C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang et al., A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors, Chem. Soc. Rev, vol.44, pp.7484-7539, 2015.

F. Béguin, V. Presser, and A. Balducci, Frackowiak, E. Carbons and Electrolytes for Advanced Supercapacitors, Adv. Mater, vol.26, pp.2219-2251, 2014.

A. Brandt, S. Pohlmann, A. Varzi, A. Balducci, and S. Passerini, Ionic Liquids in Supercapacitors, MRS Bull, vol.38, pp.554-559, 2013.

A. Lewandowski, A. Olejniczak, M. Galinski, and I. Stepniak, Performance of Carbon-Carbon Supercapacitors Based on Organic, Aqueous and Ionic Liquid Electrolytes, J. Power Sources, vol.195, pp.5814-5819, 2010.

P. Simon and Y. Gogotsi, Capacitive Energy Storage in Nanostructured Carbon-Electrolyte Systems, Accounts Chem. Res, vol.46, pp.1094-1103, 2013.

T. Liu, F. Zhang, Y. Song, and Y. Li, Revitalizing Carbon Supercapacitor Electrodes with Hierarchical Porous Structures, J. Mater. Chem. A, vol.5, pp.17705-17733, 2017.

K. Fic, A. Platek, J. Piwek, and E. Frackowiak, Sustainable Materials for Electrochemical Capacitors, Materials, vol.21, pp.437-454, 2018.

A. A. Lee, C. S. Perez-martinez, A. M. Smith, and S. Perkin, Concentrated Electrolytes. Faraday Discuss, vol.199, pp.239-259, 2017.

R. Lhermerout and S. Perkin, Nanoconfined Ionic Liquids: Disentangling Electrostatic and Viscous Forces, Phys. Rev, vol.3, p.14201, 2018.

W. Tsai, P. Taberna, and P. Simon, Electrochemical Quartz Crystal Microbalance (EQCM) Study of Ion Dynamics in Nanoporous Carbons, J. Am. Chem. Soc, vol.136, pp.8722-8728, 2014.

A. C. Forse, C. Merlet, J. M. Griffin, and C. P. Grey, New Perspectives on the Charging Mechanisms of Supercapacitors, J. Am. Chem. Soc, vol.138, pp.5731-5744, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01985713

A. C. Forse, J. M. Griffin, C. Merlet, P. M. Bayley, H. Wang et al., NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors, J. Am. Chem. Soc, vol.137, pp.7231-7242, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01986010

A. C. Forse, J. M. Griffin, C. Merlet, J. Carreteo-gonzalez, A. O. Raji et al., Direct Observation of Ion Dynamics in Supercapacitor Electrodes Using In Situ Diffusion NMR Spectroscopy, Nature Ener, 2017.

A. A. Kornyshev, Double-Layer in Ionic Liquids: Paradigm Change?, J. Phys. Chem. B, vol.111, pp.5545-5557, 2007.

J. Huang, B. G. Sumpter, and V. Meunier, Theoretical Model for Nanoporous Carbon Supercapacitors, Angew. Chem. Int. Edit, vol.47, pp.520-524, 2008.

S. Kondrat and A. Kornyshev, Superionic State in Double-Layer Capacitors with Nanoporous Electrodes, J. Phys.: Condens. Matter, vol.23, p.22201, 2011.

C. Merlet, B. Rotenberg, P. A. Madden, and M. Salanne, Computer Simulations of Ionic Liquids at Electrochemical Interfaces, Phys. Chem. Chem. Phys, vol.15, pp.15781-15792, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00862346

M. V. Fedorov and A. A. Kornyshev, Ionic Liquids at Electrified Interfaces, Chem. Rev, vol.114, pp.2978-3036, 2014.

R. Burt, K. Breitsprecher, B. Daffos, P. Taberna, P. Simon et al., Capacitance of Nanoporous Carbon-Based Supercapacitors Is a Trade-Off between the Concentration and the Separability of the Ions, J. Phys. Chem. Lett, vol.7, pp.4015-4021, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01494252

Y. He, R. Qiao, J. Vatamanu, O. Borodin, D. Bedrov et al., The Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging, J. Phys. Chem. Lett, vol.7, pp.36-42, 2016.

D. Roy and M. Maroncelli, An Improved Four-Site Ionic Liquid Model, J. Phys. Chem. B, vol.114, pp.12629-12631, 2010.

C. Schroder, Comparing Reduced Partial Charge Models with Polarizable Simulations of Ionic Liquids, Phys. Chem. Chem. Phys, vol.14, pp.3089-3102, 2012.

D. T. Bowron, C. Agostino, L. F. Gladden, C. Hardacre, J. D. Holbrey et al., Structure and Dynamics of 1-Ethyl-3-methylimidazolium Acetate via Molecular Dynamics and Neutron Diffraction, J. Phys. Chem. B, vol.114, pp.7760-7768, 2010.

B. L. Bhargava and S. Balasubramanian, Refined Potential Model for Atomistic Simulations of Ionic Liquid

, J. Chem. Phys, p.114510, 2007.

V. Chaban, Polarizability Versus Mobility: Atomistic Force Field for Ionic Liquids, Phys. Chem. Chem. Phys, vol.13, pp.16055-16062, 2011.

M. W. Cole and J. R. Klein, The Interaction Between Noble Gases and the Basal Plane Surface of Graphite, Surf. Sci, vol.124, pp.547-554, 1983.

W. Humphrey, A. Dalke, and K. Schulten, VMD -Visual Molecular Dynamics, J. Mol. Graphics, vol.14, pp.33-38, 1996.

V. L. Deringer, C. Merlet, Y. Hu, T. H. Lee, J. A. Kattirtzi et al., Towards an Atomistic Understanding of Disordered Carbon Electrode Materials, Chem. Commun, vol.54, pp.5988-5991, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01985588

V. L. Deringer and G. Csányi, Machine Learning Based Interatomic Potential for Amorphous Carbon, Phys. Rev. B, p.94203, 2017.

J. C. Palmer, A. Llobet, S. Yeon, J. E. Fischer, Y. Shi et al., Gubbins, K. E. Modeling the Structural Evolution of Carbide-Derived Carbons Using Quenched Molecular Dynamics, Carbon, vol.48, pp.1116-1123, 2010.

L. Sarkisov and A. Harrison, Computational Structure Characterisation Tools in Application to Ordered and Disordered Porous Materials, Mol. Simulat, vol.37, pp.1248-1257, 2011.

S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comp. Phys, vol.117, pp.1-19, 1995.

P. Liu, E. Harder, and B. Berne, On the Calculation of Diffusion Coefficients in Confined Fluids and Interfaces with an Application to the Liquid-Vapor Interface of Water, J. Phys. Chem, vol.108, pp.6595-6602, 2004.

B. Rotenberg, V. Marry, R. Vuilleumier, N. Malikova, C. Simon et al., Water and Ions in Clays: Unraveling the Interlayer/Micropore Exchange Using Molecular Dynamics, Geochim. et Cosmochim. Acta, vol.71, pp.5089-5101, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00369627

N. N. Rajput, J. Monk, R. Singh, and F. R. Hung, On the Influence of Pore Size and Pore Loading on Structural and Dynamical Heterogeneities of an Ionic Liquid Confined in a Slit Nanopore, J. Phys. Chem. C, vol.116, pp.5169-5181, 2012.

C. Wang, Y. Wang, Y. Lu, H. He, F. Huo et al., Height-Driven Structure and Thermodynamic Properties of Confined Ionic Liquids Inside Carbon Nanochannels from Molecular Dynamics Study, Phys. Chem. Chem. Phys, vol.21, pp.12767-12776, 2019.

R. Singh, J. Monk, and F. R. Hung, A Computational Study of the Behavior of the Ionic Liquid

, Inside Multiwalled Carbon Nanotubes, J. Phys

. Chem, , vol.114, pp.15478-15485, 2010.

R. Singh, J. Monk, and F. R. Hung, Heterogeneity in the Dynamics of the Ionic Liquid [BMIM +

, Confined in a Slit Nanopore, J. Phys. Chem. C, vol.115, pp.16544-16554, 2011.

C. Merlet, C. Péan, B. Rotenberg, P. A. Madden, B. Daffos et al., Highly Confined Ions Store Charge More Efficiently in Supercapacitors, Nat. Commun, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01157828

A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITOthe Open Visualization Tool, Modelling Simul. Mater. Sci. Eng, vol.18, p.15012, 2010.

J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon et al., Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, vol.313, pp.1760-1763, 2006.

E. Raymundo-piñero, K. Kierzek, J. Machnikowski, and F. Béguin, Relationship Between the Nanoporous Texture of Activated Carbons and their Capacitance Properties in Different Electrolytes, Carbon, vol.44, pp.2498-2507, 2006.

Y. Lee, S. D. Barthel, P. Dlotko, S. M. Moosavi, K. Hess et al., Quantifying Similarity of Pore-Geometry in Nanoporous Materials, Nature Commun, vol.8, p.15396, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01706966