t. s(α) ∈ S}= Acc(S)∪{α ∈ K s.t. s(α) ∈ Acc(S)} and so S = Acc(S).

Assertion 2: S is a preferred-extension of Γ iff S′ is a preferred-extension of
Γ′.

That equivalence follows directly from Assertion 1 and the fact that a preferred
extension is a maximal complete extension.

Assertion 3: S is a grounded-extension of Γ iff S′ is a grounded-extension of
Γ′.

23



That equivalence follows directly from Assertion 1 and the fact that the grounded
extension is the minimal complete extension.

Assertion 4: S is a stable-extension of Γ iff S′ is a stable-extension of Γ′.

Following Proposition 4, S is conflict-free in Γ iff S∪{α ∈ K s.t. s(α) ∈ S} is
AFRA-conflict-free in Γ′.

Then, we have:
S∪De f (S) = A
iff S∪De f (S)∪{α ∈ K s.t. s(α) ∈ S}= A∪{α ∈ K s.t. s(α) ∈ S}
iff S′∪De f (S) = A∪{α ∈ K s.t. s(α) ∈ S}
iff S′∪De f (S)∪{α ∈ K s.t. s(α) ∈ De f (S)}=

A∪{α ∈ K s.t. s(α) ∈ S}∪{α ∈ K s.t. s(α) ∈ De f (S)}
iff (since Proposition 5) S′∪AFRA-De f (S′) =

A∪{α ∈ K s.t. s(α) ∈ S}∪{α ∈ K s.t. s(α) ∈ De f (S)}
iff S′∪AFRA-De f (S′) = A∪K
The last equivalence uses either the fact that S∪De f (S) = A (in the sense of⇒),
or the fact that, since S′∪AFRA-De f (S′) = A∪K and following the definition of
S′, the source of any attack s(α) ∈ A′ belongs either to S or to De f (S) (in the
sense of⇐).

So Assertion 4 is satisfied.

Assertion 5: S is an semistable-extension of Γ iff S′ is an semistable-extension
of Γ′.

Following Assertion 1, S is a complete-extension of Γ iff S∪{α ∈K s.t. s(α)∈
S} is a complete-extension of Γ′.

Moreover, we have:
S∪De f (S) is ⊆-maximal wrt A
iff S∪De f (S)∪{α ∈K s.t. s(α)∈ S} is⊆-maximal wrt A∪{α ∈K s.t. s(α)∈ S}
iff S′∪De f (S) is ⊆-maximal wrt A∪{α ∈ K s.t. s(α) ∈ S}
iff S′∪De f (S)∪{α ∈ K s.t. s(α) ∈ De f (S)} is ⊆-maximal wrt

A∪{α ∈ K s.t. s(α) ∈ S}∪{α ∈ K s.t. s(α) ∈ De f (S)}
iff (since Proposition 5) S′∪AFRA-De f (S′) is ⊆-maximal wrt

A∪{α ∈ K s.t. s(α) ∈ S}∪{α ∈ K s.t. s(α) ∈ De f (S)}
iff S′∪AFRA-De f (S′) is ⊆-maximal wrt A∪K
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So Assertion 4 is satisfied.
�

Notice that all two functions: Afra2Af and Af2Afra are trivially polynomial.
More than that they are log-space.

4.3.3 Complexity results
So using the polynomial transformations described in the previous section, the
following propositions hold.

The two first propositions concern the links between decision problems for an
AF and decision problem for its corresponding AFRA.

Proposition 8 Let Γ = 〈A,K〉 be an AF and Γ′ = Af2Afra(Γ) be an AFRA (with
Γ′ = 〈A′,K′〉). Let a ∈ A be an argument in Γ and an element in Γ′, following the
definition of Af2Afra. Let S be an extension of Γ.

For each semantics σ ∈ {complete, semi-stable, stable, preferred, grounded},
we have:

1. AF-Credσ accepts (Γ,a) iff AFRA-Credσ accepts (Γ′,a).

2. AF-Skepσ accepts (Γ,a) iff AFRA-Skepσ accepts (Γ′,a).

3. AF-Verσ accepts (Γ,S) iff AFRA-Verσ accepts (Γ′,S∪{α ∈ K s.t. s(α) ∈
S}.

4. AF-Existsσ accepts Γ iff AFRA-Existsσ accepts Γ′.

5. AF-Exists¬∅σ accepts Γ iff AFRA-Exists¬∅σ accepts Γ.

6. AF-Uniqueσ accepts Γ iff AFRA-Uniqueσ accepts Γ′.

PROOF. Assertion 1: AF-Credσ accepts (Γ,a) iff AFRA-Credσ accepts (Γ′,a).

AF-Credσ accepts (Γ,a) iff ∃S ∈ σ(Γ) s.t. a ∈ S iff (following Proposition 7)
∃S′= S∪{α ∈K s.t. s(α)∈ S}∈σ(Γ′) s.t. a∈ S′ iff AFRA-Credσ accepts (Γ′,a).

Assertion 2: AF-Skepσ accepts (Γ,a) iff AFRA-Skepσ accepts (Γ′,a).
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AF-Skepσ accepts (Γ,a) iff ∀S ∈ σ(Γ), a ∈ S iff (following Proposition 7)
∀S′ = S∪{α ∈ K s.t. s(α) ∈ S} ∈ σ(Γ′), a ∈ S′ iff AFRA-Skepσ accepts (Γ′,a).

Assertion 3: AF-Verσ accepts (Γ,S) iff AFRA-Verσ accepts (Γ′,S ∪ {α ∈
K s.t. s(α) ∈ S}.

AF-Verσ accepts (Γ,S) iff S∈ σ(Γ) iff (following Proposition 7) S′= S∪{α ∈
K s.t. s(α) ∈ S} ∈ σ(Γ′) iff AFRA-Verσ accepts (Γ′,S∪{α ∈ K s.t. s(α) ∈ S}).

Assertion 4: AF-Existsσ accepts Γ iff AFRA-Existsσ accepts Γ′.

AF-Existsσ accepts Γ iff ∃S ∈ σ(Γ) iff (following Proposition 7) ∃S′ = S∪
{α ∈ K s.t. s(α) ∈ S} ∈ σ(Γ′) iff AFRA-Existsσ accepts Γ′.

Assertion 5: AF-Exists¬∅σ accepts Γ iff AFRA-Exists¬∅σ accepts Γ′.

AF-Exists¬∅σ accepts Γ iff ∃S 6=∅ ∈ σ(Γ) iff (following Proposition 7) ∃S′ =
S∪{α ∈ K s.t. s(α) ∈ S} 6=∅ ∈ σ(Γ′) iff AFRA-Exists¬∅σ accepts Γ′.

Assertion 6: AF-Uniqueσ accepts Γ iff AFRA-Uniqueσ accepts Γ′.

AF-Uniqueσ accepts Γ iff ∃!S ∈ σ(Γ) iff (following Proposition 7) ∃!S′ = S∪
{α ∈ K s.t. s(α) ∈ S} ∈ σ(Γ′) iff AFRA-Uniqueσ accepts Γ′. �

Proposition 9 The complexities of AFRA decision problems are at least as hard
as AF ones, for the semantics complete, semi-stable, stable, preferred, grounded.

PROOF. Given that Af2Afra is a polynomial time, log-space function, then ac-
cording to Proposition 8, for each semantics σ ∈ {complete, semi-stable, stable,
preferred, grounded} we have:

• AF-Credσ ≤Af2Afra
L AFRA-Credσ

• AF-Skepσ ≤Af2Afra
L AFRA-Skepσ

• AF-Verσ ≤Af2Afra
L AFRA-Verσ
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• AF-Existsσ ≤Af2Afra
L AFRA-Existsσ

• AF-Exists¬∅σ ≤Af2Afra
L AFRA-Exists¬∅σ

• AF-Uniqueσ ≤Af2Afra
L AFRA-Uniqueσ

�

The two next propositions concern the links between decision problems for an
AFRA and decision problems for its corresponding AF.

Proposition 10 Let Γ = 〈A,K〉 be an AFRA and Γ̃ = Afra2Af(Γ) be an AF (with
Γ̃ = 〈Ã, K̃〉). Let a ∈ A be an element in Γ and an argument in Γ̃, following the
definition of Afra2Af. Let S be an extension of Γ.

For each semantics σ ∈ {complete, semi-stable, stable, preferred, grounded},
we have:

1. AFRA-Credσ accepts (Γ,a) iff AF-Credσ accepts (Γ̃,a).

2. AFRA-Skepσ accepts (Γ,a) iff AF-Skepσ accepts (Γ̃,a).

3. AFRA-Verσ accepts (Γ,S) iff AF-Verσ accepts (Γ̃,S).

4. AFRA-Existsσ accepts Γ iff AF-Existsσ accepts Γ̃.

5. AFRA-Exists¬∅σ accepts Γ iff AF-Exists¬∅σ accepts Γ̃.

6. AFRA-Uniqueσ accepts Γ iff AF-Uniqueσ accepts Γ̃.

PROOF. This proof is trivial considering Proposition 1 (given originally in [1]).
�

Proposition 11 The complexities of AF decision problems are at least as hard as
AFRA ones, for the semantics complete, semi-stable, stable, preferred, grounded.

PROOF. Given that Afra2Af is a polynomial time, log-space function, then ac-
cording to Proposition 10, for each semantics σ ∈ {complete, semi-stable, stable,
preferred, grounded} we have:
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• AFRA-Credσ ≤Afra2Af
L AF-Credσ

• AFRA-Skepσ ≤Afra2Af
L AF-Skepσ

• AFRA-Verσ ≤Afra2Af
L AF-Verσ

• AFRA-Existsσ ≤Afra2Af
L AF-Existsσ

• AFRA-Exists¬∅σ ≤Afra2Af
L AF-Exists¬∅σ

• AFRA-Uniqueσ ≤Afra2Af
L AF-Uniqueσ

�

So using the previous propositions, we have:

Proposition 12 The complexities of AFRA decision problems are the same as
AF ones, for the semantics complete, semi-stable, stable, preferred, grounded,
as stated in Table 4.2.

PROOF. Given that Afra2Af and Af2Afra are polynomial time procedures and
that Propositions 9 and 11 holds, then all the complexities are the same. �

σ AFRA-
Credσ Skepσ Verσ Existsσ Exists¬∅σ Uniqueσ

Grounded P-c P-c P-c trivial in L trivial
Complete NP-c P-c in L trivial NP-c coNP-c
Preferred NP-c ΠP

2-c coNP-c trivial NP-c coNP-c
Stable NP-c coNP-c in L NP-c NP-c DP-c

Semi-stable ΣP
2-c ΠP

2-c coNP-c trivial NP-c in ΘP
2

Table 4.2: Complexities of AFRA

4.4 Complexities in RAF

4.4.1 RAF decision problems
Definition 21 (Decision Problems in RAF)
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• Credulous Acceptance RAF-Credσ : Given an RAF Γ = 〈A,K,s, t〉 and an
element x ∈ A∪K. Is x contained in some U ∈ σ(Γ) ?

• Skeptical Acceptance RAF-Skepσ : Given an AF Γ = 〈A,K,s, t〉 and an el-
ement x ∈ A∪K. Is x contained in each U ∈ σ(Γ) ?

• Verification of an extension RAF-Verσ : Given an RAF Γ = 〈A,K,s, t〉 and
a structure U. Is U ∈ σ(Γ) ?

• Existence of an extension RAF-Existsσ : Given an RAF Γ = 〈A,K,s, t〉. Is
σ(Γ) 6=∅ ?

• Existence of a non-empty extension RAF-Exists¬∅σ : Given an RAF Γ =
〈A,K,s, t〉. Does there exist a structure U 6=∅ such that U ∈ σ(Γ) ?

• Uniqueness of a solution RAF-Uniqueσ : Given an RAF Γ = 〈A,K,s, t〉. Is
there a unique structure U ∈ σ(Γ), i.e. σ(Γ) = {U} ?

In [7], some results about complexities in RAF are given about the RAF-
Credσ problem (for complete, preferred and stable semantics) and about the RAF-
Skepσ problem (for preferred and stable semantics).

So, we here complete these results.

4.4.2 Polynomial reduction: RAFs and AFs
Let consider the functions Af2Raf and Raf2Af that transform respectively a RAF
into an AF and an AF into a RAF in a way that ensures semantics correspendence.
Notice that we denote in the following the set of all possible RAFs by “Ωra f ”.

The definition of Af2Raf that transforms an AF into an RAF is trivial since an
RAF without higher-order attacks is an AF. So it is enough to name the attacks of
the AF in order to obtain an RAF (as we did in the AFRA case).

Definition 22 Let Af2Raf : Ωa f →Ωra f be the function transforming an AF into
an RAF. Af2Raf is defined as following:

∀ Γ = 〈A,K〉 ∈Ωa f , Af2Raf : Γ 7→ Γ
′ = 〈A′,K′,s, t〉

With: A′ = A and K′ = K
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Note that, following the previous definition, no attack can be inhibited (as
none is a target) in the RAF obtained by Af2Raf.

The Raf2Af function needs more explanation than the previous one. Let first
give its definition and then explain what it does.

Definition 23 Let Raf2Af : Ωra f →Ωa f be the function transforming a RAF into
an AF. Raf2Af is defined as following:

∀ Γ = 〈A,K,s, t〉 ∈Ωra f , Raf2Af : Γ 7→ Γ
′ = 〈A′,K′〉

With: A′ = A∪K∪NotA∪NotK ∪AndA,K

K′ = K′1∪K′2∪K′3∪K′4∪K′5
NotA = {¬a|a ∈ A}
NotK = {¬β |β ∈ K}

AndA,K = {a.β |β ∈ K,a = s(β )}
K′1 = {(a,¬a)|a ∈ A}
K′2 = {(β ,¬β )|β ∈ K}
K′3 = {(¬a,a.β )|a ∈ A,s(β ) = a}
K′4 = {(¬β ,a.β )|β ∈ K,s(β ) = a}
K′5 = {(a.β , t(β ))|β ∈ K,s(β ) = a}

Notice that “¬a”, “¬β” and “a.β” are just simple argument names that represent
respectively, the negation of the argument a, the negation of the attack β and the
conjunction of the attack β with its source a.

This transformation represents, with AFs, the semantics of RAF defeat rela-
tion, by mean of additional arguments. Let a be an argument attacking an element
b through the attack α in the RAF Γ. Given that to b be defeated by a, α must be
valid (non-inhibited) and a accepted (not defeated), we represent this by creating
an additional argument named “a.α” accepted in Γ′ only when both a and α are.
To do that we create two others arguments named “¬a” and “¬α”. We create an
attack going from a to ¬a, another going from α to ¬α , two others going from
¬a to a.α and ¬α to a.α , and finally a last one going from a.α to b. An argument
(corresponding to an element of the original RAF) is thus defeated in the resulting
AF if and only if there exists a valid attack in the original RAF whose source is
accepted.
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Example 1 Consider the following RAF:

a

d

γ

α b β c

δ

e

The AF corresponding to this RAF using Raf2Af is:

a

α

d.γ

¬d d

¬γ γ

¬a

¬α

a.α b ¬b

β ¬β

b.β

c

δ ¬δ

b.δ

e

¬e

¬c

Note that the structure U = ({a,b,d},{β ,γ,δ}) is a σ -structure for the RAF
and this structure after removal of the ¬x and the x.y elements is a σ -extension
for the corresponding AF.

Both Raf2Af and Af2Raf are polynomial time and log-space functions.

As mentioned earlier, it is proven that RAF are a conservative generalization
of AF since there is a one-to-one correspondence between the structures of a RAF
without recursive attacks and their corresponding Dung’s extensions (the proof
is given for the RAF-complete, RAF-grounded, RAF-preferred and RAF-stable
semantics in [6] then in [10] for the RAF-semi-stable semantics).

As it has already been done for Af2Raf, let now study the semantics properties
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of the new introduced transformation: Raf2Af.

Let Γ= 〈A,K,s, t〉 be a RAF and Γ′= Raf2Af(Γ) be an AF (with Γ′= 〈A′,K′〉).
Let U= 〈S,Q〉 be a structure in Γ. We denote by “εU” the extension in Γ′ corre-
sponding to a structure U, defined by:

εU = S∪Q∪{¬a ∈ NotA|a ∈ RAF-De f (U)}
∪{¬β ∈ NotK|β ∈ RAF-Inh(U)}
∪{s(β ).β ∈ AndA,K|β ∈ Q,s(β ) ∈ S}

Proposition 13 Let Γ = 〈A,K,s, t〉 be a RAF and Γ′ = Raf2Af(Γ) be an AF (with
Γ′ = 〈A′,K′〉). Let U= 〈S,Q〉 be a structure in Γ. The following properties holds:

1. RAF-De f (U)∪RAF-Inh(U) =

De f (εU)\

 {¬a ∈ NotA|a ∈ εU}
∪{¬β ∈ NotK|β ∈ εU}
∪{s(β ).β ∈ AndA,K|β ∈ De f (εU) or s(β ) ∈ De f (εU)}



2. RAF-Acc(U) = Acc(εU)\

 {¬a ∈ NotA|a ∈ De f (εU)}
∪{¬β ∈ NotK|β ∈ De f (εU)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU}



PROOF. Assertion 1: RAF-De f (U)∪RAF-Inh(U) =

De f (εU)\

 {¬a ∈ NotA|a ∈ εU}
∪{¬β ∈ NotK|β ∈ εU}
∪{s(β ).β ∈ AndA,K|β ∈ De f (εU) or s(β ) ∈ De f (εU)}


• Step 1: RAF-De f (U)∪RAF-Inh(U)⊆

De f (εU)\

 {¬a ∈ NotA|a ∈ εU}
∪{¬β ∈ NotK|β ∈ εU}
∪{s(β ).β ∈ AndA,K|β ∈ De f (εU) or s(β ) ∈ De f (εU)}


Let x∈ RAF-De f (U)∪RAF-Inh(U). There exists thus an attack α ∈Q such
that s(α) ∈ S and t(α) = x. We have thus:

α ∈ εU and s(α) ∈ εU

As a consequence, following the definition of Raf2Af, we have:

¬α ∈ De f (εU) and ¬s(α) ∈ De f (εU)
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And so:
s(α).α ∈ εU

Given that s(α).α ∈ εU, we have so:

x ∈ De f (εU)

Given that x ∈ A∪K, we have, following the definition of Raf2Af: x /∈
(NotA∪NotK ∪AndA,K). As a consequence, we have:

x ∈ De f (εU)\ (NotA∪NotK ∪AndA,K)

We prove so that: RAF-De f (U)∪RAF-Inh(U)⊆

De f (εU)\

 {¬a ∈ NotA|a ∈ εU}
∪{¬β ∈ NotK|β ∈ εU}
∪{s(β ).β ∈ AndA,K|β ∈ De f (εU) or s(β ) ∈ De f (εU)}


• Step 2: RAF-De f (U)∪RAF-Inh(U)⊇

De f (εU)\

 {¬a ∈ NotA|a ∈ εU}
∪{¬β ∈ NotK|β ∈ εU}
∪{s(β ).β ∈ AndA,K|β ∈ De f (εU) or s(β ) ∈ De f (εU)}


Let x∈De f (εU)\

 {¬a ∈ NotA|a ∈ εU}
∪{¬β ∈ NotK|β ∈ εU}
∪{s(β ).β ∈ AndA,K|β ∈ De f (εU) or s(β ) ∈ De f (εU)}

.

Let consider four cases: x ∈ NotA, x ∈ NotK , x ∈ AndA,K and x ∈ A∪K. Let
show that the three first cases are impossible.

– Let suppose that x ∈ NotA with x = ¬b. Given that ¬b ∈De f (εU), ac-
cording to the definition of Raf2Af, we have b∈ εU. As a consequence,
we have: x ∈ {¬a ∈ NotA|a ∈ εU}, which is a contradiction.

– Let suppose that x ∈ NotK with x = ¬α . Given that ¬α ∈ De f (εU),
according to the definition of Raf2Af, we have α ∈ εU. As a conse-
quence, we have: x ∈ {¬β ∈ NotK|β ∈ εU}, which is a contradiction.

– Let suppose that x ∈ AndA,K with x = s(α).α . Given that s(α).α ∈
De f (εU), according to the definition of Raf2Af, we have thus: ¬s(α)∈
εU or ¬α ∈ εU. And so we have: s(α) ∈De f (εU) or α ∈De f (εU). As
a consequence, we have: x∈{s(β ).β ∈AndA,K|β ∈De f (εU) or s(β )∈
De f (εU)}, which is a contradiction.
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We prove so that: x ∈ A∪K.

Given that x ∈ De f (εU), following the definition of Raf2Af, there exists
thus an argument s(α).α ∈ (εU∩AndA,K) attacking x. Given that s(α).α ∈
(εU∩AndA,K), we have following the definition of εU: s(α) ∈ S and α ∈ Q.
As a consequence we have: x ∈ RAF-De f (U)∪RAF-Inh(U).

We prove so that: RAF-De f (U)∪RAF-Inh(U)⊇

De f (εU)\

 {¬a ∈ NotA|a ∈ εU}
∪{¬β ∈ NotK|β ∈ εU}
∪{s(β ).β ∈ AndA,K|β ∈ De f (εU) or s(β ) ∈ De f (εU)}



Assertion 2: RAF-Acc(U)=Acc(εU)\

 {¬a ∈ NotA|a ∈ De f (εU)}
∪{¬β ∈ NotK|β ∈ De f (εU)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU}


• Step 1: RAF-Acc(U)⊆ Acc(εU)\

 {¬a ∈ NotA|a ∈ De f (εU)}
∪{¬β ∈ NotK|β ∈ De f (εU)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU}


Let x ∈ RAF-Acc(U). For all attacks α ∈ K such that t(α) = x, we have
thus:

α ∈ RAF-Inh(U) or s(α) ∈ RAF-De f (U)

As Assertion 1 holds, we have so:

α ∈ De f (εU)\

 {¬a ∈ NotA|a ∈ εU}
∪{¬β ∈ NotK|β ∈ εU}
∪{s(β ).β ∈ AndA,K|β ∈ De f (εU) or s(β ) ∈ De f (εU)}


or

s(α) ∈ De f (εU)\

 {¬a ∈ NotA|a ∈ εU}
∪{¬β ∈ NotK|β ∈ εU}
∪{s(β ).β ∈ AndA,K|β ∈ De f (εU) or s(β ) ∈ De f (εU)}


As a consequence, following the definition of Raf2Af, we have:

¬α ∈ εU or ¬s(α) ∈ εU

Furthermore, since s(α).α ∈ AndA,K , we have:

s(α).α ∈ De f (εU)∩AndA,K
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As a consequence, as it is the case of any attack α attacking x, we have:

x ∈ Acc(εU)

Given that x ∈ A∪K, we have, following the definition of Raf2Af: x /∈
(NotA∪NotK ∪AndA,K). As a consequence, we have:

x ∈ Acc(εU)\ (NotA∪NotK ∪AndA,K)

We prove so that:

RAF-Acc(U)⊆ Acc(εU)\

 {¬a ∈ NotA|a ∈ De f (εU)}
∪{¬β ∈ NotK|β ∈ De f (εU)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU}



• Step 2: RAF-Acc(U)⊇ Acc(εU)\

 {¬a ∈ NotA|a ∈ De f (εU)}
∪{¬β ∈ NotK|β ∈ De f (εU)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU}


Let x ∈ Acc(εU)\

 {¬a ∈ NotA|a ∈ De f (εU)}
∪{¬β ∈ NotK|β ∈ De f (εU)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU}


Let consider four cases: x ∈ NotA, x ∈ NotK , x ∈ AndA,K and x ∈ A∪K. Let
show that the three first cases are impossible.

– Let suppose that x ∈ NotA with x = ¬b. Given that ¬b ∈ Acc(εU),
according to the definition of Raf2Af, we have b ∈ De f (εU). As a
consequence, we have: x∈ {¬a∈NotA|a∈De f (εU)}, which is a con-
tradiction.

– Let suppose that x ∈ NotK with x = ¬α . Given that ¬α ∈ Acc(εU),
according to the definition of Raf2Af, we have α ∈ De f (εU). As a
consequence, we have: x ∈ {¬β ∈ NotK|β ∈ De f (εU)}, which is a
contradiction.

– Let suppose that x ∈ AndA,K with x = s(α).α . Given that s(α).α ∈
Acc(εU), according to the definition of Raf2Af, we have thus: ¬s(α)∈
De f (εU) and ¬α ∈ De f (εU). And so we have: s(α) ∈ εU and α ∈
εU. As a consequence, we have: x ∈ {s(β ).β ∈ AndA,K|s(β ).β ∈ εU},
which is a contradiction.
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We prove so that: x ∈ A∪K.

Given that x ∈ Acc(εU), then following the definition of Raf2Af, for all
arguments s(α).α attacking x, we have: s(α).α ∈ De f (εU). As a conse-
quence, following the definition of Raf2Af, we have:

¬s(α) ∈ εU or ¬α ∈ εU

And so:
s(α) ∈ De f (εU) or α ∈ De f (εU)

As Assertion 1 holds and as s(α) ∈ A and α ∈ K, we have:

s(α) ∈ RAF-De f (U) or α ∈ RAF-Inh(U)

as it is the case of any attack α attacking x, we have:

x ∈ RAF-Acc(U)

We prove so that:

RAF-Acc(U)⊇ Acc(εU)\

 {¬a ∈ NotA|a ∈ De f (εU)}
∪{¬β ∈ NotK|β ∈ De f (εU)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU}


�

Proposition 14 Let Γ = 〈A,K,s, t〉 be a RAF and Γ′ = Raf2Af(Γ) be an AF (with
Γ′ = 〈A′,K′〉). The following properties holds:

1. U= 〈S,Q〉 is a RAF-complete structure in Γ iff εU is a complete extension
in Γ′.

2. U= 〈S,Q〉 is a RAF-grounded structure in Γ iff εU is a grounded extension
in Γ′.

3. U= 〈S,Q〉 is a RAF-preferred structure in Γ iff εU is a preferred extension
in Γ′.

4. U= 〈S,Q〉 is a RAF-stable structure in Γ iff εU is a stable extension in Γ′.
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5. U= 〈S,Q〉 is a RAF-semi-stable structure in Γ iff εU is a semi-stable exten-
sion in Γ′.

PROOF. Assertion 1: U= 〈S,Q〉 is a RAF-complete structure in Γ iff εU is a
complete extension in Γ′.

U= 〈S,Q〉 is a RAF-complete structure in Γ iff (S∪Q) = RAF-Acc(U).
Following Proposition 13, we have thus:

U= 〈S,Q〉 is a RAF-complete structure in Γ

iff

(S∪Q) = Acc(εU)\

 {¬a ∈ NotA|a ∈ De f (εU)}
∪{¬β ∈ NotK|β ∈ De f (εU)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU}


And so:

U= 〈S,Q〉 is a RAF-complete structure in Γ

iff

(S∪Q)∪

 {¬a ∈ NotA|a ∈ De f (εU)}
∪{¬β ∈ NotK|β ∈ De f (εU)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU}

= Acc(εU)

(4.1)

Given that, for all s(β ).β ∈ AndA,K such that s(β ).β ∈ εU we have following the
definition of εU: β ∈ Q,s(β ) ∈ S, from 4.1, we have then:

U= 〈S,Q〉 is a RAF-complete structure in Γ

iff

(S∪Q)∪

 {¬a ∈ NotA|a ∈ De f (εU)}
∪{¬β ∈ NotK|β ∈ De f (εU)}
∪{s(β ).β ∈ AndA,K|β ∈ Q,s(β ) ∈ S}

= Acc(εU)

(4.2)

Following the definition of Raf2Af:

¬a ∈ NotA iff a ∈ A
and

¬β ∈ NotK iff β ∈ K
(4.3)
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Furthermore, following Proposition 13, we have:

De f (εU) =

 RAF-De f (U)∪RAF-Inh(U)
∪{¬a ∈ NotA|a ∈ εU}∪{¬β ∈ NotK|β ∈ εU}
∪{s(β ).β ∈ AndA,K|β ∈ De f (εU) or s(β ) ∈ De f (εU)}

 (4.4)

From 4.3 and 4.4 we have so:

a ∈ De f (εU) iff a ∈ RAF-De f (U)
and

β ∈ De f (εU) iff β ∈ RAF-Inh(U)
(4.5)

As a consequence, we have from 4.2 and 4.5:

U= 〈S,Q〉 is a RAF-complete structure in Γ

iff

(S∪Q)∪

 {¬a ∈ NotA|a ∈ RAF-De f (U)}
∪{¬β ∈ NotK|β ∈ RAF-Inh(U)}
∪{s(β ).β ∈ AndA,K|β ∈ Q,s(β ) ∈ S}

= Acc(εU)

Following the definition of εU, we have thus:

U= 〈S,Q〉 is a RAF-complete structure in Γ

iff
εU = Acc(εU)

We prove so that:

U= 〈S,Q〉 is a RAF-complete structure in Γ

iff
εU is a complete extension in Γ

′

Assertion 2: U= 〈S,Q〉 is a RAF-grounded structure in Γ iff εU is a grounded
extension in Γ′.

εU is a grounded extension in Γ′ iff there is no complete extension εU′ in Γ′

(with U′ = 〈S′,Q′〉) such that: εU′ ⊂ εU.
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We have so:
εU ∈ σgr(Γ

′)

iff
@εU′ ∈ σco(Γ

′) s.t. Acc(εU′)⊂ Acc(εU)

Following Proposition 13, we have:

εU ∈ σgr(Γ
′)

iff
@εU′ ∈ σco(Γ

′) s.t.

RAF-Acc(U′)∪

 {¬a ∈ NotA|a ∈ De f (εU′)}
∪{¬β ∈ NotK|β ∈ De f (εU′)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU′}


⊂

RAF-Acc(U)∪

 {¬a ∈ NotA|a ∈ De f (εU)}
∪{¬β ∈ NotK|β ∈ De f (εU)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU}


Removing (NotA∪NotK ∪AndA,K) from both sides give us a ⊆-inclusion:

εU ∈ σgr(Γ
′)

iff
@εU′ ∈ σco(Γ

′) s.t. RAF-Acc(U′)∪

 {¬a ∈ NotA|a ∈ De f (εU′)}
∪{¬β ∈ NotK|β ∈ De f (εU′)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU′}

 \ (NotA∪NotK ∪AndA,K)

⊆ RAF-Acc(U)∪

 {¬a ∈ NotA|a ∈ De f (εU)}
∪{¬β ∈ NotK|β ∈ De f (εU)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU}

 \ (NotA∪NotK ∪AndA,K)

We have thus:

εU ∈ σgr(Γ
′)

iff
@εU′ ∈ σco(Γ

′) s.t. RAF-Acc(U′)⊆ RAF-Acc(U)
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Given that, following Assertion 1, εU′ and εU are complete iff U′ and U are
RAF-complete, we have thus:

εU ∈ σgr(Γ
′)

iff
@εU′ ∈ σco(Γ

′) s.t. U′ ⊆ U

Given that εU′ 6= εU iff U′ 6= U, we have thus:

εU ∈ σgr(Γ
′)

iff
@εU′ ∈ σco(Γ

′) s.t. U′ ⊂ U

We prove so that εU is a grounded extension in Γ′ iff U= 〈S,Q〉 is a RAF-
grounded structure in Γ.

Assertion 3: U= 〈S,Q〉 is a RAF-preferred structure in Γ iff εU is a preferred
extension in Γ′.

εU is a preferred extension in Γ′ iff there is no complete extension εU′ in Γ′

(with U′ = 〈S′,Q′〉) such that: εU ⊂ εU′ .
We have so:

εU ∈ σpr(Γ
′)

iff
@εU′ ∈ σco(Γ

′) s.t. Acc(εU)⊂ Acc(εU′)

Following Proposition 13, we have:

εU ∈ σpr(Γ
′)

iff
@εU′ ∈ σco(Γ

′) s.t.

RAF-Acc(U)∪

 {¬a ∈ NotA|a ∈ De f (εU)}
∪{¬β ∈ NotK|β ∈ De f (εU)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU}


⊂

RAF-Acc(U′)∪

 {¬a ∈ NotA|a ∈ De f (εU′)}
∪{¬β ∈ NotK|β ∈ De f (εU′)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU′}


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Removing (NotA∪NotK ∪AndA,K) from both sides give us a ⊆-inclusion:

εU ∈ σpr(Γ
′)

iff
@εU′ ∈ σco(Γ

′) s.t. RAF-Acc(U)∪

 {¬a ∈ NotA|a ∈ De f (εU)}
∪{¬β ∈ NotK|β ∈ De f (εU)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU}

 \ (NotA∪NotK ∪AndA,K)

⊆ RAF-Acc(U′)∪

 {¬a ∈ NotA|a ∈ De f (εU′)}
∪{¬β ∈ NotK|β ∈ De f (εU′)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU′}

 \ (NotA∪NotK ∪AndA,K)

We have thus:

εU ∈ σpr(Γ
′)

iff
@εU′ ∈ σco(Γ

′) s.t. RAF-Acc(U)⊆ RAF-Acc(U′)

Given that, following Assertion 1, εU′ and εU are complete iff U′ and U are
RAF-complete, we have thus:

εU ∈ σpr(Γ
′)

iff
@εU′ ∈ σco(Γ

′) s.t. U⊆ U′

Given that εU′ 6= εU iff U′ 6= U, we have thus:

εU ∈ σpr(Γ
′)

iff
@εU′ ∈ σco(Γ

′) s.t. U⊂ U′

We prove so that εU is a preferred extension in Γ′ iff U= 〈S,Q〉 is a RAF-
preferred structure in Γ.

Assertion 4: U= 〈S,Q〉 is a RAF-stable structure in Γ iff εU is a stable exten-
sion in Γ′.
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• Step 1: If U= 〈S,Q〉 is a RAF-stable structure in Γ then εU is a stable
extension in Γ′.

If U= 〈S,Q〉 is a RAF-stable structure in Γ then @x ∈ (A∪K) such that
x /∈U and x /∈ (RAF-De f (U)∪RAF-Inh(U)). If U is a RAF-stable structure
in Γ then U is also RAF-complete. Following Assertion 1, εU is thus a
complete extension in Γ′. Let suppose that εU is not stable. There exists
thus x ∈ (A′∪K′) such that x /∈ εU and x /∈ De f (εU).

Let consider two cases: x ∈ A∪K and x /∈ (A∪K).

Case 1: Given that U is RAF-stable, if x ∈ A∪K, we have so: x ∈
(S∪Q∪RAF-De f (U)∪RAF-Inh(U)).

As shown in Proof of Assertion 1 (Equivalence 4.5):

a ∈ A∩De f (εU) iff a ∈ RAF-De f (U)
and

β ∈ K∩De f (εU) iff β ∈ RAF-Inh(U)
(4.6)

As a consequence if x ∈ A∪K then:

x ∈ (S∪Q∪ (A∩De f (εU))∪ (K∩De f (εU)))

As x /∈ εU and x /∈ De f (εU) there is a contradiction.

Case 2: If x /∈ (A∪K) then: x ∈ (NotA∪NotK ∪AndA,K).

Given that:
x /∈ εU and x /∈ De f (εU)

We have thus three possible cases:

– x ∈ NotA \{¬a ∈ NotA|a ∈ (De f (εU)∪ εU)}

– x ∈ NotK \{¬β ∈ NotK|β ∈ (De f (εU)∪ εU)}

– x ∈ AndA,K \{s(β ).β ∈ AndA,K|β ∈ (De f (εU)∪ εU)}
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Given that following the definition of Raf2Af:

¬a ∈ NotA iff a ∈ A
and

¬β ∈ NotK iff β ∈ K
and

s(β ).β ∈ AndA,K iff β ∈ K

(4.7)

We have thus:

– x ∈ NotA \{¬a ∈ NotA|a ∈ (A∩De f (εU))∪ (A∩ εU)}
– x ∈ NotK \{¬β ∈ NotK|β ∈ (K∩De f (εU))∪ (K∩ εU)}
– x ∈ AndA,K \{s(β ).β ∈ AndA,K|β ∈ (K∩De f (εU))∪ (K∩ εU)}

As shown in Proof of Assertion 1 (Equivalence 4.5):

A∩De f (εU) = RAF-De f (U)
and

K∩De f (εU) = RAF-Inh(U)
(4.8)

We have thus:

– x ∈ NotA \{¬a ∈ NotA|a ∈ (RAF-De f (U)∪S)}
– x ∈ NotK \{¬β ∈ NotK|β ∈ (RAF-Inh(U)∪Q)}
– x ∈ AndA,K \{s(β ).β ∈ AndA,K|β ∈ (RAF-Inh(U)∪Q)}

Given that U is RAF-stable, we have thus:

– x ∈ NotA \NotA =∅

– x ∈ NotK \NotK =∅

– x ∈ AndA,K \AndA,K =∅

There is thus a contradiction.

We prove so that if U= 〈S,Q〉 is a RAF-stable structure in Γ then εU is a
stable extension in Γ′.
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• Step 2: If εU is a stable extension in Γ′ then U= 〈S,Q〉 is a RAF-stable
structure in Γ.

If εU is a stable extension in Γ′ then @x ∈ (A′ ∪K′) such that x /∈ εU and
x /∈ De f (εU). If εU is a stable extension in Γ′ then εU is also complete. As
Assertion 1 holds, then U is RAF-complete. Let suppose that U is not RAF-
stable. There exists thus x∈ (A∪K) such that x /∈U and x /∈ (RAF-De f (U)∪
RAF-Inh(U)).

As shown in Proof of Assertion 1 (Equivalence 4.5):

A∩De f (εU) = RAF-De f (U)
and

K∩De f (εU) = RAF-Inh(U)

We have thus:

x /∈
(
(A∩De f (εU))∪ (K∩De f (εU))∪S∪Q

)
Given that εU is stable, we have thus: x /∈ (A∪K), which is a contradiction.

We prove so that if εU is a stable extension in Γ′ then U= 〈S,Q〉 is a RAF-
stable structure in Γ.

Assertion 5: U= 〈S,Q〉 is a RAF-semi-stable structure in Γ iff εU is a semi-
stable extension in Γ′.

εU is a semi-stable extension in Γ′ iff there is no complete extension εU′ in Γ′

(with U′ = 〈S′,Q′〉) such that: (εU∪De f (εU))⊂ (εU′ ∪De f (εU′)).
We have so:

εU ∈ σsst(Γ
′)

iff
@εU′ ∈ σco(Γ

′) s.t. (Acc(εU)∪De f (εU))⊂ (Acc(εU′)∪De f (εU′))
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Following Proposition 13, we have:

εU ∈ σsst(Γ
′)

iff
@εU′ ∈ σco(Γ

′) s.t.

 RAF-Acc(U)
∪RAF-De f (U)
∪RAF-Inh(U)

∪

{¬a ∈ NotA|a ∈ De f (εU)}
∪{¬β ∈ NotK|β ∈ De f (εU)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU}
∪{¬a ∈ NotA|a ∈ εU}
∪{¬β ∈ NotK|β ∈ εU}
∪{s(β ).β ∈ AndA,K|β ∈ De f (εU) or s(β ) ∈ De f (εU)}


⊂

 RAF-Acc(U′)
∪RAF-De f (U′)
∪RAF-Inh(U′)

∪

{¬a ∈ NotA|a ∈ De f (εU′)}
∪{¬β ∈ NotK|β ∈ De f (εU′)}
∪{s(β ).β ∈ AndA,K|s(β ).β ∈ εU′}
∪{¬a ∈ NotA|a ∈ εU′}
∪{¬β ∈ NotK|β ∈ εU′}
∪{s(β ).β ∈ AndA,K|β ∈ De f (εU′) or s(β ) ∈ De f (εU′)}


Removing (NotA∪NotK ∪AndA,K) from both sides give us a ⊆-inclusion:

εU ∈ σsst(Γ
′)

iff

@εU′ ∈ σco(Γ
′) s.t.

 RAF-Acc(U)
∪RAF-De f (U)
∪RAF-Inh(U)

⊆
 RAF-Acc(U′)
∪RAF-De f (U′)
∪RAF-Inh(U′)


Given that, following Assertion 1, εU′ and εU are complete iff U′ and U are

RAF-complete, we have thus:

εU ∈ σsst(Γ
′)

iff

@εU′ ∈ σco(Γ
′) s.t. U∪

(
RAF-De f (U)
∪RAF-Inh(U)

)
⊆ U′∪

(
RAF-De f (U′)
∪RAF-Inh(U′)

)
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Given that εU′ 6= εU iff U′ 6= U, we have thus:

εU ∈ σsst(Γ
′)

iff

@εU′ ∈ σco(Γ
′) s.t. U∪

(
RAF-De f (U)
∪RAF-Inh(U)

)
⊂ U′∪

(
RAF-De f (U′)
∪RAF-Inh(U′)

)
We prove so that εU is a semi-stable extension in Γ′ iff U= 〈S,Q〉 is a RAF-

semi-stable structure in Γ. �

4.4.3 Complexity results

Proposition 15 Let Γ = 〈A,K,s, t〉 be an RAF and Γ′ = Raf2Af(Γ) be an AF
(with Γ′ = 〈A′,K′〉). Let a ∈ (A∪K) be an element in Γ and an argument in Γ′,
following the definition of Raf2Af. Let U= 〈S,Q〉 be an structure of Γ.

For each semantics σ ∈ {complete, semi-stable, stable, preferred, grounded},
we have:

1. RAF-Credσ accepts (Γ,a) iff AF-Credσ accepts (Γ′,a).

2. RAF-Skepσ accepts (Γ,a) iff AF-Skepσ accepts (Γ′,a).

3. RAF-Verσ accepts (Γ,U) iff AF-Verσ accepts (Γ′,εU).

4. RAF-Existsσ accepts Γ iff AF-Existsσ accepts Γ′.

5. RAF-Exists¬∅σ accepts Γ iff AF-Exists¬∅σ accepts Γ′.

6. RAF-Uniqueσ accepts Γ iff AF-Uniqueσ accepts Γ′.

PROOF. Assertion 1: RAF-Credσ accepts (Γ,a) iff AF-Credσ accepts (Γ′,a).

RAF-Credσ accepts (Γ,a) iff ∃U ∈ σ(Γ) s.t. a ∈ U

iff ∃εU ∈ σ(Γ′) s.t. a ∈ εU (following Proposition 14)
iff AF-Credσ accepts (Γ′,a)
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Assertion 2: RAF-Skepσ accepts (Γ,a) iff AF-Skepσ accepts (Γ′,a).

RAF-Skepσ accepts (Γ,a) iff ∀U ∈ σ(Γ), a ∈ U

iff ∀εU ∈ σ(Γ′), a ∈ εU (following Proposition 14)
iff AF-Skepσ accepts (Γ′,a)

Assertion 3: RAF-Verσ accepts (Γ,U) iff AF-Verσ accepts (Γ′,εU).

RAF-Verσ accepts (Γ,U) iff U ∈ σ(Γ)

iff εU ∈ σ(Γ′) (following Proposition 14)
iff AF-Verσ accepts (Γ′,εU)

Assertion 4: RAF-Existsσ accepts Γ iff AF-Existsσ accepts Γ′.

RAF-Existsσ accepts Γ iff ∃U ∈ σ(Γ)

iff ∃εU ∈ σ(Γ′) (following Proposition 14)
iff AF-Existsσ accepts Γ

′

Assertion 5: RAF-Exists¬∅σ accepts Γ iff AF-Exists¬∅σ accepts Γ′.

RAF-Exists¬∅σ accepts Γ iff ∃(U= 〈S,Q〉) ∈ σ(Γ) s.t. (S∪Q) 6=∅
iff ∃εU ∈ σ(Γ′) s.t. εU 6=∅ (following Proposition 14)

iff AF-Exists¬∅σ accepts Γ
′

Assertion 6: RAF-Uniqueσ accepts Γ iff AF-Uniqueσ accepts Γ′.

RAF-Uniqueσ accepts Γ iff ∃!U ∈ σ(Γ)

iff ∃!εU ∈ σ(Γ′) (following Proposition 14)
iff AF-Uniqueσ accepts Γ

′

�
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Proposition 16 The complexities of AF decision problems are at least as hard as
RAF ones, for the semantics complete, semi-stable, stable, preferred, grounded.

PROOF. Given that Raf2Af is a polynomial time, log-space function, then ac-
cording to Proposition 15, for each semantics σ ∈ {complete, semi-stable, stable,
preferred, grounded} we have:

• RAF-Credσ ≤Raf2Af
L AF-Credσ

• RAF-Skepσ ≤Raf2Af
L AF-Skepσ

• RAF-Verσ ≤Raf2Af
L AF-Verσ

• RAF-Existsσ ≤Raf2Af
L AF-Existsσ

• RAF-Exists¬∅σ ≤Raf2Af
L AF-Exists¬∅σ

• RAF-Uniqueσ ≤Raf2Af
L AF-Uniqueσ

�

Proposition 17 Let Γ = 〈A,K〉 be an AF and Γ′ = Af2Raf(Γ) be an RAF. Let
a ∈ A be an argument in Γ and in Γ′, following the definition of Af2Raf. For each
semantics σ ∈ {complete, semi-stable, stable, preferred, grounded}, we have:

1. AF-Credσ accepts (Γ′,a) iff AF-Credσ accepts (Γ,a).

2. AF-Skepσ accepts (Γ′,a) iff AF-Skepσ accepts (Γ,a).

3. AF-Verσ accepts (Γ′,S) iff AF-Verσ accepts (Γ,U= 〈S,K〉).

4. AF-Existsσ accepts Γ′ iff AF-Existsσ accepts Γ.

5. AF-Exists¬∅σ accepts Γ′ iff AF-Exists¬∅σ accepts Γ.

6. AF-Uniqueσ accepts Γ′ iff AF-Uniqueσ accepts Γ.

PROOF. This proof is trivial considering Theorem 5 in [6] and Proposition 3 in
[10]. �
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Proposition 18 The complexities of RAF decision problems are at least as hard
as AF ones, for the semantics complete, semi-stable, stable, preferred, grounded.

PROOF. Given that Af2Raf is a polynomial time, log-space function, then ac-
cording to Proposition 17, for each semantics σ ∈ {complete, semi-stable, stable,
preferred, grounded} we have:

• AF-Credσ ≤Af2Raf
L RAF-Credσ

• AF-Skepσ ≤Af2Raf
L RAF-Skepσ

• AF-Verσ ≤Af2Raf
L RAF-Verσ

• AF-Existsσ ≤Af2Raf
L RAF-Existsσ

• AF-Exists¬∅σ ≤Af2Raf
L RAF-Exists¬∅σ

• AF-Uniqueσ ≤Af2Raf
L RAF-Uniqueσ

�

Proposition 19 The complexities of RAF decision problems are the same as AF
ones, for the semantics complete, semi-stable, stable, preferred, grounded, as
stated in Table 4.3.

PROOF. Given that Raf2Af and Af2Raf are polynomial time procedures and that
Propositions 16 and 18 holds, then all the complexities are the same. �

σ RAF-
Credσ Skepσ Verσ Existsσ Exists¬∅σ Uniqueσ

Grounded P-c P-c P-c trivial in L trivial
Complete NP-c P-c in L trivial NP-c coNP-c
Preferred NP-c ΠP

2-c coNP-c trivial NP-c coNP-c
Stable NP-c coNP-c in L NP-c NP-c DP-c

Semi-stable ΣP
2-c ΠP

2-c coNP-c trivial NP-c in ΘP
2

Table 4.3: Complexities of RAF
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Chapter 5

Conclusion and perspectives

This paper contains a number of contributions regarding argumentation frame-
works with higher-order attacks. It defines decision problems for Recursive Argu-
mentation Frameworks (RAF) and for Argumentation Frameworks with Recursive
Attacks (AFRA), and it investigates their complexity. By doing so, a new “flat-
tening” process of a RAF to an AF is introduced. An important result is the fact
that the complexities for the decision problems in the context of enriched frame-
works, are the same as the one in Dung’s framework, despite all the additional
expressivity that is brought by the higher order attacks.

All these results pave the way for the research on algorithmic issues related
to frameworks with higher-order attacks, regarding the computation of acceptable
arguments, and of the decision problems. We plan to adapt a recent efficient
approach that embed machine learning techniques ([9]) for Dung’s framework, to
these frameworks with higher-order attacks. The labelling counterpart provided
for RAF will be used in this sense (see [10]).

Beside decision problems, other problems are of interest for argumentation
frameworks, whether they be with higher-order attacks or not: function prob-
lems1. The functional counterpart of Credσ and Exists¬∅σ may turn to be partic-
ularly useful in the context of a dialogue between agents, the output being here
the concerned acceptable set. We plan to define such problems, and to investigate
their complexity.

1In computational complexity theory, a function problem is a computational problem where a
single output is expected for every input, but the output is more complex than that of a decision
problem: it is not simply “yes” or “no”.
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[10] Sylvie Doutre, Mickaël Lafages, and Marie-Christine Lagasquie-Schiex. Ar-
gumentation Frameworks with Higher-Order Attacks: Labelling Seman-
tics. Rapport de recherche IRIT/RR–2020–01–FR, IRIT, Université Paul
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