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Nonlinear pulse propagation is a major feature in continuously extended excitable systems. The persistence of
this phenomenon in coupled excitable systems is expected. Here, we investigate theoretically the propagation
of nonlinear pulses in a 1D array of evanescently coupled excitable semiconductor lasers. We show that
the propagation of pulses is characterized by a hopping dynamics. The average pulse speed and bifurcation
diagram are characterized as a function of the coupling strength between the lasers. Several instabilities
are analyzed such as the onset and disappearance of pulse propagation, and a spontaneous breaking of the
translation symmetry. The pulse propagation modes evidenced are speci�c to the discrete nature of the 1D
array of excitable lasers.

Linear oscillators coupled with springs to nearest

neighbors exhibit wave propagation. This phe-

nomenon is persistent when considering the con-

tinuous limit, i.e. when considering an elastic

rope. In this limit, the wave dispersion relation is

linear, unlike the discrete case of coupled systems

where it is nonlinear. Here we study the propaga-

tion of localized nonlinear waves�pulses�in cou-

pled excitable systems. Excitable oscillators play

a fundamental role in understanding the activity

of neurons, cardiac tissue, and oscillatory chem-

ical reactions. Based on a model of a 1D array

of excitable semiconductor lasers, we show that

pulse propagation is characterized by a hopping

dynamics and that it displays a rich variety of

bifurcations. Counterintuitively, we observe that

pulses do not persist in the continuous limit.

I. INTRODUCTION

The propagation of excitations (spikes) in discrete ex-
citable media plays a major role in biological systems1�4.
It is at the heart of the conduction of information in ax-
ons, and ensures conduction delays which are central to
information processing in neural networks5. The possi-
bility to process information with spikes in photonic sys-
tems has attracted recently a lot of interest because of
its application potential in terms of energy consumption,
parallelism and speed6�9. It has been recently shown
theoretically that coupled excitable semiconductor lasers
can behave analogously to biological axons, allowing to
transport and process information in the form of short
optical spikes8,10.
Dissipative systems are characterized by exhibiting at-

tractors and basins of attraction11�15. The boundaries of
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these basin of attraction are in general fractal11,12. The
dynamics within the basin of attraction is governed by
the geometry of the stable invariant manifolds associated
with the respective equilibrium and the separatrix man-
ifolds of the basin of attraction15,16. Manifolds are the
nonlinear extension of the eigenvectors obtained in the
linearized dynamics around the equilibrium. Hence, in-
�nitesimal disturbances around the equilibrium are gen-
erally exponentially decaying to equilibrium (linear dy-
namical behavior). However, under certain conditions
and unexpectedly, large excursions (larger than the dis-
turbance) can be observed in the basin of attraction. This
type of behavior is known as excitability. Excitability is
a generic phenomenon encountered in many areas of Sci-
ence and in particular in biology17�21, chemistry22,23, and
optics24,25.

From the point of view of the phase portrait geometry,
excitability arises because stable invariant manifolds are
folded (as a consequence of previous bifurcations) or are
connected with hyperbolic points that generate separa-
trix inside the basin of attraction (see Fig. 1)20,21. There-
fore, excitability is a genuine nonlinear phenomenon. The
above scenario changes radically when considering ex-
citable systems extending over space. In this context,
a local perturbation above the excitability threshold is
enough to excite its nearest neighbors, generating ex-
citable pulses or waves19,21,26�28. These waves are known
in chemical reactions19,27, in the cardiac muscle17, and in
liquid crystals26. In lasers, their existence has been theo-
retically predicted in a laser with injected signal28 but the
experimental part lack of a convincing demonstration. In
most of these works, the propagation of pulses is studied,
which has a well-de�ned propagation speed. However,
continuous models are used to characterized the propa-
gation. It is known that discreteness can a�ect the prop-
agation of waves fronts29,30. For example, the wavefront
speed in discrete systems can present oscillations29�31.
Even more, discreteness can induce the propagation fail-
ure in bistable32 or excitable4 discrete systems.

The aims of this manuscript is to study theoretically
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the propagation of pulses in an array of excitable semi-
conductor lasers. Based on a one-dimensional array of
coupled lasers with saturable absorber medium, we show
that the propagation of pulses is characterized by a hop-
ping dynamics (see Fig. 1). Depending on the coupling
strength between the lasers, we characterize the speed of
the pulses and their bifurcation diagrams. This speed
increases with the coupling strength. The propagat-
ing pulses emerge by means of a saddle-node bifurca-
tion, as the coupling constant increases, then the solu-
tion adapts itself and exhibits several instabilities. The
observed pulses are peculiar to the discrete nature of the
excitable lasers coupling, that is, when the continuous
limit is taken, the traveling pulses do not persist.

II. THEORETICAL DESCRIPTION OF AN ARRAY OF

EXCITABLE SEMICONDUCTOR LASER

The excitable system that we consider is a micropil-
lar laser with an integrated saturable absorber medium
studied theoretically in33,34 and experimentally in35,36.
These lasers have been shown to behave analogously
to biological neurons, displaying refractory periods36,
spike latency37,38 and temporal summation (coincidence
detection)39. We consider a 1D array of evanescently cou-
pled lasers with saturable absorber8,10 depicted in Fig. 1a
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Figure 1. (color online) Pulse propagation in 1D array of
excitable semiconductor lasers. (a) Schematic representation
of an array of excitable semiconductor lasers. Lasers emit
from the top and are evanescently coupled through the neigh-
bors. The inset accounts for the typical phase portrait of a
single semiconductor laser. Curves and dots account for in-
variant manifolds and equilibria. Spatiotemporal propagation
of a pulse of an array of excitable semiconductor laser model
Eqs. (1)-(3) with di�erent coupling constant κ = 0.20 (b),
κ = 0.25 (c), and κ = 0.30 (d), α = 2.0, β = 0, A = 2.74,
B = 2, b1 = b2 = 0.001, and s = 10.
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Figure 2. (color online) Pulse propagation in an array of
excitable semiconductor laser model Eqs. (1)-(3) with α = 2.0,
β = 0, A = 2.74, B = 2, b1 = b2 = 0.001, and s = 10.
Spatiotemporal evolution of a perturbation above excitable
threshold of the leftmost cavity, in an array of 100 coupled
micropillars with evanescent coupling κ = 0.15.

and described by the dimensionless set of equations

Ėn = [(1− iα)Ng,n − (1− iβ)Nas,n − 1]En +

iκ(En−1 + En+1), (1)

Ṅg,n = b1
[
A−Ng,n

(
1 + |En|2

)]
, (2)

Ṅas,n = b2
[
B −Nas,n

(
1 + s|En|2

))
], (3)

where En(t), Ng,n(t), and Nas,n(t) account respectively
for the envelope of the electric �eld, the rescaled gain
and the rescaled absorption in the i-th laser. The fac-
tors α and β are standard semiconductor parameters
describing phase-amplitude coupling. κ stands for the
dispersive nearest-neighbor coupling coe�cient between
the lasers. Non-radiative carrier recombination rates for
the gain and absorber media are, respectively, b1 and b2.
A and B account for the pump gain and non-saturable
losses. The saturation parameter s in semiconductors is
necessarily greater than 1. Time is rescaled to the cav-
ity photon lifetime, which is the shortest timescale in the
system (several picoseconds), and the carrier recombina-
tion timescales which are of the order of 0.5− 1 nanosec-
ond are therefore small: b1,2 � 1. Notice that a model
similar to the set of equations (1-3) with purely di�usive
coupling has been considered to study synchronization
phenomena in the presence of additive noise40 and local-
ization phenomena when coe�cients are variable (with
disorder)41. The set of equations (1-3) under the in�u-
ence of noise exhibits synchronization, and with variable
coe�cients shows localization42. A single semiconductor
laser with an integrated saturable absorber medium can
be accurately described by rate equations for the inten-
sity of the electric �eld, gain, and absorption, the Yamada

model34,43. However, because of the evanescent coupling
between the microlasers, one must consider the envelope
of the electric �eld in the model written in Eqs. (1-3) to
account for the dispersive (imaginary) coupling term.
The non-lasing solution is represented by En(t) = 0,
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Ng,n = A, and Nas,n = B. This state is stable for a
single laser when A − B − 1 < 0 and corresponds to an
attractor. Excitable dynamical behavior requires that33

s > 1 + 1/B. Note that in semiconductor materials,
this condition is ful�lled since the parameter s is a large
parameter due to the gain saturation. The schematic
projection of the phase portrait of a single laser in the
plane {Ng, I = |E|2} is illustrated in Fig. 1a. The laser
threshold corresponds to a transcritical bifurcation and
occurs at Ath ≡ 1+B. In this kind of system, excitability
exists near a homoclinic loop bifurcation and below the
laser threshold. If the system is sent above the stable
manifold of the saddle point, it makes a large excursion
around the heteroclinic orbit and turns back to the stable
state corresponding to the o� solution of the laser: an
excitable optical pulse is produced.
In Figure 1 b-d, pulse propagation in the array of

semiconductor lasers is exempli�ed for di�erent values
of the evanescent coupling parameter, κ. This parameter
can be experimentally tuned by changing the center-to-
center distance between the pillars (see Ref. 44). In the
regime of weak evanescent coupling, κ� 1, the coupling
time is large as compared to the photon cavity lifetime
which ensures that an excitable response can form be-
fore the energy couples to the neighboring laser. This
corresponds to a saltatory propagation regime10. When
kappa is larger, as will be shown below, the propagation
mode deviates from the saltatory one. To test numer-
ically the pulse propagation, we disturb a single laser
with a perturbation amplitude value slightly above the
excitable threshold (cf. Fig. 2). The �rst e�ect observed
due to the discreteness of the excitable medium is that
the propagation of the pulses proceeds through a hopping
(or saltatory) dynamics. Namely, the lasers are turned on
one by one while they emit an excitable spike, and when
they go back to their o� state they excite the neighbor-
ing lasers. If the coupling strength is large enough, the
leaking of energy from the initially perturbed laser to the
neighboring ones can excite the neighbors and propagate
the pulse. The process repeats giving rise to the observed
hopping dynamics. Note that the propagation is unidi-
rectional because of the refractory period exhibited by
each excitable laser36,37: once the laser has �red a spike,
it cannot be re-excited immediately thus there is a sym-
metry breaking of the excitable medium. This explains
why the pulse that starts at one edge only propagates to
a single �ank.

III. PULSE SPEED AND BIFURCATION DIAGRAM

CHARACTERIZATION

As we increase the value of the evanescent coupling
parameter κ, the average pulse speed 〈v〉 increases. Fig-
ure 3 summarizes how the average pulse speed behaves as
a function of κ. For small evanescent coupling values, we
do not observe propagating pulses. The pulses appear by
means of a saddle-node bifurcation from a critical cou-

pling constant κ ≡ κsn. The saddle-node bifurcation is
a generic mechanism of emergence of localized structures
in several contexts such as nonlinear optics, plasma, and
�uid45�49. The main features of this bifurcation are that
solutions are only observed in a region of the parameter
space and that a critical exponent is observed near the
bifurcation for the growth rate as a function of the dis-
tance to the equilibrium. Figure 4 shows the intensity of
the electric �eld in two successive lasers as a function of
time for di�erent evanescent coupling regions (I to IV)
highlighted on Figure 3. The pulse throughout region I
is characterized by the fact that the intensity of the elec-
tric �eld is concentrated in a single laser (see Fig. 4a).
Numerically, we �nd for the parameters considered in �g-
ure 2 and close to the left edge (asymptotic limit of the
speed) that the mean speed goes almost linearly with κ
such that 〈v〉 = v0 + v1(κ − κsn)

n with v0 = 0.06176,
v1 = 1.655, κsn = 0.1 and n = 0.9189 (cf. Fig. 5a). This
regime corresponds to a solitary, ballistic regime.

However, close to κ ≡ κt = 0.45 (region II), we ob-
serve that there is a qualitative change in the average
speed curve (see Fig. 3). Figure 5b shows a zoom of
regions I and II. We note that the speed of the pulse
varies continuously but is not di�erentiable at this crit-
ical point. To reveal the origin of this instability, the
evolution of the electric �eld intensity in two successive
lasers below and above the transition is shown in region
II on Fig. 4b,c. Note that below the bifurcation, the
temporal pro�le of the pulse in the two successive lasers
is identical. However, above the bifurcation, the tempo-
ral pro�les in two successive lasers are not identical and
they alternate. Therefore, this bifurcation corresponds
to a spontaneous translational symmetry-breaking. This
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Figure 3. (color online) Average pulse speed as a function of
evanescent coupling κ of excitable semiconductor laser model
Eqs. (1)-(3) with α = 2.0, β = 0, A = 2.74, B = 2, b1 =
b2 = 0.001, and s = 10. The colored regions account for
the di�erent bifurcations observed. κsn ∼ 0.1, κt ∼ 0.45,
and κ+

sn ∼ 2.71 account for the critical evanescent coupling in
which the pulses emerge and present a spontaneous symmetry
translation-breaking, respectively.
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transition occurs for both pulses that propagate to the
right or left �ank, then one expects this bifurcation to be
of the pitchfork type11�15. To characterize the pitchfork
bifurcation we �t on Figure 5b the average speed with
〈v〉 = a0 + a1(κ − κt)n with a0 = 0.5363, a1 = 0.6659,
κt = 0.454, and n = 0.5367. The dependance is thus
compatible with the expected square root law.
Likewise, to characterize the spontaneous translational

symmetry-breaking bifurcation, we introduce the total
intensity in the nth-laser as an order parameter

IT,n =

∫
dt|En|2(t). (4)

Figure 6 shows the total intensity for two successive lasers
as a function of the evanescent coupling parameter. Be-
low the bifurcation, the total intensity between two suc-
cessive lasers is identical. However, above the bifurcation,
the total intensity is dissimilar ad there is a concentra-
tion of energy in one of the lasers. The pulse intensities
in successive lasers become almost identical at κ = 0.65,
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Figure 4. (color online) Intensity of electric �eld I = |En|2 of
two successive micropillars as a function of time for di�erent
evanescent coupling parameter κ = 0.1 (a), κ = 0.44 (b),
κ = 0.46 (c), κ = 0.7 (d), κ = 0.8 (e), κ = 2.5 (f), and
κ = 2.71 (g). Pulses spread to the right �ank.

otherwise there is a translational symmetry breaking for
0.44 < κ < 0.80. From κ = 0.80 onward, the system
recovers the spatial translation invariance (cf. Fig. 6).
Increasing the value of the coupling κ, the propagative
pulses persist for rather large values until they disappear
by a saddle-node bifurcation for κ ≡ κ+sn = 2.71. For
κ greater than κ+sn no pulses are observed (see Fig. 3).
Physically, this is expected since the energy will �ow
to the neighboring cavities before reaching the excitable
threshold. Therefore, propagation is not possible any-
more.

It is worthy to note that the continuous limit of the
set of equations (1)-(3) is obtained considering an in-
�nitely large coupling constant (κ → ∞). Therefore,
we conclude from the previous observations that in the
continuous limit the model Eqs. (1)-(3) has no propa-
gating pulses. In order to support this conjecture, we
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Figure 5. (color online) Ampli�cations of average pulse speed
as a function of evanescent coupling κ of excitable semicon-
ductor laser model Eqs. (1)-(3) with α = 2.0, β = 0, A = 2.74,
B = 2, b1 = b2 = 0.001, and s = 10. Points account for the
pulse speed obtained numerically. (a) Emergence of hopping
pulse solutions. The dashed curve is obtained buy �tting 〈v〉
with 〈v〉 = v0 + v1(κ − κsn)

n and v0 = 0.06176, v1 = 1.655,
κsn = 0.1 and n = 0.9189. (b) Spontaneous translational
symmetry-breaking instability. The dashed curve is obtained
by �tting 〈v〉 with 〈v〉 = a0 + a1(κ − κt)

n and a0 = 0.5363,
a1 = 0.6659, κt = 0.454, and n = 0.5367.
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Figure 6. (color online) Total intensity of electric �eld IT,n

in the n-micropillar as a function of evanescent coupling for
model Eqs. (1)-(3) with α = 2.0, β = 0, A = 2.74, B = 2,
b1 = b2 = 0.001, and s = 10.

analyze in the parameter space (κ,A) the region where
the pulses with hopping dynamics are observed. The re-
sults are shown on Figure 7. As the gain pump parame-
ter A decreases, the window of coupling constants where
propagating pulses are observed shrinks. Below A = 2,
no propagating pulses are observed since the system is
not excitable anymore. Similar bifurcation diagrams are
observed for the average pulse speed for di�erent evanes-
cent coupling constant and pump gain as shown on Figure
7b. Interestingly, the mean speed can also be controlled
through the pump8 as can be seen on Figure 7c. This
is a very important feature from an experimental point
of view since the coupling constant is often �xed by fab-
rication. The yellow shadowed region shows the region
where the propagating pulses are observed. Note that for
a �nite pump gain in the excitable region (2 < A < 3)
and in the continuous limit, no propagating pulses are
expected. The continuous limit of the set of Eqs. (1)-(3)
plus di�usive coupling was studied in Refs.50,51. Propa-
gation of pulses is shown for non-radiative carrier recom-
bination rates of the same order as the one of the electric
�eld (b1 ∼ b2 ∼ 1). For semiconductor micropillar lasers,
these rates di�er from several orders of magnitude since
the electric �eld decay time is much smaller than the
carrier decay times. Hence, for the typical parameters of
micropillar lasers, it is not possible to observe pulses in
the continuous limit.

IV. CONCLUSION

Continuous spatially extended excitable systems can
sustain the propagation of pulses. This phenomenon is
intuitively based on the fact that the system without spa-
tial coupling is excitable, that is, if an equilibrium suf-
fers a su�ciently large disturbance, the dynamical sys-
tem exhibits large excursions in the basin of attraction.
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Figure 7. (color online) Phase diagram of pulse obtained for
model Eqs. (1)-(3) with α = 2.0, β = 0, B = 2, b1 = b2 =
0.001, and s = 10. (a) Pulse phase diagram in A-κ space.
Points account for the limits of pulse obtained numerically.
Average pulse speed as a function of evanescent coupling κ
(b) and pump gain A (c).

When considering the spatially extended system, one ex-
pects that when a region is perturbed, it will excite the
surrounding areas generating the emission of pulses or
waves. The persistence of this phenomenon for coupled
(discrete) excitable systems is expected. However, the
phenomenon of pulse propagation in discrete, coupled
excitable systems is not obvious and depends on the cou-
pling. We show that pulse propagation in discrete, cou-
pled excitable lasers is characterized by a hopping dy-
namics and that it presents a rich bifurcation structure.
We also show that the observed pulses do not necessarily
persist in the continuous limit. These results pave the
way to the experimental study of such hopping dynamics
in optics with potential impact on neuromimetic systems
and information processing8.
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