E. Conway, E. Healy, and A. P. Bracken, PRC2 mediated H3K27 methylations in cellular identity and cancer, Curr Opin Cell Biol, vol.37, pp.42-50, 2015.

B. E. Bernstein, T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert et al., A bivalent chromatin structure marks key developmental genes inembryonic stem cells, Cell, vol.125, pp.315-341, 2006.

W. H. Lien, X. Guo, L. Polak, L. N. Lawton, R. A. Young et al., Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage, Cell Stem Cell, vol.9, pp.219-251, 2011.

P. Voigt, W. W. Tee, and D. Reinberg, A double take on bivalent promoters, Genes Dev, vol.27, pp.1318-1356, 2013.

V. Azuara, P. Perry, S. Sauer, M. Spivakov, H. F. Jørgensen et al., Chromatin signatures of pluripotent cell lines, Nat Cell Biol, vol.8, pp.532-540, 2006.

A. Barski, S. Cuddapah, K. Cui, T. Y. Roh, D. E. Schones et al., High-resolution profiling of histone methylations in the human genome, Cell, vol.129, pp.823-860, 2007.

T. S. Mikkelsen, M. Ku, D. B. Jaffe, B. Issac, E. Lieberman et al., Genome wide maps of chromatin state in pluripotent and lineage-committed cells, Nature, vol.448, pp.553-60, 2007.

G. Pan, S. Tian, J. Nie, C. Yang, V. Ruotti et al., Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells, Cell Stem Cell, vol.1, pp.299-312, 2007.

F. Mohn, M. Weber, M. Rebhan, T. C. Roloff, J. Richter et al., Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors, Mol Cell, vol.30, pp.755-66, 2008.

L. A. Sanz, S. Chamberlain, J. C. Sabourin, A. Henckel, T. Magnuson et al., A mono-allelic bivalent chromatin domain controls tissue-specific imprinting at Grb10, EMBO J, vol.27, pp.2523-2555, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00349502

K. Cui, C. Zang, T. Y. Roh, D. E. Schones, R. W. Childs et al., Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation, Cell Stem Cell, vol.4, pp.80-93, 2009.

S. Maupetit-méhouas, B. Montibus, D. Nury, C. Tayama, M. Wassef et al., Imprinting control regions (ICRs) are marked by mono-allelic bivalent chromatin when transcriptionally inactive, Nucleic Acids Res, vol.44, pp.621-656, 2016.

M. Albert, N. Kalebic, M. Florio, N. Lakshmanaperumal, C. Haffner et al., Epigenome profiling and editing of neocortical progenitor cells during development, EMBO J, vol.36, pp.2642-2658, 2017.

Y. Hirabayashi, N. Suzki, M. Tsuboi, T. A. Endo, T. Toyoda et al., Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition, Neuron, vol.63, pp.600-613, 2009.

J. D. Pereira, S. N. Sansom, J. Smith, M. W. Dobenecker, A. Tarakhovsky et al., , 2010.

, Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex, Proc Natl Acad Sci U S A, vol.107, pp.15957-62

N. Morimoto-suzki, Y. Hirabayashi, K. Tyssowski, J. Shinga, M. Vidal et al., The polycomb component Ring1B regulates the timed termination of subcerebral projection neuron production during mouse neocortical development, Development, vol.141, pp.4343-53, 2014.

M. Yao, X. Zhou, J. Zhou, S. Gong, G. Hu et al., PCGF5 is required for neural differentiation of embryonic stem cells, Nat Commun, vol.9, p.1463, 2018.

K. Agger, P. A. Cloos, J. Christensen, D. Pasini, S. Rose et al., UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development, Nature, vol.449, pp.731-735, 2007.

D. Santa, F. Totaro, M. G. Prosperini, E. Notarbartolo, S. Testa et al., The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing, Cell, vol.130, pp.1083-94, 2007.

K. Jepsen, D. Solum, T. Zhou, R. J. Mcevilly, H. J. Kim et al., SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron, Nature, vol.450, pp.415-424, 2007.

T. Burgold, F. Spreafico, D. Santa, F. Totaro, M. G. Prosperini et al., The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment, PLoS One, vol.3, p.3034, 2008.

T. Burgold, N. Voituron, M. Caganova, P. P. Tripathi, C. Menuet et al., The H3K27 demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival, Cell Rep, vol.2, pp.1244-58, 2012.

D. H. Park, S. J. Hong, R. D. Salinas, S. J. Liu, S. W. Sun et al., Activation of neuronal gene expression by the JMJD3 demethylase is required for postnatal and adult brain neurogenesis, Cell Rep, vol.8, pp.1290-1299, 2014.

N. Gaspard, T. Bouschet, A. Herpoel, G. Naeije, J. Van-den-ameele et al., Generation of cortical neurons from mouse embryonic stem cells, Nat Protoc, vol.4, pp.1454-63, 2009.

M. D. Neely, M. J. Litt, A. M. Tidball, G. G. Li, A. A. Aboud et al., DMH1, a highly selective small molecule BMP inhibitor promotes neurogenesis of hiPSCs: comparison of PAX6 and SOX1 expression during neural induction, ACS Chem Neurosci, vol.3, pp.482-91, 2012.

S. G. Jin, Z. M. Zhang, T. L. Dunwell, M. R. Harter, X. Wu et al., Tet3 Reads 5-Carboxylcytosine through Its CXXC Domain and Is a Potential Guardian against Neurodegeneration, Cell Rep, vol.14, pp.493-505, 2016.

P. Arnaud, K. Hata, M. Kaneda, E. Li, H. Sasaki et al., Stochastic imprinting in the progeny of Dnmt3L-/-females, Hum Mol Genet, vol.15, pp.589-98, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01934553

M. Santiago, C. Antunes, M. Guedes, M. Iacovino, M. Kyba et al., Tet3 regulates cellular identity and DNA methylation in neural progenitor cells, Cell Mol Life Sci, 2019.

M. Iacovino, D. Bosnakovski, H. Fey, D. Rux, G. Bajwa et al., Inducible cassette exchange: a rapid and efficient system enabling conditional gene expression in embryonic stem and primary cells, Stem Cells, vol.29, pp.1580-1588, 2011.

M. Bibel, J. Richter, E. Lacroix, and Y. A. Barde, Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells, Nat Protoc, vol.2, pp.1034-1077, 2007.

F. Court, M. Baniol, H. Hagege, J. S. Petit, M. N. Lelay-taha et al., Long-range chromatin interactions at the mouse Igf2/H19 locus reveal a novel paternally expressed long non-coding RNA, Nucleic Acids Res, vol.39, pp.5893-906, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01685883

A. Wagschal, K. Delaval, M. Pannetier, P. Arnaud, and R. Feil, Chromatin Immunoprecipitation (ChIP) on Unfixed Chromatin from Cells and Tissues to Analyze Histone Modifications. Cold Spring Harbor Protocols pdb, pp.4767-4767, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01934545

T. Bouschet, E. Dubois, C. Reynès, S. K. Kota, S. Rialle et al., In Vitro Corticogenesis from Embryonic Stem Cells Recapitulates the In Vivo Epigenetic Control of Imprinted Gene Expression, Cereb Cortex, vol.27, pp.2418-2433, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01788685

J. R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li et al., Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, vol.485, pp.376-80, 2012.

B. Bonev, M. Cohen, N. Szabo, Q. Fritsch, L. Papadopoulos et al., Multiscale 3D Genome Rewiring during Mouse Neural Development, Cell, vol.171, pp.557-572, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01623646

M. Tahiliani, K. P. Koh, Y. Shen, W. A. Pastor, H. Bandukwala et al., Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1, Science, vol.324, pp.930-935, 2009.

S. Kriaucionis and N. Heintz, The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain, Science, vol.324, pp.929-959, 2009.

A. A. Sérandour, S. Avner, F. Oger, M. Bizot, F. Percevault et al., Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers, Nucleic Acids Res, vol.40, pp.8255-65, 2012.

M. A. Hahn, R. Qiu, X. Wu, A. X. Li, H. Zhang et al., Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis, Cell Rep, vol.3, pp.291-300, 2013.

M. J. Booth, M. R. Branco, G. Ficz, D. Oxley, F. Krueger et al., Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution, Science, vol.336, pp.934-937, 2012.

H. Wu and Y. Zhang, Tet1 and 5-hydroxymethylation: a genome-wide view in mouse embryonic stem cells, Cell Cycle, vol.10, pp.2428-2464, 2011.

C. M. Greco, P. Kunderfranco, M. Rubino, V. Larcher, P. Carullo et al., DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy, Nat Commun, vol.7, p.12418, 2016.

A. Tsagaratou, T. Äijö, C. W. Lio, X. Yue, Y. Huang et al., Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation, Proc Natl Acad Sci U S A, vol.111, pp.3306-3321, 2014.

E. A. Mahé, T. Madigou, A. A. Sérandour, M. Bizot, S. Avner et al., Cytosine modifications modulate the chromatin architecture of transcriptional enhancers, Genome Res, vol.27, pp.947-958, 2017.

G. Ren, J. W. Cui, K. Rodrigez, J. Hu, G. Zhang et al., CTCF Mediated Enhancer-Promoter Interaction Is a Critical Regulator of Cell-to-Cell Variation of Gene Expression, Mol Cell, vol.67, pp.1049-1058, 2017.

T. Li, D. Yang, J. Li, Y. Tang, J. Yang et al., Critical role of Tet3 in neural progenitor cell maintenance and terminal differentiation, Mol Neurobiol, vol.51, pp.142-54, 2015.

K. P. Koh, A. Yabuuchi, S. Rao, Y. Huang, K. Cunniff et al., Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells, Cell Stem Cell, vol.8, pp.200-213, 2011.

M. M. Dawlaty, K. Ganz, B. E. Powell, Y. C. Hu, S. Markoulaki et al., Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development, Cell Stem Cell, vol.9, pp.166-75, 2011.

K. Williams, J. Christensen, M. T. Pedersen, J. V. Johansen, P. A. Cloos et al., TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity, Nature, vol.473, pp.343-351, 2011.

M. M. Dawlaty, A. Breiling, T. Le, G. Raddatz, M. I. Barrasa et al., Combined deficiency of Tet1 andnTet2 causes epigenetic abnormalities but is compatible with postnatal development, Dev Cell, vol.24, pp.310-333, 2013.

M. Reimer, K. Pulakanti, L. Shi, A. Abel, M. Liang et al., Deletion of Tet proteins results in quantitative disparities during ESC differentiation partially attributable to alterations in gene expression, BMC Dev Biol, vol.19, p.16, 2019.

M. M. Dawlaty, A. Breiling, T. Le, M. I. Barrasa, G. Raddatz et al., Loss of Tet enzymes compromises proper differentiation of embryonic stem cells, Dev Cell, vol.29, pp.102-113, 2014.

H. Wu, D. 'alessio, A. C. Ito, S. Xia, K. Wang et al., Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells, Nature, vol.473, pp.389-93, 2011.

H. Wu, D. 'alessio, A. C. Ito, S. Wang, Z. Cui et al., Genome wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells, Genes Dev, vol.25, pp.679-84, 2011.

S. S. Karuppagounder, A. Kumar, D. S. Shao, M. Zille, M. W. Bourassa et al., Metabolism and epigenetics in the nervous system: Creating cellular fitness and resistance to neuronal death in neurological conditions via modulation of oxygen-, iron-, and 2-oxoglutarate-dependent dioxygenases, Brain Res, vol.1628, pp.273-287, 2015.