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Carleman estimates and some inverse problems
for the coupled quantitative thermoacoustic
equations by boundary data. Part II: some

inverse problems

Michel Cristofol? Shumin Li'* and Yunxia Shang®

Abstract. In this paper, we consider Carleman estimates and inverse prob-
lems for the coupled quantitative thermoacoustic equations. In the previous Part
I paper, we established Carleman estimates for the coupled quantitative thermoa-
coustic equations by assuming that the coefficients satisfy suitable conditions. We
apply Carleman estimates in the previous Part I paper to some inverse problems
for the coupled quantitative thermoacoustic equations and prove stability esti-
mates of the Holder type.

Keywords. Inverse problems, thermoacoustic equations, coupled
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1 Introduction and main results

1.1 Introduction

We investigate the so called quantitative thermoacoustic tomography process (e.g.
[1, 5, 16, 18] and their references). According to [5], assuming that the variations
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in temperature and pressure are weak and neglecting the nonlinear effects, we
obtain the system

02p — pvidiv <1Vp) — o {div (kV0)} = T'9,11,,
p . (1.1)
a in Q,

1
0,0 — —-div (kV0) — o = ,
' pCyp ( ) pCyp ' pCyp

for the temperature rise # and the pressure perturbation p from the equilibrium
steady state depending on (z,t) = (21, ,Zn,t) € Q 2 Q x (0,T). Here n € N*
and 2 is a bounded domain in R™ with the boundary 89 € 03 Throughout
this paper we set 0; = o= 2, 0% = ;0 = I Bwk =i dwg,

at) Vi d oz
0? = atQ, 1 < 4,k < n. We assume that the mass density at steady state p,
the acoustic wave velocity vs and the isobar specific heat capacity C), are given
strictly positive functions of x and independent of ¢, the Griineisen parameter I,
the background temperature ¢, and the volume thermal expansivity ¢ are given
non-negative functions of # and independent of ¢. Finally, the absorbed energy 11,
is an unknown function of z and ¢ which can be written in the form: I, (z,t) =
pa(z)R(z,t) with p,(z,t) corresponds to the absorption coefficient and R(x,t)
is the fluence and the thermal conductivity x is an unknown strictly positive
functions of x and independent of t.
We set

8:1:’

O(x,t) = 8,0(x, 1) (1.2)

Differentiating the second equation in (1.1) with respect to ¢, we obtain

02p — pvidiv <%Vp> —I'div (kVO) = T'(z)0,11,,

(1.3)
90§ 2 1 .

= IT .
o= 0, @

1
i _
0,0 iv (kVO) o

pCy

We will assume that © and p satisfy initial and boundary conditions

O(z,0) = Oo(), p(x,0) =po(x), Op(z,0) =pi(x), e  (14)
and

O(x,t) = b(x, 1), p(z,t) = h(z,t), (x,t) €L =200 x (0,T). (1.5)

The methodology used in this paper is based on Carleman estimates. Bugkheim
and Klibanov [4] have initiated the use of Carleman estimates for proving the
uniqueness in several inverse coefficient problems. For the development of this



approach, there are many works. We refer to some of them (e.g., [2], [3], [6], [7],
8], [9], [10], [11], [12], [13], [14], [17]). The main advantages of this approach
concern the finite number of observations required, the obtention of stability in-
equalities between the coefficient to be reconstructed and the observation data.
Nevertheless, some drawback concerns the case of parabolic models: indeed, we
need the additive observation of the solution of the problem on all the domain
at one strictly positive time. The case of system of operators with respect to
the scalar case is less addressed and the case of hybrid problem involving strong
coupling between the second order terms in the two equations induces techni-
cal difficulties. We are interested in the so-called Thermo-Acoustic-Tomography
(TAT in short) and as we aim to solve our different inverse problems using the
observation of only one component, the pressure P or the temperature ¢, we need
to develop specific Carleman estimates (see Lemma 1.1). The TAT model answers
to the current focuses of interests towards achieving better contrasted image with
higher spectral resolution (e.g. functional imaging in medical applications). This
is why multiwaves or hybrid systems are proposed as models. As already men-
tioned, mathematically, solving these inverse problems is even more complicated
because they require a hard coupling between PDE of different nature : parabolic
and hyperbolic. The system (1.1) propose a model where the thermal effects are
fully kept. Indeed, the TAT approach provides a complete model coupling heat
transfer and pressure equations.

The outline of this paper is the following. In the Section 2 we prove two
key Carleman estimates involving the observation of only one component. The
section 3 is concerned by the proof of the reconstruction Theorem 1.1 and the
reconstruction Theorem 1.2.

1.2 Settings and hypothesis

Therefore, in a first part of this paper, we are going to derive two Carleman
estimates for the following strongly coupled hyperbolic-parabolic system involving
the observation of only one component.

at2p<x7t) - al(x)Ap(m,t) - a2($)A@(I, t) = f(ZE, t)? (1 6)

0:0(x,t) — asz(x)AO(x,t) — ay(2)?p(z,t) = g(x,t), in Q, '

where f(x,t), g(z,t) € L*(Q), a;(x) € C*Q) (j = 1,2,3,4) are real-valued

functions. We will assume that © and p satisfy initial condition (1.4) and boundary
conditions (1.5).

Let (x - 2’) denote the scalar product in R™. Let v = v(z) = (v1(x),- -, vu(x))

denote the outward unit normal vector to 02 at x. We assume that w C Q2 is a



subdomain of € satisfy
I\ Ow C {z € 9 ((z — x0) - v(z)) < 0} (1.7)
with some zy = (28,23, -+ ,2) € R"\ Q. Let T > 0 be given. Denote to = L.

We introduce two sets which are concerned with the coefficients a;(x), j = 1,
2, 3, 4

U= uaoﬂl,Mo,Ml,Mz = { (al(x),ag(x),ag(x),a4($)) € (02(6))4‘

ay(x) > o1, ag(x) > oy, az(x) >0, ag(x) >0, Vo € Q,
lajlle@ < Mo, llajllci@ < M, llajllce@y < Mo, j=1,2,3,4,

3a; — 2 ((x — @) - Vay) + L) (Z(x —29)-V (“m)) > ao} (1.8)

(1"{"222i as

as

where the constants My > 1, M; > 0, My > 0, 09 > 0, My > o1 > 0 are given.
Denote

m = inf |z — xo|*, M = sug\:c—xo|2, and D =+VM —m. (1.9)

z€Q z€Q

We assume that (a;(z), az(2), as(z), as(z)) € U = Uyy oy 1o,0m,01,- Denote

a1 =228nMEM, M3 + 20M — 802,y = (132nM1M% + 16M0> M3,

. 0001 01 O'il
Gz = MmN ) ) ] (>
(%Jraz) 8M " 16M§
1
2M? M2 3M} 2M2
044:6]\/[3043—1—0_07 a5:2MgOz3—|—2(1+0—0_|_ 020)M1_|_ 00’
1 1 1 1
4N M? M3
%:—0%—1-2(1—1——0—1—3 20>HM1,
01 01 01
16M3 M2\? M2\?
oy =——2 (1+—°) ,a8=2(1+—°) ,
oy o1 01

o _—Dag + \/D2a§ + o1 (D% + ag)
’ 4 (D2CV7 + O./g)

We choose 5 > 0 such that

042052 0'20'2 m203
0< B <min{ a2, —=2 01 L . 1.11
f < min {0‘9’ 16a2D?’ 1602D2" 2M, (01 + MZ) D2 (1.11)

. (1.10)




We will prove two Carleman estimate for (1.6) with the exponential weight
function e*¥ where

pla,t) = D (e t) = |z —zol* = B(t—to)* + B, V(w, 1) €Q, (1.12)

and A > 0 is a suitably large constant.

We set V. = (01,-++,0,), Var = (01, ,0,,0), |Vw* = >,_, |0ww]?,
|Vew|* = |[Vw]? + |0w]?, and so on. L*(Q), H*(Q2), etc. denote usual Sobolev
spaces. We further set

HZI(Q) = {U € LQ(Q)? ajuua]zuaajakuv 815” € L2(Q)7 j7 k= ]-7 e 7n} )
%272(Q) = {u € LQ(Q)? ajuaajzuaajakua atu>a152u < LZ(Q)? ja k= 17 e ,TL} )

and W = H>1(Q) x H>?(Q).

1.3 Main results

A first serie of results concerning new Carleman estimates for (1.6) involving the
observation of only one component of the system (1.6) is proved in Lemma 1.1.
More precisely the Carleman estimate (1.15) involves only the observation of the
pressure and the Carleman estimate (1.16) involves only the observation of the
temperature. The proofs are based on the results established in the paper [15] by
Li and Shang.

Lemma 1.1. Let (©,p) € W satisfy (1.6) and
O(z,t) =0, pla,t)=0, (z,t) € X200 x (0,T) (1.13)

O(x,0) =O(x,T) =0, ¥p(z,0)=px,T)=0, 2€Q, j=0,1. (1.14)

We assume that (&1,&2,@3,&4) €U, and that (1.11) holds. Moreover, we assume
that exists a constant oo > 0 such that ay > oy on Q. Then there exists a constant
2(D+n

n(B) > 0 such that for any T € (0, T)>’ there exists a constant A\g > 0 such

that for all X > Xg, there exist constants so(A) > 0 and Ky = Ky(so, X, 5, Q, T,
m, M, My, My, Ms, oq, 01, 03) > 0 such that

1
/ (33)\4g03@2 + El@@F + 8| VO + s A1pPp? + 5A90|Vx,tp\2) e?*?dxdt
Q

< K, / (f2 + 92) eXdxdt
Q



2
+ K2\ 3 (\)e? W) / <f2 +g ) |ofpP + |Ap|2> dadt, (1.15)
=0

w

for all s > sy, where ®(\) = e’\(MQJ“Btg), and Q, = w x (0,T). B
Besides, if there exists a constant o3 > 0 such that ay > o3 on €2, then there
exists Ky = Ky(So, Mo, B8, Q, T, m, M, My, My, M, 0o, 01, 03) > 0 such that

1
/ (33)\4903@2 + §|8t@|2 + sAp|VO|? + s*Mp*p® + 3)\<,0|Vx7tp|2) e**?dadt
Q
< K2/ (f2 + 92) eZ?dadt
Q

+ K3 M3 (N)e? W) / (6* + ©%+|9,0)* + |AB%) dadt, (1.16)

w

for all s > sq.

Then, we will consider different inverse coefficient problems. We are interested
to recover the unknown coefficient(s) using as less as possible of observation and we
focus on the observation of only one component of the system (1.1). We are able to
use for each case the observation of the temperature 6(x, t) (or the pressure p(z,t))
as well as the observation of the pressure p(x,t) (or the temperature 6(x,t)). We
refer to [1] for the choice of the coefficients of interest to be reconstructed. Among
all the coefficients appearing in the model (1.1), the absorption coefficient p, ()
is one of the most studied. Then due to the existing relations between a lot
of coefficients, the reconstruction of the thermal conductivity x(z) seems to be
relevant.

First, we address the inverse source problem of determining i, = o (), © € Q
from the interior measurement

O(x, ty), x €,
and the measurement in a partial subboundary layer

O(z,t), (x,t) € Qu.

We assume that
Ol (,t) = po(w) R(z,t)

where f1,(z) is an unknown function of z and independent of ¢t and R(z,t) and
k(x) are given functions. We rewrite accordingly the system (1.3)



Op — pvidiv <1Vp) —I'div (kVO) = pa(x)Ry (2, 1),

(1.17)
9,0 — pwa( KVO) — p%fafp = jta(2)Ro(z,),  in Q.
P
where Ry(x,t) = ['(x)R(x,t) and Re(z,t) = p(x)ép(x)R(x,t).
Assume
Usaparﬂ‘i?CpJeOagE 02(5)7 (1 18)
vy > /o1 >0, p>0, C, >0, k>0, >0, s >0 on Q, '
and 0
(vg,m, p%, p%f) cu. (1.19)
p p

Moreover, we consider an arbitrarily fixed function no(z) € C*(Q).

Theorem 1.1. Let (©,p) satisfy (1.3), let (@,ﬁ) satisfy (1.3) where p, is replaced
by fia, let (©,p) and (©,p) satisfy the same boundary condition (1.5) and let
(©,p) satisfy initial conditions (1.4) and let (©,p) satisfy initial condition (3.2).
Assume that ©,0,p,p € W»>(Q), Ry, Ry € W3*(Q) and 0, R, (x, o) # 0 for all
z € Q. Assume vy, T, C,, 00, satzsfy (1.18) and (1.19). We further assume that
exists a constant o3 > 0 such that “ > g5 on ). Then there exists a constant

B = B(og, 01, Mo, My, My) > 0 such that for any T > fﬁ, there exist constants
C >0 and T € (0,1) such that

| tta = tial|z2(0) < CFT, (1.20)
for all pg, tha satisfying
fa = flg = N0 ON W, (1.21)
where
= e -o)n) ) +Z 1050 — &)l 20120 (1.22)

=0

Then, we address the inverse problem of determining k = x(x), z € 2 from
the interior measurement
p(z, o), x €,

and the measurement in a subboundary layer
p(z,t), (z,t) € Q, 2 w x (0,7T),

assuming that p,(z) is known and we consider an arbitrarily fixed function n;(x) €

C2(Q).



Theorem 1.2. Let (©,p) satisfy (1.3), let (©,p) satisfy (1.3) where k is replaced
by k&, let (©,p) and (O, p) satisfy the same boundary condition (1.5) and let (©, p)

satisfy initial conditions (1.4) and let (©,p) satisfy initial condition (3.9). Assume
that ©,0,p,p € W>*(Q) and

(vé (:1: g) Az — a:o)) £ 0 for all x € Q. (1.23)

Assume vg,I', C,, 6o, ¢ satisfy (1.18) and (1.19). We further assume that exists
a constant oo > 0 such that ' > oo on ). Then there exists a constant [ =
B(og, 01, My, My, My) > 0 such that for any T > 22 there exist constants C' > 0

\/67
and T € (0,1) such that

Ik = &llgi o) < CF, (1.24)
for all k, Rk satisfying
k=k=mn and Vk = Vi =Vn onwUJiQ, (1.25)
where
Fi=Gi+lp=Dllgsq.) -
with

Gt = [10:(p = D) () ey + Y (o) |5y where Y (2,8) = [3(p — p)(z, )t

2 Carleman estimates for thermoacoustic sys-
tem

Recall the following result established in [15] by Li and Shang.
Theorem 2.1. Let (©,p) € W satisfy (1.6) and

O(z,t) =0, p(z,t)=0, (z,t) €200 x (0,T)

O(,0) = O(z,T) = 0, &p(x,0) = Hp(a,T) =0, z € T, j=0,1.

We assume that (al,ag,a37a4) € U, and that (1.11) holds. Then there exists

a constant n(f) > 0 such that for any T € (0, 2@?”), there exists a constant

Xo > 0 such that for all A > Xg, there exist constants so(A) > 0 and K = K (s,
Xo, B, Q, T, m, M, My, My, My, og, 1) > 0 such that

1
/ <s3)\4g03@2 + —]0,0 + sAp|VO|? + s*Mp*p® + s/\g0|Vx,tp\2) e?*?dxdt
Q 5@



< K/ (f2 + 92) e?*?dxdt
Q
1
+ C’/ {33)\4@3 (©*+p°) + §|8t@|2 + $3X303 [0,p[? }e25”d$dt, (2.1)

for all s > sg.
By Theorem 2.1, we prove Lemma 1.1.

Proof. By (2.1), we have
1
/ (33)\4903(92 + §|8t@|2 + 5Ap|VO|? + s M p® + s)\go|Vx7tp|2) e**?dxdt
Q
< K/ (f2 + 92) e?*?dxdt
Q

+ OSN3 (N) 22V / (0% +p* + 9,0)% + |9p[*) dadt, (2.2)

w

for all s > sq, where ®(\) = AH88)  Here and henceforth, C' denotes generic
positive constants which are dependent on n, Q, T, 5, m, M, M; (7 =0, 1,2), oy,
01, 02, 03, So, Ag, but independent of s and A\. By a usual density argument, we
can assume that (0,p) € C*(Q) x C*(Q).

We assume that there exists a constant g > 0 such that ay(z) > oy for all
x € Q and prove (1.15). By (1.6), we have (see [15])

&78t2p — a1Ap — agd© = f — agyg, (2.3)
where o a
a7 =1+ ——= and as = —. (2.4)
as as
By (al,a27a3,a4) € U and ay(x) > oy for all x € Q, we have ag(r) > 7 for all
x € Q. Therefore, by (2.3), we have
/ 10,0 dadt < c/ (f2 + g%+ |02p| + \ApF) dadt, (2.5)
w Qu

for all s > so. Furthermore, by (1.14) and Poincarés inequality, we have

T T
/ ©%dt < o/ 18,0° dt, for all s > s.

0 0
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Integrating it over w and using (2.5), we obtain

/ Q%dzdt < C / 18,0/ dzdt
< C/ <f2 +g°+ ‘33]9}2 + |Ap|2> dzdt, for all s > 5. (2.6)
Qu

Substituting (2.5) and (2.6) into (2.2), we obtain (1.15).
Eesides, we assume that there exists a constant o3 > 0 such that a4y > o3
on 2 and prove (1.16). We have (2.2) and then stimate wi (p*+ |8tp|2) dzdt.

We multiply the second equation in (1.6) by (9;p)e* and integrate it over Q,,.
Integrating by parts and using (1.14), we have

/ g (0,p) e*dadt

w

= / (0,0 — a3 AO) (Oyp) e*dadt — %/ aq {0, ((31:]?)2)} e’ dadt

w w

— %03/ {8t (p2)} e?tdxdt + 03/ p (Oyp) e*dadt
Qu

w

- / (0,0 — a3 AO) (O,p) e*dadt + / aq |0yp|” e*dadt

w Qu

—i—ag/ p262td$dt+ag/ p (O,p) e*dadt

> -2 [ ol asdt—C [ (00F +]06F) *dude
Qu Qu

+ 0y / (10ep|? + p?) e*dadt — % (10wp|? + p?) e*dadt
Qu Qu
30’3

Z 5 (10| + p*) e*dzdt — C/ (10:0* +|20)%) e*dadt,
Qu w

/ g (0yp) e*dxdt < % 0,p|” e dadt + C/ g*e*tdxdt, for all s > s.
Qu

w w

Therefore, we have
% (|8tp|2 +p2) dzdt < % (|0tp|2 —|—p2) et dxdt
Qu Qu

< O/ (6* +10:0" +|A0)%) e*dxdt
Qu

< C’eQT/ (9 + 10,0)> + |A@|2) dzdt, for all s > s. (2.7)
Qu
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Substituting (2.7) into (2.2), we obtain (1.16).
The proof of Lemma 1.1 is complete. O

3 Inverse problems

In this section, we shall prove Theorem 1.1 and 1.2 for inverse problems.
We recall to = Z, o(z,t) = M@0, (x,t) = |z — xof* — B (t — to)” + B13,
D=vM—-—m,T > \2/—%. We have

o (2, 1) > oMinf,eqle—zol*+613) >qL eA(ian€§|x—xo\2+D2)7 req,
and
o (z,T)=¢p(x,0) < rswpcale—nol” — g e Q.
For any given sufficiently small ¢ > 0, 36 = §(gg) > 0, such that
o (x,t) <d—eo, (2,t) € Qx([0,20]U[T —25,T)).

We take a cut-off function x(¢) € C*°(R) satisfying 0 < y < 1 with

() = {0, te[0,8|U[T —5,T],

3.1
1, tel[20,T—24). (3:1)

3.1 Inverse source problem of determining the absorption
coefficient

In this part, we aim to determine the absorption coefficient u, from a single
measurement of ©(x,t) and we are going to detail the proof of Theorem 1.1.

Proof. Let (O(z,t),p(z,t)) satisty (1.17), (1.4)—(1.5) and (é(m,t),ﬁ(x,t))A satisfy

(1.17) in which the coefficient 1, is replaced by i,. We will assume that © and p
satisfy initial conditions

O(z,0) = Op(z), plx,0) = po(z), p(z,0)=pi(x), =z€Q  (3.2)

and the boundary conditions (1.5).
Now let y = p — p, 2 = © — O and note m, = p, — fia- We get from (1.17)

1
Oy — pvdiv <;Vy> —I'div (kV2) = mg(x) Ry (2, 1),

1 Bos (3.3)
— —-di _ 205 g2, _ y )
Oz pcp v (I{VZ) pcpat Y ma(l')RQ(:E7 )’ in Q,



12

with boundary conditions:
y(x,t) =0, 2(x,t) =0, (z,t) € 002 x (0,T).

Set up = x0?%y, uy = xOPy, vi = x0?z, vy = x97z. Then, taking the time
derivative of system (3.3) and multiplying by x we get

( Pup — v2AuE — ThAv = X ma(2)0F T Ry + T (Vug, Vo)
+(9) (0 y) +20ix) (912)

K O0s
Opvy, — p—CpAvk — p—CO,patzuk = X M (2)OFT Ry + (VK - V)
Oos

+ (Ox) (07 T'2) — oC, {(82x) (0Fy) +2(0x) (8F™y) }, in Q,

ug(x,t) =0, vg(z,t) =0, (x,t) € 02 x (0,T),
ug(x,0) = vg(x,0) = yug(x,0) = i (z,0)
\ = uk(ajaT) = Uk<x>T) = 8tuk:(x>T) = 6tvk(x>T) = 07 VIS ﬁa

for k= 1,2, where T (Vy, Vz) = pv? (V <%> : Vy) +I'(Vk-Vz).
Fixing A > 1 large, applying (1.16) in Lemma 1.1 and noting the definition of

X, we can obtain, for k = 1,2,
/QX2 {s* (10F 217 + (05 y?) + 5 IV (05 2) P+ [V (9F ) I7) } ¢ dedt
<C /Q {7 (02 +ud) + 5 (|Vorl? + |Vl + | (9x) OF'y?) } 2P dadt
<C /Q {8 (2 +12) + 5 (|[Vorl® + |Vasug]?) } €22dadt + CsMge@=0)

< CsMze*(d==0) 4 C/ 2 mZe*dxdt + C/ (|Vul® + | Vug|?) €**?dadt
Q

Q
3 3 4
+ Cecs/ {mi +Z ‘dez‘Z +10:x)? (Z ]8{2‘2 + Z |8fy|2>
w =2 j=2 =3
5 P2 ! P2 5 ; 2
oS oty + > |0+ |0 A }dxdt, (3.4)
=2 j=2 j=2

for all large s > s, with

3
(12| + 0F3[*) daat + Z/Q <|a{@\2 +
=2

A2
ag@‘ ) dadt.
j=27@
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Taking so > 0 large enough, the third term in the right hand side of (3.4) can be
absorbed by the left hand side. By the second equation in (3.3) and the hypothesis
of Theorem 1.1, we have,

1
o2y = rCy Oty — ——div (kVz) — mg(2)0) Ro(z,t) ¢, in Q, k=0,1,2.
90§ pCp

Therefore, we have

4 3
/Q {!athZ\azy\2+\afxﬁzwy\?}dxdt
w j:3

j=2
T R 2
SC’/ <m3+2}3§z| +Z‘V8§z‘ +Z|A8§z| )dxdt. (3.5)
Qu j=1 =0 =0
Let to = L.
(@)D Rl t0) = P=(-1t0) — LBy (1t0) — o Ady=(- o)
pCp pCyp

— (VK -Vz(-, 1)), on Q.

Integrating in space after multiplication by e25¢(@,t0) e get:
/Q |ma(x)0; Ra(x, to)\2 e25¢(@lo) g
< C/Q {|at22(x7t0)‘2 + |8fy(x,t0)|2}ezs“’(w’m)dw+CeCS||8tz(.,t0)||§p(m,
for all s > s5. Then by integration in time and after introducing x(¢), we have
/Q Mo (2)0,Ra (1, 10)|? 2150 A
< C/Oto/ﬂat{(\xale2+ X3Fy[*) e} dadt + Ce™ 2, o) a0
<€ [ s (n0pef’ + at) s
# S [ (prsf = potsf?) asar

+ CM362s(d_EO) + CeCSH@tz(-, t0)||121[2(Q)7 S > Sp.
Then thanks to (3.4) and (1.21) we obtain

/ |ma ()0 Ro(x, to) |2 e25¢(®:t0) ]
Q
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C
< CMge*sld==0) 4 —2/ 2 m2e**?dxdt + Ce®* F?
s
Q

cT

< O Mge?std—20) 4 — mier‘P(w’tO)dx + Ce“*F?, (3.6)
s

for all large s > so with

4

3 3
F = 10u2(-, to) 132 +/ <Z 002"+ D Vol + D |Ad2| )dxdt.
Qu \j=1 =0 =0
For the second inequality in (3.6), we have used

o (z,t) < @(x,ty) forall (z,t) € Q. (3.7)

By the hypothesis of Theorem 1.1, the second term in the right hand side can be
absorbed by the left hand side in (3.6) for all s > s large enough. Hence, taking
s1 > s large enough and since ¢ (z,tg) > d on €, for all s > s;, we obtain

/ ima ()| dz < Co~2 / (1 (2)01 B (1, 10) 2 29@0)dy < O Mge=2550 4 C'eC F2.
Q 0
Therefore, we have
/ Img(z)|” dz < Ce®™ (Mze™0 +e“*F?) , for all s > 0.
Q

Assume F' # 0. Choosing s > 0 such that Mse™ 20 = ¢“*F2_ we get the desired
result.
]

Remark 3.1. Following equation (2.12) in [1] the knowledge of 1, allows us to
recover the conductivity o(x) via its Fourier transform.

Remark 3.2. A similar estimate using the observation of only the component p
could be established.

3.2 Inverse problem of determining the thermal conduc-
tivity

In this part, we aim to determine the thermal conductivity x(z) from a single

measurement of p(x,t) and we are going to detail the proof of Theorem 1.2.
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Proof. First, we rewrite the system (1.3)

1
Op — pvidiv (;Vp) —I'div (kVO) = Fy(z,1),

1 foc (3.8)
. 0 2 .

_ - = [

00 pdeW (kVO) pC’patp h(x,t), in Q,

where Fy(x,t) = I'(x)0 11, and Fy(x,t) = ﬁ@tﬂa are assumed to be known.

Let (O(x,t),p(x,t)) satisfy (3.8) and ((:)(:v,t),ﬁ(xA,t)) satisfy (3.8) in which the
coefficient k is replaced by k. We will assume that © and p satisfy initial conditions

O(z,0) = Op(z), p(x,0) =po(z), p(z,0)=pi(x), z€Q  (3.9)

and the boundary conditions (1.5).
Now let y = p —p, 2 = © — O and note K = k — k. We get from (3.8)

82y — v?Ay — TkAz = T (Vy, Vz) + Ddiv (Kvé) ,
pCodyz — KAz — 000y = (Vi - V2) + div (Kvé)) @ (310)
y(x,t) =0, z(z,t) =0, (x,t) € 0 x (0,T),
where T (Vy, Vz) = pv? (V (%) ~Vy) +T'(Vk-Vz).
Let x(t) be the same as in §3.1. Setting as previously u; = x0y, us =

X0y, uz = xOPy, vi = X0z, vo = Y0z, v3 = xO2z, then taking the time
derivative of system (3.10) and multiplying by x we get

( afuk - Ufﬁuk —TrAvy, = (Q:QX) (8fy) +2(0x) (af“y)
+ T (Vug, Vo) + xTdiv (KVOF6)

K B % Oo<

Dyvr — p—CpAvk pCpﬁka = (Ox) (0r2) — oC (92x) (8Fy) + 2 (Ay) (9F+y) )
1 1 A '
-+ p_Cp (V,‘i . Vvk) + IO—CdeIV <KV(9t @) s 1mn Q7

ug(x,t) =0, vg(z,t) =0, (z,t) € 00 x (0,7,
ug(x,0) = vg(x,0) = Qug(x,0) = i (x,0)

{ =up(z,T) = vp(x, T) = Opug(x, T) = Ovp(x,T) =0, z€Q,
for k=1,2,3.

Fixing A > 1 large, applying (1.15) in Lemma 1.1 and noting the definition of
X, we can obtain, for k =1, 2, 3,

/QX2 {53 (|8tkz|2 + |8fy|2) + s (]V ((952) >4V ((9fy) ]2) } e2*?dxdt



16

= / {s* (vi +up) + s (Vo] + |[Vug[*) } e**%dzdt
Q
< / {s® (vi +up) + s (Vo] + [V |?) } €?dadt
Q
< CMye*td==0) 4 C/ X’ (K? +|VK|?) e*?dxdt
Q

+C/ (]Vvk|2+!Vuk|2) eZS(pdl’dt
Q

5
+ Cecs/ K+ |VE[+) |afyl” + Z |8jAy|2> dzdt
Qu 7=1 7=1
3 3
+ Cecs/ Z |V8§y\2 + Z | Q?X : Z }(8tx) (ag'“y) }2) dxdt
w j=1
+ Oecs/ Z |V z|? + Z [(9x) (0/2) \2> dzdt, (3.11)
w — j=1

for all large s > so, with

1
2
M,y = Z (Hagp”m(cg) +]

j=1

3
511, Q)) +; <||a{@HiQ(Q) + ) atjéH;(Q)) '

Taking sq > 0 large enough, the third term in the right hand side of (3.4) can be
absorbed by the left hand side.

Let to = Z. From system (3.10), we can write

div (Kvé) (-, to)) = pC,Diz (- to) — OosO2y (-, to) — KAZ(-, to)
— (VK- Vz(-,t9)), onQ,

To get rid of the term in Az(-,ty), we come back to the system (3.10) and we
eliminate the terms in x and in Az to obtain:

1
[pCh0sz = 02y — v2Ay + T0yc07y — pu? <V (;) : Vy) , in Q. (3.12)

By (1.4) and (3.9), we have z(z,0) = 0yy(z,0) = 0. Setting Y (z,?) fo x,t)dt’,
integrating (3.12) with respect to ¢ from 0 to ¢, and noting the hypothesm of
Theorem 1.2 we have

14 T'6y¢ v? v? 1
= oy —=_AY - = [v([=Z) -vY). 1
T TG, %y I'oC, r'c, p (3.13)
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Therefore, we get estimates of ||Az(-,t0)||%2(m and of ||VA2(-,to)||%2(Q) in terms
of norms of 9yy(+,ty) and Y (+,¢y) in the form

182, o) By < € (180 t0) 32y + 1Y (o) 3y )

and
1922, 1)) < € (1800 10) By + 1Y (- t0) ey )

and we set
1y (- to) sy + IV (- t0)l5 () = G and - Gy > 0.
By (3.13), we further have
[ (T V2 10)) [agoy + 19 (V- D20, 10) [y < OGE

Then we deduce

A

= C/ {IatZ(x,to)F + \afy(x,to)f} 250(@,10) 4
Q

div (KO (z,to)) ‘2 + ’Vdiv (K96 (z,10)) ‘2} 256(040) 1

+ C/ {|V8tz(a7, to)]> + |VOy(z, to)’Q} 2@l dy 4 Ce* G2,
Q

< C/to/at{<yxatz|2+ x02y[* + X Vor2|* + \Xvafyf) ezs“"}dxdt
+ C?ecsgf
< C’/Qs (|X8tz|2 + {Xﬁfyf + |xV,z|* + ‘xV83y|2> e?*?dxdt
+ C/ % (}Xﬁfzf + ‘Xﬁfyf + ‘xV@fz‘Q + }XV8fy]2> e??dxdt
+ C]\Z)e%(d_go) + Ce“* G2, s > S, (3.14)
where

2
My = o2 g + 0

2 2 A
HY(Q) + ||at®HH1(Q) + ‘ 815@‘

HY(Q)

Moreover, by (3.13), we can obtain

3 3
/ <Z IV 2| + Z |(8tx) ((’“)gz) ’2> dzdt
Qu \j=1 j=1
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/ (Z Volyl® + Z VA Y[ + Z OFyl” + Z > |akalaﬂy|2> dadt,

7=0 k,i=1

for all s > so. From this last inequality and from (3.11) and (3.14) we deduce

A

< O (My + M;)e*==0) L ¢ / X* (K2 +|VEK[?) e**dzdt
Q

div (KV@ (x, t0)> ‘2 + ‘Vdiv (KV@ (x, t0)> ’2} 0252(@:10) 41

4 2
+ Ce®*G? + Cecs/ <K2 HIVEP+ > [Volyl + ) [VAdy[?
Qu

Jj=0 J=0

—l—Z 107 y|* + Z Z |8k818§y|2> dadt, for all large s > so.

7=0 k,l=1

We recall the hypothesis (1.25) on x. Noting (1.23), applying Lemma 6.2 by
Yamamoto [19], and using (3.7), we have

52/ (K? + |VK|?) e?¢leto)qy
Q

</

< C (My + M;)e*d==0) 4 T / (K? + |[VK[?) e?¢l=lo)dy + Ce“*GE
Q

+ Ces / (Z IVoly|? + Z IVAd y|?

div (Kvé (2, to))

2 A 2
+ ‘Vdiv (Kv@ (z, to)) ’ } 259(@.t0) {1

—l—Z 107 y|* + Z Z |8k(918§y|2> dadt, for all large s > so.

7=0 k,l=1
Then taking sy > s large enough and since ¢ (z,t) > d on €, we get
/ (K2 + |VK|2) dl‘ S (82 —CT) e—QSd/ (K2+ |VK| ) 28<pmto)dx
Q
< C(My+ Ms)e ™ 4 Ce“ F2 for all s > s,.

We end the proof mimicking the end of the proof of Theorem 1.1. O]
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