N
N

N

HAL

open science

LONG TIME DISPERSIVE ESTIMATES FOR
PERTURBATIONS OF A KINK SOLUTION OF ONE
DIMENSIONAL CUBIC WAVE EQUATIONS

Jean-Marc Delort, Nader Masmoudi

» To cite this version:

Jean-Marc Delort, Nader Masmoudi. LONG TIME DISPERSIVE ESTIMATES FOR PERTURBA-
TIONS OF A KINK SOLUTION OF ONE DIMENSIONAL CUBIC WAVE EQUATIONS. 2020.

hal-02862414v1

HAL Id: hal-02862414
https://hal.science/hal-02862414v1

Preprint submitted on 9 Jun 2020 (v1), last revised 1 Jun 2022 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02862414v1
https://hal.archives-ouvertes.fr

Jean-Marc Delort

Nader Masmoudi

LONG TIME DISPERSIVE
ESTIMATES FOR
PERTURBATIONS OF A KINK
SOLUTION OF ONE
DIMENSIONAL CUBIC WAVE
EQUATIONS




Jean-Marc Delort

Université Sorbonne Paris-Nord, LAGA, CNRS, UMR 7539,
99, Avenue J.-B. Clément, F-93430 Villetaneuse.

E-mail : delort@math.univ-parisi3.fr

Nader Masmoudi

NYUAD Research Institute, New York University Abu Dhabi, PO Box
129188, Abu Dhabi, UAE and CIMS, 251 Mercer Street, New York, NY
10012, U.S.A.

E-mail : masmoudi®@math.nyu.edu

2000 Mathematics Subject Classification. — 35L71, 35B35, 35B40,
35P25, 35S50.

Key words and phrases. — Kink, Nonlinear Klein-Gordon equations, Nor-
mal forms, Fermi Golden Rule.

J.-M. D. was supported at the beginning of this work by the ANR project
13-BS01-0010-02. Moreover, part of this work was done while the author
was in residence at the Mathematical Sciences Research Institute in Berkeley,
California, during the fall semester 2018 “Hamiltonian systems, from topology
to applications through analysis”.

The work of N. M. is supported by NSF grant DMS-1716466 and by Tamkeen
under the NYU Abu Dhabi Research Institute grant of the center SITE. N.
M. also thanks Fondation des Sciences Mathématiques de Paris and Institut
des Hautes Etudes Scientifiques for their support.



LONG TIME DISPERSIVE ESTIMATES FOR
PERTURBATIONS OF A KINK SOLUTION OF
ONE DIMENSIONAL CUBIC WAVE
EQUATIONS

Jean-Marc Delort, Nader Masmoudi

Abstract. — A kink is a stationnary solution to a cubic one dimensional
wave equation (8? — 8%)(;5 = ¢ — ¢ that has different limits when z goes to
—o0 and +oo, like H(z) = tanh(x/v/2). Asymptotic stability of this solution
under small odd perturbation in the energy space has been studied in a recent
work of Kowalczyk, Martel and Munoz. They have been able to show that the
perturbation may be written as the sum a(t)Y (x) + (¢, x), where Y is a func-
tion in Schwartz space, a(t) a function of time having some decay properties
at infinity, and ¢ (t, z) satisfies some local in space dispersive estimate. These
results do not give precise decay rates for this solution and say nothing about
possible dispersive behaviour of 1) on the whole space-time domain. The goal
of this paper is to attack these questions.

Our main results gives, for small odd perturbations of the kink that are
smooth enough and have some space decay, explicit rates of decay for a(t)
and for (¢, x) in the whole space-time domain intersected by a strip [t| <
e~4t¢, for any ¢ > 0, where € is the size of the initial perturbation. This
limitation is due to some new phenomena that appear along lines x = i@t
that cannot be detected by a local in space analysis. Our method of proof
relies on construction of approximate solutions to the equation satisfied by
1, conjugation of the latter in order to eliminate several potential terms, and
normal forms to get rid of problematic contributions in the nonlinearity. We
use also the Fermi Golden Rule in order to prove that the a(t)Y component
decays when time grows.



Résumé. — Un “kink” est une solutions stationnaire de I’équation des ondes
cubique en dimension un (8252 — (3%)(;5 = ¢ — ¢ qui a des limites différentes
lorsque z tend vers —oo et +o0o, comme H(z) = tanh(z/v/2). La stabilité
asymptotique de petites perturbations impaires d’une telle solution a été
étudiée dans un travail récent de Kowalczyk, Martel et Mufioz. Ils ont montré
que la solution perturbée peut s’écrire sous la forme a(¢)Y (x) + ¢(¢,x), ou
Y (x) est une fonction dans l'espace de Schwartz, a(t) une fonction du temps
ayant certaines propriétés de décroissance a Uinfini, et ou (¢, z) vérifie cer-
taines estimations dispersives localisées en espace. Ces résultats ne donnent
pas de taux précis de décroissance, et n’apportent pas d’informations sur
I’éventuel comportement dispersif de la solution dans tout I’espace-temps. Le
but de cet article est d’aborder ces questions.

Notre principal résultat donne, pour de petites perturbations impaires
régulieres et décroissantes a linfini du “kink”, des taux explicites de
décroissance pour a(t) et (t,x), pour x décrivant la droite réelle et ¢
vérifiant [t| < e 4t¢ ¢ > 0 étant une constante arbitraire et e désignant la
taille de la perturbation initiale. La restriction sur l'intervalle de temps sur
lequel nous obtenons les estimations est due & un nouveau phénomene, qui
apparait en temps de lordre €%, le long de droites z = igt, et qui ne
peut étre détecté par une analyse locale en espace. Notre méthode de preuve
repose sur la construction de solutions approchées a I’équation vérifiée par 1,
conjugaison de celle-ci dans le but d’éliminer plusieurs termes potentiels, et
formes normales afin de se débarrasser de contributions problématiques de la
non-linéarité. Nous utilisons également la régle d’or de Fermi afin d’obtenir
la décroissance en temps voulue de a(t)Y (z).



CHAPTER 0

INTRODUCTION

0.1. Motivation and main theorem

The starting point of this work has been the paper [37] of Kowalczyk,
Martel and Munoz devoted to the asymptotic stability of odd perturbations of
the “kink” i.e. the stationary solution H(z) = tanh(z/y/2) of the cubic wave
equation

(0.1.1) (07 —02)p =0 — &

These authors showed that an odd perturbation of the initial data (H,O0),
small enough in the energy norm, gives rise to a perturbation of the solution
that goes to zero when time goes to infinity in the space HL_(R) x L _(R).
More precisely, they prove that (¢(t,x),d;¢(t,x)) may de decomposed as
(ui(t,z),us(t,z)) + (21(t), 22(t))Y (), where Y is an explicit S(R)-function,
z;(t) are scalar functions of time, and (u1 (¢, x), u2(t, x)) is the dispersive part
of the solution. The main result of [37] states that the functions z; decay in
time in the sense that

Hoo 4 4
[ (a@ + a0)) de < +oc
—o0
and that the local energy of (uj,usg) satisfies for some ¢y > 0
+o0o
/ / [(3xu1)2 +ul + u%] (t,z)e " dtdz < +o0.
—oco JR

This result raises the following questions: making eventually stronger assump-
tions on the smoothness/decay of the initial perturbation, could one get an
explicit decay rate for the preceding quantities, instead of an integral one?
Moreover, could one obtain decay estimates for [u;(t, )|z (®) and not just
local in space decay bounds?
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The above questions are natural if one remembers the results holding true
for small perturbations of the zero solution to nonlinear Klein-Gordon equa-
tions. Actually, if u solves (8252 - 0% + 1)u = N(u), where N is a smooth
nonlinearity vanishing at least at order two at zero, the solution may be fully
described when t goes to infinity through a one term asymptotic expansion
(see [29], 41], [42]). This expansion does not give just the decay rate of the

solution, of the form ||u(t,-)||r~ = O(ef%) when ¢ goes to 400, for smooth
decaying initial data of small size €, but shows also that, in general, there is
modified scattering. Actually, one may treat much more general nonlinearities
than just functions N (u) of u, including quasi-linear ones: In [15], [16], a “null
condition” for such quasi-linear nonlinearities is introduced, and it is proved
that, when it holds, solutions exist globally (for small compactly supported
initial data), and that their asymptotic behaviour, including modified scatter-
ing, may be described. An easier proof, under weaker assumptions, has been
obtained more recently by Stingo [59]. Let us also mention, in the framework
of boundary value problems, the paper of Naumkin [51].

A long term objective might be to try to obtain for odd perturbations of the
kink solution of (0.II]) such a precise description when time goes to infinity.
We are far from being able to achieve that in this paper, where as a first step
we aim at describing the perturbed solution up to time €4, if € is the small
size of the smooth decaying perturbation of the kink at initial time. Let us
describe more precisely our main result. Look for solutions of (L) under
the form

(0.1.2) o(t,x) = H(x) + p(tV2,2V?2).

The perturbation ¢ of the kink solves a Klein-Gordon equation with potential

1
(0.1.3) (D? = (D2 + 1+ 2V(@))p = nl)p” + 5¢°
where Dy = %%, D, = %8%,
3 o/ 3 T
(0.1.4) V(z) = ~1 cosh (5),%;(95) = §tanh 5

(see section [LT)). The Schrédinger operator —d2 + 2V (x) has spectrum made
of two negative eigenvalues —1 and —i and absolutely continuous spectrum
[0, 4+00[. Eigenvalue —1 will not be of interest to us as it is associated to an even
eigenfunction, while we solve ([I.L3]) for odd initial data. Consequently, re-
stricting ourselves to odd solutions, one may decompose the solution of (0.3
as ¢ = Py + (p, Y)Y where P,. is the projector on the absolutely continu-
ous spectrum [0, +oo[ and Y is an (odd) normalized eigenfunction associated
to eigenvalue —1. Setting a(t) = (Y,¢), one may deduce from (0L3) that
(a, Pycp) satisfies a coupled system of ODE/PDE (see (ILI9) in Chapter [I).
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Our main result asserts the following: Let ¢ > 0 be given and consider

(@I3) with initial data @|i=1 = €po, Oppli=1 = €p1 with (po,¢1) satisfying
for some large enough s

(0.1.5) lpollress + lerllEs + llzwollzn + llenlze < 1.

Then, if € < € is small enough, the decomposition ¢(t,-) = Pac(t,-) + a(t)Y
of the solution of (LT3 satisfies
1
la(t)] +|a'(t)] = O(e(1 +te*)~3)
1 0
1Pacp(t, )|z = Ot 2 (V1))
where 6" €0, %[, as long as t < e *t¢. Let us mention that we limit our
study to positive times (that does not reduce generality) and that, in order to
simplify some notation, we take the Cauchy data at t = 1 instead of ¢t = 0.
Moreover, the statements we get in Theorem [[LI.T] below give more precise
information that (0LI.6l). We just stress here the fact that (0.I.6]) provides the
information we are looking for, namely an explicit decay rate for a and Py,
up to time e~4te.
We notice that the dispersive estimate obtained for ||P,cp||r~ is pretty

(0.1.6)

similar to the bound in et~ % that holds for small solutions of equations (0;% —

cpl/ 1

02 4+1)u = N(u). Here, when t < e=*t¢, we get that || Pacy||z = O(e2?t72),
i.e. an estimate in c(e)f%, with c(e) going to zero with zero. Of course, if ¢

goes close to € ~#, the small factor in front of £~ in the second estimate (0I5
gets closer and closer to one, and this explains why our result is limited to
times that are O(e~#7¢). We shall comment more on that below.

Let us remark also that for dispersive estimates of the form (0.L6]), there
is a “trivial” regime, corresponding to t < ce~2. For such times, the ODE
satisfied by a(t), from which we shall deduce the first bound (0.L6l), is in a
small time regime, before any singularity could form. On the other hand, to
reach a time of size e 4*0, one has to use the structure of that ODE, namely
exploit the Fermi Golden Rule that we shall discuss below, in order to exclude
blowing up in finite time, and prove the decay estimate (01.6]).

Before explaining our method of proof, let us give some references to related
work. We refer to the bibliography of [37] for the physical significance of
equation (ILIT]). We recall that orbital stability for small perturbations of the
kink in the energy space has been proved by Henry, Perez and Wreszinski [31].
Besides the result of [37] of asymptotic stability for odd perturbations of the
kink, several other related problems have been studied in recent years. In
[38], Kowalczyk, Martel and Muifioz study even perturbations of the soliton
of a one dimensional Klein-Gordon equation with nonlinearity of the form
|¢[**¢ with a > 1. They prove a conditional asymptotic stability result in
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local energy norm. In higher space dimension, the breakthrough of Soffer
and Weinstein [57] gave birth to a lot of results. Let us just mention a few
of them that are relevant to Klein-Gordon equations. In [2] Bambusi and
Cuccagna generalize the result of [57] to a wider framework. Cuccagna [9]
studies asymptotic stability of a kink solution in three space dimension.

Going back to one dimensional problems, a key point in the study of asymp-
totic stability is long time behaviour of solutions to (nonlinear) Klein-Gordon
equations in dimension one, with a potential in the linear part of the equa-
tion, or variable coefficients in the nonlinearity. Such results have been proved
by Kopylova [34] for linear Klein-Gordon equations in a moving frame and,
in the nonlinear case, by Lindblad and Soffer [44], Lindblad, Luhrmann and
Soffer [40], Sterbenz [58].

Let us also mention that a lot of work has been devoted to the study of
asymptotic stability of stationary solutions of other dispersive equations. If
we limit ourselves to the question in dimension one, let us quote, in the case
of nonlinear Schrodinger or Gross-Pitaevsky equations, the papers of Buslaev
and Perelman [4, 5], Buslaev and Sulem [6], Bethuel, Gravejat and Smets [3],
Gravejat and Smets [28], Germain, Pusateri and Rousset [27], Cuccagna and
Pelinovski [13], Cuccagna and Jenkins [12], Gang and Sigal [19], 20, 21],
Cuccagna, Georgiev and Visciglia [11]. For (generalized) KdV equations, one
may cite Pego and Weinstein [53], Germain, Pusateri and Rousset [26], Martel
and Merle [45],[46], [47] and for Benjamin-Ono equation Kenig and Martel [33].
Let us point out a difference between the results in the above references and
those holding true for (OIT): While a perturbation of the kink initial data
for (OILTI) gives rise to a solution that is the sum of the stationary kink plus a
dispersive part (see (ILI2]), (O.I6])), for Schrodinger or gKdV equations, the
perturbation of the initial data induces a non zero translation speed on the
stationary solution, so that the perturbed solution is the sum of a progressive
wave and of a dispersive part.

Coming back to the kink problem for one dimensional wave equations, let us
point out the results of Kopylova and Komech [35), [36] concerning asymptotic
stability of a (moving) kink for a modified version of (II]). In their model,
the Hamiltonian of the equation is tuned in such a way that the projection
of equation (0.I3)) on the absolutely continuous spectrum has coefficients in
the nonlinearity that decay when z goes to infinity (instead of converging to
some constant) This allows the author to obtain a description of the dispersive
behaviour of the corresponding solution for any time.

0.2. Description of the method of proof: Step 1

Let us describe the method of proof of our main result. The general strategy
is inspired by Soffer-Weinstein [57]: The solution ¢ of (0.I3]) is decomposed
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as

(0.2.1) o(t,x) = a(t)Y (z) + Pacp(t, )

as already mentioned, where P,. is the spectral projector on the absolutely
continuous spectrum of —92 4+ 2V (z) and Y (z) = @ tanh(%) cosh™! (%) is a
normalized odd eigenfunction associated to the eigenvalue —%. The projection
of (II3]) on the absolutely continuous spectrum has as a linear part

D? — (D2 +1+2V(z)),

and one wants to eliminate the potential 2V conjugating this operator by the
wave operators of —02 4+ 2V (z). It turns out that, since we consider only odd
solutions, the wave operators may be described in terms of a pseudo-differential
operator b(z, D,): see Appendix below and the paper of Naumkin [50].
In that way, introducing a new unknown w = b(z, D;)* Py, we write in
section the PDE satisfied by P,c, obtained projecting (I.L3]) on the con-
tinuous spectrum, under the form

022 (D? = (D2 + 1))w = bz, D))" [k(x) (a(t)Y + b(z, Dy)w)’]
- —i—%b(m, Dx)*(a(t)Y + b(z, Dx)w)g_

Projecting (0.I3]) on the eigenspace associated to the eigenvalue —% one ob-

tains an ODE for a, namely
023) (D2 =3)olt) = (Yr@(a®)Y + Pucp)” + 3 (a0Y + Puco)”)

where the bracket denotes L? scalar product. Our proof of dispersive estimate

([OI6) (for t < e~ 4+¢) will follow from an analysis of ((I.2.2)-(0.2.3]). We reduce
first these two equations to first order systems, introducing if p(§) = /1 + &2,

uy = (Di + p(Dy) )w, u_ = (Dy — p(Dy) Jw = —iiy

V3 V3 _
a—i—(t) - (Dt + 7)@, a_(t) = (Dt — 7)0, = —Qa4.
Equation (0.2:2) may then be rewritten under the form

(Di = p(Dz))uy = Fila] + Fjd]

+ Y Op(mo)ug]
2<[1]<3

(0.2.5) +a(t) Y Op(mi)[ui]

1<|7]<2

+a(t)? Y Op(my, p)lur)
[I|=1

(0.2.4)
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with the following notation: The term FZ[a] (resp. Fj[a]) is the quadratic
(resp. cubic) contribution in a obtained setting w = 0 in the right hand side
of (@22)). It has structure a(t)?Zs (resp. a(t)3Z3) for some S(R)-function Z,
(resp. Z3). The other terms in the right hand side of (0.25]) are expressed in

terms of multilinear operators Op(m)(u1, ..., up), defined if m(z,&1,...,&p) is
a smooth function satisfying convenient estimates, as
(0.2.6)

1 (€1++Ep) -
Op(m)(ula---aup):W/em ' Pm(z, &, ) gu (&) d&r ... d&p.
In the right hand side of ((ZX]), we denote by I p-tuples I = (i1,...,1,) where
i = £ and set |I| = p. Then uy stands for a p-tuple u; = (u;,, ..., u;,) whose
components are equal to uy or u_ defined in ((LZZ]). The symbols my y, m’l, I
my ; are functions of (z,&1,...,&,) with p = |I|. We do not write explicitly in

this introduction the estimates that are assumed on these functions and their
derivatives: we refer to Definition LTI below and to Appendix [A9 for the
precise description of the classes of symbols we consider. Let us just say that
symbols mg, ; are bounded in z, while their 0,-derivatives are rapidly decaying
in . This comes from the fact that the symbol b(x, ) and the functions k,Y
in (LZ2) satisfy such properties. On the oter hand, symbols my My (and
more generally any symbol that we shall denote as m’ in what follows) decay
rapidly in x even without taking derivatives. It turns out that operators with
decaying symbol in x acting on functions we shall introduce below will give
quantities with a better time decay than operators associated to non decaying
symbols.

0.3. Description of the method of proof: Step 2

The goal of the whole paper is to obtain energy estimates for the solution
u4 to (ZA) and a to ([023]). To introduce our strategy, let us recall how one
gets dispersive estimates for small solutions to a cubic Klein-Gordon equation,

like
(Dt - p(Dm))U+ = |U+|2U+

Uy |y=1 = €ug

(0.3.1)

where ug is smooth and decaying enough at infinity and p(D,) = /1 + D?
(see Hayashi and Naumkin [29], Lindblad and Soffer [42}, [43], Delort [17],
Stingo [59]). Let Ly = =+ tp/(D,). Then making act Ly on (0.3.1]), one gets
essentially an equation

(0.3.2) (De = (D)) Lyuy = Opa(JJus (&, 7o [ Ly (£ -)l| 2) -
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If one has an a priori estimate of the form ||uy (¢, )|~ = %? with ¢(e) going

to zero when € goes to zero, one may deduce by energy inequality and Gronwall
lemma from (031]) a bound

(0.3.3) | Ly (b )12 = O(et?)

for any & > 0 if € is small enough. One may prove as well Sobolev estimates
of the same kind for ||u(t,-)||zs for any large s. To complete the argument,
one has also to justify the a priori L* bound that has been used in order
to derive (033). Klainerman-Sobolev estimates would allow to deduce it
from L? estimates of the form (0:3.3) if the bound when ¢ goes to infinity
were uniform. Since this is not the case, an extra argument is needed to
deduce from L? bounds of type (I3.3) optimal L> ones. A way to do so is
to derive from (03J]) and a priori estimates (I.33]) an ODE satisfied by u,
and to use it in order to get the optimal decay (which in the case of (IL31]) is
llut(t, )L = O(et_%)) and even the asymptotics of uy when time goes to
infinity.

It turns out that we may not apply directly such an approach to equation
(023). Actually, if we make act L on the right hand side of that equation, we
may not hope to get a bound by the right hand side of ((I:3.2]) for the L? norm.
For instance, ((LZ3A]) contains quadratic terms, instead of just cubic ones in
(0310), so that the very best we could hope for, instead of ([(I.3.2]), would be an
estimate in Op2 <Hu+ (t, Moo || Lyuy (2, )HLz) that would be far from sufficient
in order to get a polynomial a priori bound as in ([@3.3]). Many other terms in
the right hand side of ([(I.Z5]) would also cause problems, but the first step of the
proof will be to eliminate the quadratic contributions 77— Op(mo,r)[us]. We
do that through a “time normal form” & la Shatah [55] and Simon-Taflin [56]
(see also for one dimensional Klein-Gordon equations Moriyama, Tonegawa
and Tstumi [49], Moriyama [48] and Hayashi and Naumkin [30]). Actually,
we construct new symbols (1o 1)|7j—2 such that

(0.3.4)

(Dt = (D)) [y = 3 Op(io,1)ur]| = Fla] + Fila]
|1]=2

+ Z Op(moJ) [U,]]
3<|1|<4

+ > Op(mg 1) [ui]
|7]=2

3
+> aty . Op(m)p)u]
j=1

1<|1]<4—j
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where in the right hand side, we have eliminated the quadratic contributions
Op(mo,r)[ur], but made appear new quadratic terms Op(m'07 7)[ur] given in
terms of new symbols m67 ; that decay rapidly when x goes to infinity. These
corrections come from the fact that, at the difference with a usual normal form
method where one eliminates quadratic expressions like (0.2.6]) with p = 2
and a symbol m(&;,&2) independent of z, we have here to cope with symbols
m(x,&1,&2). This x dependence makes appear somme commutator, given es-
sentially in terms of Op(%—?(m,&,&)), with a symbol rapidly decaying in .
These commutators are the new quadratic terms Op(myg r)[u;] in the right
hand side of (.34]). As already mentioned, such expressions will have better
time decay estimates than the quadratic expressions given by non space de-
caying symbols that we have eliminated, and are actually better than most
remaining terms in the right hand side of (3.4]). They are not completely
negligible, but will be treated only at the end of the reasoning.

0.4. Description of the method of proof: Step 3

Our general strategy is to define from the solution u; of (L34]) a new
unknown % that would satisfy similar estimates as those one can prove for
the solution of ((L3.1), like (@33]). More precisely, we aim at constructing a
new unknown @, for which we could get, for ¢t € [1,e *+¢] with ¢ > 0 given,
bounds of the following form

(0.4.1) i (8, )l are = O(et?)
(0.4.2) | Lot (8, )llpe = O((EVD)tH)

i (v

(0.4.3) W#UWWMZOCjﬁ—)
where § > 0 is small, §/ < 0 < % with 6’ close to %, s> p > 1, and where we
denoted ||w|lweeo = ||[(Dz)’w| <. The first estimate (0.4I]) is the one that
would follow by energy inequality for the solution of (0.31]), assuming that
([@Z3) holds (since, for t < e~4*¢, ([@Z3)) implies a bound in c(e)t_%, with
c(€) going to zero when € goes to zero). In the same way, assuming ([0.4.3]) and
assuming that @ solves an equation of the form (0.3.2]), one could bootstrap
a bound of the form (I.Z2). Finally, an estimate of the form (0.4.3]) will have
to be deduced from (0.4.2]) constructing from the PDE solved by @4 an ODE
with remainder term controlled from ((L.Z4.2]).

Of course, the right hand side of (0.3.4)) is far from having the nice structure
of the one of (I31]), and this is why we shall have to modify the unknown
uy in order to eliminate all bad terms in the right hand side of (0.3:4]). In
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Chapter B of the paper we shall get rid of the contributions F¢[a], Fi[a]. These
functions are bounded as well as their space derivatives by t_1<x>7N for any
N. Clearly, if we make act L, on them and compute the L? norm, we shall
get an O(1) quantity. If we were integrating such a bound, we would deduce
that ||Lyui(t, )|z = O(t), a much worse estimate than the one (L42]) we
want. We shall thus remove from uy the solution of the linear equation with
force terms F¢[a] + F§[a] i.e. we shall solve

(Di = p(D2))U = Fgla] + F{[a]
Ul=1 =0

and then make the difference between ([(.3.4]) and ((.4.4)) in order to eliminate
Fgla], F§[a] from the right hand side of the new equation obtained in that
way. Actually, one needs to take also into account at this stage bilinear terms
in (a,u) in ([@34). We thus construct in Proposition an approximate
solution u%" of

(Dt = p(Dy) Juff® = Fg (a™P) + F(a*PP)

(0.4.5) + a™PP Z Op(mll,j)(u?pp) + remainder
1I]=1

(0.4.4)

uPPmy = 0

where a®PP is some approximation of the function a(t) solving (0.23]).

Let us explain what are the bounds satisfied by the approximate solution
u®P? of equation (LZH) that we obtain in Proposition using the results of
Appendix [AT0l We decompose u’P? = u/5*P + w”PP. The term o/ satisfies
the kind of estimates we aim at proving, namely (LZJ)-(043]) (and actually
slightly better ones) for times ¢t = O(e~**¢). On the other hand, inequalities
(@4T), (@43) hold for «"%™ (and even actually slightly better ones), but
Liu"%P" does not verify ([@ZZ). On the other hand, Liu"%™ obeys good
estimates in L norms, of the form

(0.4.6) |Lu"$PP|lwree = O(log(1 + t) log(1 + €°t))

that will allow us to estimate conveniently nonlinear terms containing u
Let us stress that the limitation of our main result to times O(e~%) comes
from the degeneracy of bound ([@42) for L, u'?"” when ¢ becomes larger than
¢~*. We do not claim that, in such a regime, an estimate of the form (IZ2)
would be optimal. But we remark that in the construction of u’ipp made from
the results of Appendix [AT(, the main contribution comes from quantities
that have pretty explicit bounds: see Proposition [AT0.1.4] and in particular
bound (AI0.1.39) with w = 1 (that gives the main contribution to «%"") and

(AI0.1.41) with w = 1 (that gives the main contribution to Lu/P). If we

/1app
+ -



14 CHAPTER 0. INTRODUCTION

extrapolate estimate (AT0.1.39) for ¢ > ¢~ (which is of course not legitimate,
as we prove it only for times O(e~%)), we see that outside a conic neighborhood

of the two lines z = :I:tf an estimate of [u/3"P (¢, z)| in O(ezt’%) would hold.
On the other hand, along these two lines, a degeneracy happens, and we do
1opp (t it[)) t remains

small (or even bounded). Because of that, we do not hope to push estimates
of the form (ZAI)-(0Z3]) for such times, without taking into account first
some extra corrections. In particular, going back to ((ILL6]), we do not expect

not expect to be able to prove that, for t > e*, |u

a O(t_%) bound for |P,cp(t, z)| along these lines.
Notice that such a phenomenon cannot be detected using weighted space
estimates an in Kowalczyk, Martel and Munoz [37]: actually, along the lines

T = :I:t\/g , a space decaying weight is also time decaying and kills bad bounds

of /PP

In addition to the proof of estimates of the form (0.4.1))-(0.43]), we need, in
order to obtain (0L, to study the solution of equation ([(.2:3]). We do that
in section of Chapter Bl Setting

along these lines.

ay(t) = (Dt + ?)a, a_(t) = (Dt - ?)a =—a4,

equation (I.Z3]) may be rewritten as
VB L S
(Dt - —)a+ = (ay —a )7 ®jluy,u]

2 oy

3
Z a4 —a— F[UJM ]

where ®;,T'; are expressions in the solution uy to (Z3) or ([3.4). The goal
of section is to uncover the structure of ay. We write a4 (t) = aP(t) +

0(63(1+t62)*% ), where a PP (t) has structure ([3.2.6]), that implies in particular

(0.4.7)

(0.4.8) aiPP(t) = itl@g(f) + more decaying terms.
The main goal of section is to prove by bootstrap that g(t) satisfies bounds

(0.4.9) 9(t)] = O(e(1 + te3)73), [d9(t)] = Ot 3).

(Actually, we get more precise bounds for d;g: see (B.28])). These bounds are
obtained showing that (A7) implies that g satisfies an ODE

(0.4.10) Dig(t) = (a — z@Yg(\/_) )]g(t)]Qg(t) + remainder
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where Y3 is some explicit function in S(R) and « is real. The coefficient of
the cubic term in the right hand side comes from some of the terms in the
right hand side of (0.4.7) where we replace uy by the approximate solution
u®P? determined in section Bl The main contribution to u™, integrated
against a S(R) function, may be computed explicitly in terms of g (see Propo-
sition B.1.3]), and brings the right hand side of (I.ZI0). The key point in that
equation is that Y5(v/2)? < 0. This implies that g satisfies bounds (IZ9)
for t > 1 if g(1) = O(e). The inequality Y3(v/2)? < 0 is nothing but Fermi
Golden Rule. Actually, Y5(v/2)? < 0 holds trivially and the key point is to
check that ?2(\/5) # 0. This reduces to showing that some explicit integral is
non zero. Kowalczyk, Martel and Mufioz checked that numerically in [37]. In
Appendix [AT4] we compute explicitly this integral by residues.

0.5. Description of the method of proof: Step 4

The goal of this step is to rewrite equation ([0.3.4)) in terms of a new unknown
G4 that will satisfy estimates (0.ZI)-([0.43]). We define

(0.5.1) Uy =uy = Op(ior)(ur) — w'§P —u"PP,
[7|=2
and set . = —u,. Making the difference between (.34 and (0.ZH), we
show in section (see Proposition [.2.T]) that 4 satisfies
(Dy = p(Dy))ity = > Op(rr)(ar, ugh®)

3<|1|<4,1=(1",1")

+ >, Op(mg)(ar, up?)
j1l=2,1=(1",1")

(0.5.2) +a®P(t) Y Op(mh ;) (ar)
1]=1

L F g+ @) S Ol (i)
|7]=1

+ remainder

where:

e For 3 < |I| < 4, my are symbols mr(x,&1,...,&), p = |I| = [I'| + |I"|
which are O(1) as functions of x, but O({z)">) if one takes at least one
Op-derivative.

e For 1 < |I| <2, mg 7, m} ; are symbols that are O((x)~>°), even without
taking any derivative.

e Function of time g has been introduced in (48] and gives the principal
term in the expansion of a§"(¢) or a, (¢).
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e Function a®PP(t) = \f(aipp(t) — Qipp(t)), where

(0.53)  a®™P(t) = e g(t) + wae3g(t)? + wolg(t)|? + w_se~V3g(D)

with convenient constants wa,wp,w_o and a®P(t) = —aPP(t).

We cannot derive directly from equation (0.5.2]) the estimate (0.4.2]) for
Uy, as the right hand side of (I.5.2)) has not the nice structure (0.3.1]). Before
applying an energy method, we shall have to use several normal forms in order
to reduce ourselves to such a nice nonlinearity. As a preparation to that step,
we show in Corollary 23] that ((.5.2]) may be rewritten under the following
equivalent form:

(0.5.4) (Dt —p(Dg;))zlJr — Z ¢iti % Op(b]+ Ug — Z ¢iti % Op(b _)a—

j=— J=—2

= Z Op(fn[)(zlp,u?gp)

3|1 <AT=(1",17)

+ >~ Op(my,p)(ir) + > Op(mpy 1) (g, /37"
‘[‘:2 IZ(I/J”),‘I"ZHN‘:l
+ > Op(m{)J)(u'?pp’l) + remainders
|I|=2

where, in comparison with ([(.5.2), all linear terms in @, @_ have been sent to
the left hand side, and are expressed from symbols b;-i(t, x, &) that are rapidly
decaying in z at infinity. Moreover, in the right hand side, we still use the
convention of denoting by m{x ; symbols rapidly decaying in x, while m; are
O(1) in z, with 9,-derivatives rapidly decaying in z. Furthermore, in the last
two sums in (@5.4]), we replaced u/®PP by u/*PP:l which is actually the main

contribution (in terms of time decay) to u/PP. If we set @ = {gﬂ, we may
rewrite ((L0.4]) as a system of the form
(Dy — Py — V)i = Ms(it, u"P) + My(it, u*P)

(0.5.5) s
+ M (i, w'*PP') + remainder

_ [p(Dz) 0 - -
where Py = { 0 —p(Dy)|" V is a 2 x 2 matrix of operators of the form
(0.5.6) V= Z ety Op it 3,9))
j=—2

with M} 2 x 2 matrix of symbols whose entries are given in terms of the b’ ,
in (0.5.4), and where the 2-vectors Mg (resp. My, resp. M}) come from the
cubic (resp. quartic, resp. quadratic) terms in the right hand side of (IL54).
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To obtain the wanted estimates (0.4.1]), (0.42]) for @, we have next to
reduce ((L5.5) to an equation essentially of the form (03.1]). This is the object
of Step 5 of the proof.

0.6. Description of the method of proof: Step 5

Equation (0.5.5]) has not structure of the form (031]), in that sense that if
Ly O
0 L_
to the potential term V), and second the action of L on the nonlinearities in the
right hand side does not give quantities whose L? norm is O(||@||3« || L@ 12)
(which is essentially necessary if we want to get (0LZ2]) by energy estimates).
To cope with the lack of commutation of L with V, we shall construct a
wave operator and use it to eliminate V by conjugation of the equation. This
is similar to what has been done to pass from equation (O.I3]), that was
involving the potential 2V (z) to equation (0.Z2]), where there was no longer
any potential. The difference here is that V given by (.5.6]) is time dependent
(with O(t_%) decay). We thus cannot rely on existing references, and have to
construct by hand operators B(t), C(t) (depending on time) such that

(0.6.1) C(t)(Dy— Py —V) = (Dy — Py)C(t).

In that way, if @ solves (IL5.5]), then C(t)@ solves the new equation without
potential

we make act L =

} , with L_ = z—tp/(D,,), first L does not commute

(Dy — Py)C(t)a = C(t)Ms(i, u?®P) + C(t) My (i, u*P)

0.6.2
( ) +C(t) M (@1, u'*PP1) + remainder

(see Proposition B.I.2). Moreover, since we want to pass from an L? bound
on Lii to an L? bound on LC(t)@ and conversely, we need to relate L o C(t)
and L, proving that

(0.6.3) LoC(t)=C(t)o L+ Cy(t)

where C(t) is bounded on L? uniformly in ¢ and C}(t) is bounded with a small
time growth when ¢ goes to infinity. The construction of operator C'(¢) is made
in Appendix by a pretty standart series expansion. We notice however
that we need to use in that construction the fact that we are dealing with odd
functions .

Once reduced to ([0.6.2]), we still have to handle those nonlinear terms in
the right hand side that do not have a structure of the form (03]). We cope
with that problem using “space-time normal forms” in the terminology of Ger-
main, Masmoudi and Shatah [23), 24, 25] and Germain-Masmoudi [22] (see
Lannes [39] for an introduction to these works). Actually, we do not follow
the approach in these references but use instead the essentially equivalent one
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of [17], that we have to adapt to the more general operators M3, My in the
right hand side of (0.6.2]). Remark that the components of the vectors M3z, My
are, according to (L5.4]), given by expressions Op(m) (i<, ...,u} ") where
m(z, &1, ..., &) is asymbol that is O(1) when |z| goes to infinity, but O({z)™ ")
if one takes at least one Jd,-derivative. We have to distinguish between to type
of terms, the characteristic and the non-characteristic ones. The former corre-

spond to the case when, among the p arguments of Op(m)(a,...,us™), 1%1

app

are equal to @4 or u"” and p—gl are equal to @_ or u

In the case of simple monomial nonlinearities, example of characteristic
terms are given by the right hand side of (0.3.1]), which, when making act
L, on it, may be estimated in L? by the right hand side of ([3.2). If m
were independent of z, the same would hold for the action of L, on any
characteristic term like Op(m)(t4,...,tt), as LOp(m)(ty,...,4s) could
be expressed from Op(m)(Lids,...,Us),...,0Op(m)(ty,...,Lity). Using
the boundedness properties of Op(72), one would then estimate the L? norm of
these quantities by Hﬁ”zi;lHL&H 2. As p > 3, one could then obtain estimate
(@Z2) by energy inequality, as after (.32]). Since here m does depend on
x, there is no exact commutation relation in the characteristic case between
Op(m) and L4, as some commutators of the form ¢tOp(9d,m) have to be taken
into account. It turns out that, because 0, is rapidly decaying in z, and
because @y is odd, |[tOp(m)(t, ..., 4+ )| 2 may be also estimate by the right
hand side of (3.2). Actually, the kind of expressions one has to cope with is
morally of the form

(0.6.4) t2(2)((Dy) Yz )’

where Z is in S(R) (This reflects the fact that 9,m is rapidly decaying in x).
Since 44 is odd, we may write using the definition of Ly = x + t@—s

065 (Dy) Yy = ix /11(%@)(,@ d

1
=iz /1 [(Lyiiy)(p) — paviiy (p)] dp.

The rapid decay of Z(x) allows one to absorb the powers of x in the right
hand side of ((L6.5)), and to estimate the L? norm of ((L6.4]) by

Ol z2 + 1l 2 ]I |70

i.e. by the right hand side of ((.3:2)) again. Similar arguments apply when the
factors @4 are replaced by uf™P.
The above reasoning disposes of the characteristic components in

M;(@,u?P) in ([@6:2). The non-characteristic ones are for instance of
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the form Op(m)(t4,...,4+) and we no longer have an approximate com-
mutation property of L, with such operators. These terms have thus to be
eliminated by a space-time normal form. We construct in Proposition (.21
using the results of Appendix [A13] operators M j» J = 3,4, such that

(0.6.6) (D; — Po) M, (i, u*P) = M (@, u®P )y, + remainders

where M (@, u*P),cn  denotes the non-characteristic contributions to
M (@, u®P) in the right hand side of (LE2). Actually, My(a, u®P)yen =
My (@, u*PP) as only Mj contains characteristic components. In that way, we

deduce from ([(.6.2]) that
(Dy — o) [C(t) (@ — Ms(it, uP) — My(ii, u™P))]
= C(t) Mby(@, PP + R
where the remainder R satisfies bounds of the form
IL+R| g2 = O(|[r |[Foe | L4l 2 )
as in the right hand side of (0.3:2]). Notice that to deduce (I.6.7)) from (0.6.6]),
we have to compare (D; — Py)C/(t)M; and C(t)(D; — Py)M; which by (0.6.1)

makes appear a term C(t)V.M;, but the time and space decay of operator V
allows one to show that such errors form part of the remainder R in (0.6.7).

One has still in the right hand side of ((.6.7)) term C(¢) M) (1, u/2PP>!). Again
MY, may be expressed in terms of quantities Op(m/) (i, ) (and similar ones
with @4 replaced by w/3"P), so that one may gain some time decay using
expressions of the form (LG3]), but as this term is just quadratic, this gain
is not sufficient to include C(t) M} into R in ([0.6.7). As C(t) — Id has some
time decay, one may prove though that (C(t) — Id) M) is a remainder, but
the expression Mb (@, u/*PP-1) still needs to be eliminated from the right hand
side of (L6.7)). We do that in Proposition B.2:4] of Chapter [ using results of
Appendix [AT3] Actually, a quantity like Op(m/) (@4, %4 ) may be expressed,
using the z-rapid decay of m’ and the oddness of 74 as sum of expressions of
the form

(0.6.7)

(0.6.8) t 2K (LY, L2ay), 0< 01,6, <1
where K is an operator of form
(0.6.9) K (@) = [ K60, 1.6)1(60)F(€) dadey

where the kernel k£ has rapid decay in (§y — &1 — &2). An operator of form
(06.8) slightly misses bounds in O(t!||L, 7, ||z2) when we make act on it Ly
and take the L? norm. But it does satisfy such estimates if we cut-off k in

([@EI) on a domain |£(£) £ (&1) £ (2)] < ot 3. Consequently, one may as-
sume that in ([@6.9), & is supported for |+(&y) £+ (&1) £+ (&2)| > ct~2. This extra
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cut-off allows to construct by normal forms a quadratic term M'Q(ﬂ,u’ app, 1)
such that
(Dy — Py) M (@, u/*PP1) = M (G, w'*P) + remainders.

Subtracting this equation from (0.6.7)), one gets finally

A

(0.6.10) (D — Po)u =R
where
4 ~ ~
(0.6.11) o= C(t) [a _ ZMj(ﬂ,uapp)} — My (@, u'@PP.
j=3

and where R will satisfy among other things essentially

(0.6.12) ILR(t, )2 = Ot || Lyiis | 2).

0.7. Description of the method of proof: Step 6

As seen above, the conclusion of the main theorem follows from the boot-
strap of estimates (LZI)-(043]). In Chapter B we perform the bootstrap of
(C41) and (@Z2), assuming that ((L4T)-([@43)) hold on some interval [1,7]
with 7' < e #*¢ and showing that (Z1]), (0Z2) then actually hold with the
implicit constant in the right hand side divided by 2 for instance. As we have
seen, estimate ((LZ2]) cannot be obtained making act L directly on (5.0,
as the action of L on the right hand side of this equation has bad upper
bounds in L2. On the other hand, making act L on ((L6.10), commuting it to
D; — Py and using ([0.6.12]), one may obtain a bound of the form ((0.4.2]) for
|Lsty(t,-)]|z2. Actually, to do so with an improved implicit constant, one
has to show that the right hand side of (L6.12)) is o(t || L, @i | 2) instead of
just O(t~Y|Lydiy||z2), but this follows from the estimates we get if t < e=4+¢
and € < 1. The remaining thing to do is then to relate estimates for Ly in
L? and estimates for L i i.e. to show that the action of L, on the Mj, /\;1’2
terms in ((L6.IT) do not perturb significantly the a priori bound of the left
hand side. We do that in section for Mj, j = 3,4 and in section for
M. In this Chapter[B], we also check that the remainder R in (IL6.10) satisfies
(06.12)). These estimates heavily rely on the boundedness properties of the
different multilinear operators we use, that are discussed in Appendix [AT]l
Putting all of that together, we conclude the bootstrap for estimates (0.4.1]),
(@Z2)) in Proposition [6.3.71
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0.8. Description of the method of proof: Step 7

The only remaining step in order to conclude the proof of the main theorem
is to bootstrap bound (L43]). We do that in Chapter [ We deduce from
equation ((L5.2]) satisfied by @ an ordinary differential equation. We proceed
as in [1] for water waves, with simplifications inspired by Ifrim and Tataru [32]
(see also [17, 59]). If we write equation ([@5.2]) as (D¢ — p(Dy))uy = f+ and
if we define @+,i+ by

1

(0.8.1) iyltr) = i (t %) Filt,z) = %L (t, %)

we obtain

(0.8.2) (Di—OpY (26 +1+€))a, = f,

where we used a Weyl semiclassical quantization, depending on the parameter
h= %, defined in general by

1 (e—N& (T+Y
W _ i(z—y) bt
(0.8.3) Op) (a(2,€)) = 5 / T a( =7, €)uly) dyde.
We decompose then @, = @y + %y where
w2 PNV~
(0.8.4) ap = Opy, (W(T))%L

with v in C§°(R), equal to one close to zero and with small enough support.
Then @, is localized close to A = {(z,&);z = —p/'(£)} i.e. close to {€ = dp(x)}
if p(z) = V1 — a2 is the phase of oscillations of solutions to linear Klein-
Gordon equations (after rescaling (0.8.1])). One sees that the L? estimates
(@41, [@Z2) allow one to get wanted bounds for the component @c (see
Proposition [.T1]). On the other hand, since @, is microlocalized close to A,
one may in the term Ova(xg + /1 + &2)u, replace the symbol by its restric-
tion to A, up to remainders that are well controlled thanks to the L? estimates
(0410, (042). This brings an ODE for @,, that implies by integration the
wanted bound (0.43]). The end of Chapter [ (section [[.2]) puts together these
estimates and those obtained in section for a(t) in order to close the boot-
strap argument and prove the main conclusion (0.1.6]).






CHAPTER 1

THE KINK PROBLEM

1.1. Statement of the main result

Consider ¢ : R x R — R a global solution to the nonlinear wave equation

(1.1.1) (02— 02)p = 6 — &°.
The function

x
(1.1.2) H(z) = tanh(ﬁ)

is a stationary solution of (L), and we are interested in describing the
dispersive behaviour in large time of solutions to (LII]) corresponding to
initial data that are small, smooth, odd and decaying perturbations of the
state H. It is known that this state is orbitally stable in the energy space by
Henry, Perez and Wreszinski [31], and for odd perturbations in that space,
asymptotic stability with space exponential weight is proved by Kowalzyk,
Martel and Munoz [37]. This result describes the dispersive behaviour of the
perturbation on compact space domains, but does not give insight into its
behaviour in the whole space time. Our goal is to obtain information when
(t,x) describes I, x R, where I is a time interval of length O(e=4%0), ¢ being
the size of the initial data in a convenient space of smooth decaying functions.
We shall look for solutions to (IIT]) under the form

(1.1.3) ¢(t,x) = H(z) + ¢(tv2,2v2).

We get for ¢ the equation

1
(1.1.4) (D = (DF +1+2V(2)))p = s(2)e” + 5¢°
where D; = %E’ D, = %a% and
3 o/ 3 T
(1.1.5) V(z) = ~1 cosh (5), k() 5 tanh(g).
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The operator —92 + 2V has [0, +-00[ as its continuous spectrum and has two
eigenvalues —1 and —i. The first one is associated to an even eigenfunction,
and the second one to the odd normalized eigenfunction
V3 x /T

(1.1.6) Y(z)= Ttanh(i) cosh (5)
(see Nikiforov and Uvarov [52] and Kowalczyk, Martel and Munz [37]).

We denote by P, the spectral projector on the continuous spectrum, re-
stricted to odd functions. The spectral projector on the eigenspace associated
to the eigenvalue —1 is ¢ — (¢, Y)Y so that

(1.1.7) Pacp =0 — (¢, Y)Y
where (-, -) denotes the L? scalar product. If ¢ solves (LT, we set
(1.1.8) alt) = (5, Y)
so that (LI4) may be written
3 2 1 3
2 _ -
(D} - Z)a(t) = (Y, (@) (a(t)Y + Pacp)” + 5 (a(DY + Pacp) )
(1.1.9) (D} — (D2 +1+42V(2))) Pacyp

= Py [K,(QT) (a(t)Y + Pacgo>2 + %(a(t)Y + Pacgo>3].

Our main result asserts that, up to a time of order e *, the dispersive part
1
P,cp of (LTY) has a time decay in uniform norm of magnitude ¢t~ 2, and that

the function a(t) in (LI8) has some oscillatory behaviour, with decay in 3.
More precisely, we have:

Theorem 1.1.1. — There is pg € N and for any p > po, any ¢ > 0, any
6" €]0, %[, any large enough N in N, any large enough s in N, there are €y in
10,1], C > 0, such that for any couple (g, p1) of real valued odd functions in
HTY(R) x H*(R) satisfying
(1.1.10) leollZser + loalizrs + lzwollF + llzgrll7 < 1,
the global solution ¢ of
1
(D = (D2 +1+2V(2)p = K(@)e® + 5¢°

2

(1.1.11) Pli=1 = €po

dpli=1 = ep1
satisfies when € €]0, ¢q| the following bounds for any t € [1,e4+¢]:
The oscillatory part a of ¢ given by (LI18) may be written

(1.1.12) a(t) = eit§g+(t) — e_itég_(t)
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where
(1133)  lga(®)] < Ol + 1), Dga(D)] < Oet (1 + 1)+,

The dispersive part Pyep(t,-) satisfies
|Pacip(t, lwoe < CE 3 (VD)
(1.1.14) (@) 2N Pacip(t, Ylwne < CE3 (VD)
[(2) N Puc Dy (t, oo < Ct5 (VD)
where [[{]lweee = [[(De) | Loe .

Remarks: e The first estimate (III4]) shows that, up to time essentially

equal to e 4, the dispersive part of the solution decays like t_%, which is the
behaviour of small global solutions to nonlinear Klein-Gordon equations (see

[15], 16, [41), (59]). Nevertheless, in that case, the upper bound is in O(et_%),

while in (LII4]), we have a degeneracy of the factor multiplying =3 when ¢
goes to e

e We construct in the proof some approximate solutions that are o(t_%)
for times ¢t < e *T¢ and € small. To go past that time seems to require extra
arguments — like devising more accurate approximate solutions — in order to
get a useful pointwise control of P, for t > ¢4,

e Our estimates are consistent with the ones of Kowalski, Martel and
Mufioz [37] in time O(e~%). Actually, it follows from (LTI2)), (LLI3) that if
p>2

674+c

/ la(t)P dt < CeP=2
1
674+c

L 1Y Pt i + 1) N Dot ] e < e

for large enough N. These estimates are in accordance with those proved in
[37] (when p = 4 for the first one) (see Theorem 1.2 in that reference).

1.2. Reduced system

We shall conjugate the second equation (LI9) by the wave operator W
associated to —%8% +V(x). We discuss in Appendix[A8.1]below the properties
of such an operator. According to Proposition[A8.1.1lof that Appendix, it may
be written, when acting on odd functions, under the form

(1.2.1) W =b(z, Dy) o c(Dy),
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where b(z, £) is a symbol of order zero satisfying estimates (ARI.8]) and c¢(¢) =
ei9(5)11§>0 + e*ie(@ﬂ&o for some odd smooth real valued function . Moreover,

if we set A = —192 4+ V(z), Ay = —302, one has by (ARL6), (ARLT), for

any Borel function m on R,
oy AR = Wem(AWL, m(Ag) < Wim(AW,
- WiW3 = Pae, WiW, = Idpe

so that applying W3 on the second equation (LIJ), we get

2 (D} = (D2 + 1)) W3 Pac] = Wi [5(2) (a(D)Y + Pactp)?]
- +Wi [%(a(t)Y + Poci)?].

Let us define
(1.2.4) w = b(x, Dy)* Pacp.

Since P,.p is real valued, and since because of the symmetry proper-
ties (ARI9) of b(z,&), b(z,D,) and b(x, D,)* preserve the space of real
(resp. even, resp. odd) functions, w is still a real valued odd function. As
c(Dy)oce(Dy)* = Id,

Py = WJrWJtPaCSD = b(x,Dz)w

c(Dz)Wi P = w,

so that making act ¢(D,) on (LZ3]) we see that w solves

(1.2.5)

1.26) (Df — (Di + 1))w =b(z,D,)* [ﬁ(m) (a(t)Y + b(z, Dx)w)z}
B +%b(x,Dx)*(a(t)Y +b(z, Dy)w)’.

We shall study from now on the system given by the first equation (LI.9) and

(LZ6). We define
(1.2.7) wo = b(x, Dy)* Pacpo, w1 = b(x, Dy)* Pacr.

Since by ([2I), (L22), P,. = b(x,D,) o b(z,D,)*, and since b(z,D,),
[x,b(x, D,)] are bounded on Sobolev spaces, we get from (LI.I0) that

(1.2.8) lwollZreer + lwilfrs + lowolFp + lzwillz> < Co
for some constant Cy. Denote by p(D,) the operator

(1.2.9) p(Dg) =1+ D37

and introduce complex values odd unknowns

(1.2.10) Uy = (Dt —|—p(Dx))w, u_ = (Dt —p(Dx))w = —Uy.
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If I = (iy,...,1p) is an element of {—, +}”, we shall set

(1211) uy = (uil,...,uip)
and we denote also uy ;j = u;;, so that equivalently
(1212) ur = (u171,...,u[7p).
Let us write (L2.6]) under the equivalent form
2 3
(1.2.13) (Dy = p(Da))uy =Y Filayup,u-]+ > Fllasuy,u_]
j=0 j=0

where Fj2 (resp. Ff) will be made of terms that are O(t~1) (resp. O(f%)) in
L*° if the bounds (LI.I2)-(LII4]) hold true, and are given by the following:

e Contribution depending only on a and not on w4 are:

(1.2.14) Fila;ug,u-] = Fgla] = a(t)*b(x, Da)*[s(2)Y ]
B Fyla;uy,u-] = Fyla] = %a(t)3b(m,Dx)*[Y3],

e Contributions that are homogeneous of degree j > 0 in (u4,u_) are given
by the followmg quantities, where if |I| = (i1,...,7y), we set |I| = p and

€r =17 . p:

sz[a;u+, | = a(t)* Z qu i =1,2
I
(1.2.15) 1=
Ff’[a;u+, | = a(t)> Z IU] j=1,2,3,
1=y

with linear terms in (u4,u_)

Fﬁf[uf] = erb(x, D))" [Y(w)n(m)b(x,Dw)p(Dx)_luI}
(1.2.16) \ 5 o »
Fl,[[ul] = Zefb(man) [Y(x) b(x7D$)p(D$) uIL

quadratic terms in (uy,u_)

e

Flur) = Jerb(e, D2 (o) [T blar, De)p(De) ]

(1.2.17) =)
3 . _
Flug) = gqb(m,Dx) [V (2) [] b(x, Da)p(Da) ur,e],
(=1
and a cubic term in (u4,u_)
1 3
(1.2.18) F3lur) = TeE1b(@, D) [T o(x, Da)p(Dz) ]

(=1
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Notice that since k and Y are odd, as well as uy, and b(x, D,) preserves odd
functions, F]»Q7 Ff’ are odd functions.

Let us write now the first equation in (I.IL9) in terms of a,uy,u—. We

define
(1.2.19) ay(t) = (Di + \/73)@ a(t)=(Di - ?)a = —ay

so that a = *5°(ay — a_) and we rewrite the first equation (LT.Y) as

(Dt - ?)M = (ay —a_)* 7 ;us, u_]

5

(1.2.20) 0
Z (a+ —a-)*7Tjluy, u-]

where the terms independent of u4 are

Dy = l<Y, nY2>

3
(1.2.21) 3
3
Iy = Y,Y3
0= L2y
and for 7 > 1
u+7 Z ¢]7 uI
I
(1.2.22) 1=
jlug,u Z L' rlug]
[1|=j

with linear expressions

(1.2.23) ] = ?61@/’ Y kb(w, Da)p(Dy) ")

1
Iy rfur] = ZEI<Y7 Y2b(z, Dm)P(Dm)71UI>7

quadratic expressions

1 2
Dy rlur] = Z€I<Yy k] bla, D$)p(Dx)_1uI,é>

(1.2.24) / =
3 _
Ly rlur] = ?61<Ya Y ] b(x, Da)p(Dy) 1U17£>,
=1
and cubic quantities
1 3
(1.2.25) T's [u] = 1—6€[<Y [ b(x. D2)p(Da) " ure)-
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We shall study from now on system (L2.13]), (L2.20) with initial data at

t = 1. According to (LZI0), (CLZT), (LZ38), (T2ZI9) and the fact that by
ma a(l) = <€Q007Y>7 ata(l) = <6@17Y>7 with $0, ¥1 Sa‘tiSfying (EEEEH)7 we

may assume

(1226) u+\t:1 = €U4 0, a+]t:1 = €40

where uy o is a complex valued odd function in H*(R, C) satisfying
s o7 + llzus ollz2 < €3

(1.2.27)
lay o] < C§

for some fixed constant Cj.






CHAPTER 2

FIRST QUADRATIC NORMAL FORM

The goal of this chapter is to rewrite equation (L2ZI3]) in terms of convenient
classes of multilinear operators, and then to perform a first normal form that
will eliminate the quadratic terms of the nonlinearity up to better remainders.

2.1. Expression of the equation from multilinear operators

Let us define the classes of multilinear operators we shall use. They are
special cases of the operators introduced in Appendix [A9] that will be useful
in the rest of the paper. We introduce in this section only the subclasses we
need in Chapter 21

In this chapter, an order function on RP is a function from R? to R, such
that there is some Ny in N so that, for any (&1,...,&p), (&1,...,&,) in R?

P
N
(2.1.1) ME,...6) < CTL & - &M, ....&).
j=1
(In Appendix [A9 we shall allow order functions depending also on a space

variable ).

Definition 2.1.1. — Let M be an order function on RP, with p in N*, £ in
N. We denote by S..o(M,p) the space of smooth functions

(y,gl""agp) %a(yagla--'agp)

(2.12) R xRP —s C

satisfying for any o in NP
(2.1.3) 0a(y, €)| < CM(€)Mo(€)<"!

and for any o in NP, any o in N*, any N in N

(2.1.4) 08050 a(y, €)] < CM(E)Mo(€)"1 (1 + Mo(&) "Jyl)



32 CHAPTER 2. FIRST QUADRATIC NORMAL FORM

where My(&) denotes

-

P _
(2.15) Molgr &) = (> (@X€)”) (X @)?) °
1<i<j<p i=1
and is equivalent to 1 + maxa(|&1],...,|&p|), maxy standing for the second
largest of the arguments.

We denote by g,’_i’o(M,p) the subspace of SR7O(M,p) of those a for which
(Z-17) holds including for afy = 0.

The symbols of Definition ZT.T] are the special case of those defined in
Definition [A9.1.2] of Appendix [A9 when there is no = dependence in (A9.1.3]).
We associate to them operators through the quantization rule
(2.1.6)

1 P
Op(a)(vi,...,vp) = (271)1?/6 o(€1+-+Ep) a(z, &1, ..., &p) H (&) de; ... de,
for any a in §R70(M, p), any test functions vy, ..., vp. This is the rule defined in

(A9.1.9)) of the appendix in the case of general symbols a(y, x, &), specialized
to the subclass of symbols that do not depend on x, as in Definition 2.1l We
shall also impose on our symbols the extra condition

(2.1.7) a(—y, —€1, ..., —&) = (1P la(y, &, ... &)

Under this condition, the operator Op(a) sends a p-tuple of odd functions to
an odd function.

Let us state the symbolic calculus result that is proved in Appendix[A9 (see
Corollary [A9.2.6] (A9.2.27)), (A9.2.26])) and that we shall use below.

Proposition 2.1.2. — (i) Letn’,n" be in N*, n = n'4+n"—1, M'(&1,..., &),

M" (& - .., &) be two order functions. Let a (resp. b) be in Sy o(M',n') (resp.

Sko(M",n")). Define

(218) M(gl, o 7§n) = M/(gl, e 1,6 o+ §n)M”(§n/7 R 7§n)

There are v € N, depending only on M', M", and a symbol ¢} in S,’_%O(MMOV"””, n)

such that if

c(y7§17 L 7571) - a(y7§17 L 7§n/717§n/ +---+ §n)b(y7§n/7 LI 7§n)
+C/1(y,§1, LR 7§n)

(2.1.9)

then for all test functions vy, ..., v,
(2.1.10) Op(a)[vy, ..., v—1,0p(d) (Vs ..., vn)] = Op(c)[v1, ..., vpl.
Moreover, if a, b satisfy (Z17), so do c and c}. )

(it) If a is in Soo(M,1), there is a symbol a* in Soo(M,1) such that
Op(a*) = Op(a)*. Moreover, if a satisfies (Z17), so does a*.
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We shall use the above class of symbols to re-express equation (LZ.13]).

Proposition 2.1.3. — For any multiindex I = (i1,...,ip) in {—,+}P with
2 < |I| =p < 3, one may find symbols mo 1 in So,o(]_[?:1 <§j>71,p), satisfying
(ZZL7), for any multiindex I with 1 < |I| =p <2, one may find symbols m ;

in S o ) (&)Y, p) satisfying (Z17), such that equation (IZI3) may be
written

(Dt — p(Dy))uy = Fila] + Fa]
+ Y Op(mo)u]

2<|11<3

(2.1.11) +a(t) > Op(m))u]
1<|1]<2

+a(t)® Y Op(mj p)[ur]
7]=1

where uy is defined in (LZ211), (I.Z12).

Proof. — Consider first the terms in the right hand side of (LZI3]) that do
not depend on a i.e. with notation (LZI5) Y 7—2 Fg%l[u[] and )7 7|=3 F;I[u[].
These terms are given by the first equality (LZI7) and (LZI8]). A symbol of
the form x(y) [T7=; b(y, &;)p(&;) " or [Ti—; by, &;)p(&;) " belongs respectively
to So.0 (H%Zl €t 2), 5‘0,0(]_[?:1 & 3) and because of property (A8.1.9))
satisfied by b and the oddness of k, condition (ZI7]) holds. If we apply the
results of Proposition 2.T.2] we conclude that the contributions to (LZI3]) that
do not depend on a have the structure of the first sum in the right hand side
of (ZI.IIJ).

Consider next terms of the form a(t)FIQJ[uI], |[I| =1 or a(t)FQ‘gJ[uI], |[I| =2
in (LZI5). They may be expressed from the first line in (.2.16]) and the second
line in (LZI7)). Since Y is rapidly decaying, the symbols Y (y)r(y)b(y, £)p(&)~*
and Y (y) TT7=; b(y, &)p(&) " are in Sp0((€) 1) and Spo(TT5—; (§5) "+ 2)-
Because of the oddness of Y, x and (AS.1.9]), they satisfy ([2.1.7). Using again
the composition result of Proposition 2.1.2] and noticing that as soon as at
least one of the symbols a and b in (ZL9) is in the S’ class, so is the composed
symbol ¢, we conclude that the linear term in a(t) in the right hand side of

(CZI3) is given by the second sum in (ZIIT]).

In the same way, the contributions a(t)2Fﬁ slur] coming from the second

line (LZI5) with j = 1, with F13,I given by (LZIG), provide the last sum in
(ZI11). This concludes the proof. O

In the right hand side of (ZI.11]), terms with higher degree of homogeneity
in (a,us) will have better decay estimates. Moreover, an expression of the
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form Op(m/)[us] with |I| = p and a symbol m’ in the class 5670(M,p), ie.
with rapid decay in y, will have better time decay than a term Op(m)[u;]
with |I| = p and a symbol m in 5'070(M ,p). Consequently, we expect that the
terms in 77— Op(mo,r)[us] will be, among all ui-dependent terms in the
right hand side of (ZI.IT]), those having the worst time decay. In next section,
we shall get rid of these terms by normal form.

2.2. First quadratic normal form

Proposition 2.2.1. — Define from the symbols mo 1, |I| = 2 of Proposi-
tion [Z.1.3 new functions

(22.1) Moy, &1, &) = mor(y, &1, &) [—p(&1 + &) +i1p(&r) +i2p(&)] o
if I = (i1,12). Then Mo, belongs to 5‘170(]_[?:1 (&) My (€1, &), 2). Moreover,
there are mew symbols (my )12, belonging to 5170(]_[?:1 (£j>71M0(£),2),
(m) i<irzay, 1< 5 < 3, in S (T €) " Mo(©),111) for some v and
new symbols (Mo, 1)3<|r<4 belonging to Sio (H‘le‘l <£j>71M0(£), |I|) such that
(2.2.2)

(De = p(D2)) [us = > Op(o)lurl| = Fila) + Fla)
|7|=2

+ Z Op(m071)[u1]

3<[1<4

+ Y Op(mg p)[ur]

|1]=2

3 .

+>aty > Op(m ).

J=1 1<|I|<4—j

Finally, all above symbols satisfy (Z17).

Proof. — We notice first that

1+ 2((61){&2) — &1é2)
(&1) + (&) + (&1 + &2)
> ¢(1 + maxy (|61, 1€2))

(2.2.3) (&) +(§2) — (&1 + &) =

1 _
> eMy(é1,&) 7"
This implies that

(&1 + &) + (&) — (&) > (1 + maxa(|& + &, !52\))_1
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which is larger than the right hand side of (2.2.3]), except when |&o| > [&1].
But then the left hand side is larger than one. Consequently, we deduce from
these inequalities that, for any sign i1, io, we have for any « in N?

O [(&1 + &) +i1(&1) +1i2(&2)]
This implies that mg ; belongs to the wanted class of symbols. It obeys trivially

(ZI7) since mg,r does.
Denoting for |I| = 2, ur = (u;,,u;,) as in (LZII), we compute

(2.2.5) (Dy — p(D2))[Op(ring,r)[ur]]
= —Op(p(§)) © Op(rig,r)[u1]
+ Op(120,1)[i1Op(P(€)) iy , wip] + Op(M0,1) [ty » 20p(P(E) )z, ]
+ Op(o,1)[(Dy — i1p(Dz) )iy , iy
+ Op(10,1) [wiy , (D¢ — i2p(Dy))ui,).
By Corollary [A9.2.7] the sum of the first three terms in the right and side

may be written as a contribution to 77— Op(mg )[us] in (Z22) plus the
expression

(2.2.6) Op((—p(& + &) +i1p(&1) + i2p(&2))o,1 ) [ur].
By @21)), (ZZ8]) will cancel the term Y ;- Op(mo,)[u;] in (2III). Since
the other terms in the right hand side of [ZI.11]) are still present in (2.2.2]), we

see that to conclude the proof, we just need to show that the last two terms in
(ZZ3) provide as well contributions to the three sums in the right hand side

of ZZ2). We express (D; F p(Dy))us from (ZITII) (or its conjugate). To fix

ideas, consider for instance

(2.2.7) Op(1M0,(+,i2)) (Dt = p(Dar) ), uiy .

If we replace (D; — p(D,))us by the contribution FgZla] + Fjla], which by
(C214) may be written a(t)?Ys + a(t)3Y3, with odd functions Y, Y3 in S(R),
we see applying Corollary [A9.2.8 of Appendix that ([227) will provide
contributions to the Y3_, a(t)? Y721 Op(m’; )[us] term in ([Z2.2).

We replace next (D; — p(D,))us in (Z2Z7) by the a(t) or a(t)? terms in
(ZIIT). We use (i) of Proposition Z1.2] noticing that if in (ZI.9)), either a is
in SL,O(M', n') or bis in 5’,270(M”, n'), then ¢ is in 5’,270(M, n). Consequently, we
get contributions to a(t) Y o<|rj<3 Op(m ;)[us] and a(t)® 37 71— Op(m p)[ur]
in (ZZ2). Finally, if we replace in (Z227) (D;—p(D,))u by the first sum in the
rlght hand side of ([ZITT]), we obtain contributions to Y 3<|7<4 Op(mo,r[ur])
in (ZZ2) using again (i) of Proposition This concludes the proof as
property (ZIL7T) of the symbols is preserved under composition. O

(2.2.4) < CuMy(er, &) A,







CHAPTER 3

CONSTRUCTION OF APPROXIMATE
SOLUTIONS

The goal of this chapter is, on the one hand, to construct an approximate
solution u"? to an equation deduced from (2:2.2]) and, on the other hand, to
study the ordinary differential equation (L220]), which is equivalent to the
first equation in (LI.9)).

3.1. Approximate solution to the dispersive equation

The proof of our main theorem being done by bootstrap, we shall assume
that we know, on some interval [1,7], an approximation of the function ¢t —
a(t) that is present in the right hand side of (Z2.2]).

Let €y €]0,1], A, A’ > 1, ¢’ €]0, 5[ (close to 3) be given. Let T € [1,e*].
We shall denote for t > 1, € €]0, ¢

(3.1.1) te = € 2(te?)

and assume given functions

(3.1.2) g:[1,T] - C, iy : [L,T] xR —=C
t—g(t) (t,2) = G (t, )

and z — Z(z) in S(R), real valued, satisfying the following conditions:

1 3 EpY
(3.1.3) 9(8)] < At 2, (D)) < At 2 + (VD 173], te [1,T]
(3.1.4) (Z,as(t,))] < (VD) t1, te1,T).

Moreover, we assume given W a neighborhood of {—1,1} in R and for any A
in R — W, two functions

(3.1.5) t = pr(A 1), t—=Pe(A2)
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satisfying for any ¢ € [1,7], any A in R — w

(BL6) e8] < (@VD R e D] < (VD) !
and solving the equation
(3.1.7) (Dy = Nex(A 1) = (Z, tx) + P+ (A, ).

We define from the above data
a 7 V3
afP(t) = "7 g(t)

+ wgg(t)Qe’At\/g + wo\g(t)\2 + w_2%2e_“\/§
+ % [g(#)ps (0,1) — () (0,8)]
+ e [gBpy (V3 1) — gDe (V3,1)],

where wg, wo,w_9 are given complex constants. We set

app @ ( app

(3.1.9) a®P = —a%PP| *PP(t) = 3ot (t) — a‘ripp(t)).

We assume given, as in the statement of Proposition 2.2.T] symbols m’L ; for
|I| =1 (i.e. I =+ or —) belonging to the class 5'{70(<§>_1, 1) satisfying (2I.7).
We want to construct an approximate solution uipp to the equation

(3.1.8)

(3.1.10) (Dy — p(Dy) )uiP? = F§[a™P] + F§[a™?]

+a*P(t) Y Op(mi p)[ui™]
17|=1
that is deduced from (ZZ2) computing the source terms FZ, F§ at a®PP, and
retaining from the other terms in the right hand side only those that are linear
both in a and wu.
Before stating the main proposition, let us re-express the source term in

B.L10).

Lemma 3.1.1. — Under the preceding assumptions on a®PP, one may rewrite
(3.1.11) F2[a®PP] + F3[a®P] = I} + Iy + I3 + R(t,z)
where
ijt L2
(3.1.12) Lt,)= Y €972 Mj(t,x)

for smooth odd functions of x, M;(t,x), satisfying for any o, N in N
|08 M;(t,€)| < Cavt €)Y,

(3.1.13) . N —dr_3 3 3¢/
|08 0:M;(¢,)] < Can (€)™ Vte 2 [t * + 7 2(2V1) ]
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with constants Cy N depending on A, A" in (3L3), (3-17),
where

.. \/3
(3.1.14) Lit,r)= > U7 My(t )
JE€{-3,-1,1,3}

for smooth odd functions of x satisfying
N -3
|02 M (t,€)] < Conte 2(€) N

~ _3 3¢/
0N (1, €)] < Canl) i [t + 173 (EVD],

and where I3 is a sum of terms

(3.1.15)

1
(3.1.16) Lt,x)= Y eIV3M3(t,x)
j=—1

where M]3 are odd and satisfy the following conditions: First, for any j with
I <1, any o, N

0LV (1,€)| < ContHt2()N
020N (1,€)] < Cont 't 1(6) N,

Moreover, for j = 1, and when & is in a small neighborhood W of the set

{6, V/1T+ €2 = /3), one may find functions ®1(t, &),V (t,£), satisfying
[@1(t,6)] < Ot
1(t, &) < Ctt

(3.1.17)

(3.1.18)

such that for € in W
(3.1.19)  DI(,€) = (Dy+ (V3= V1+82))®1(t,6) + T (t,€).

A similar decomposition holds for x M} instead of M;.
Finally, the remainder R in (31.11]) satisfies for any o, N in N

(3.1.20) |0%R(t,z)| < Cont 7)™

and we have for M;(t,x) in (Z1I2) the following explicit expressions:
(3.1.21)

M(t, ) = 39tV Valw), Mo(t,2) = S1g(t)Yale), M a(t,2) = 590 Va(a)
where Yy is given by
(3.1.22) Ya(z) = b(z, D) [5(2)Y (2)?] € S(R).

Moreover, the constants in all above inequalities depend only on A, A’ in

(31.3), L.
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Proof. — Consider first the contribution FZ[a*P] that is given according to
(L2.14), (3.1.9) and (B.1.22]) by

é[ epp —i—aapp] Ya(z).

We replace aj_pp by its expansion ([B.L8]). We get terms of the following form
(up to irrelevant multiplicative constants):

(3.1.23) V3g(1)2Ya, |g(t)|*Ya, e V3g(0) Vs,
(3.1.24) G5 ) e, 0< 0 < 3
and

Vg4 (0.0) = - (0.6) + 01 (V1) — o (V3,1)] s
(3125)  go(D)Re [p+(0.) — - (0.1) + o1 (V3,1) — o (V3,0)] V2
e 3 (1) [0 (0,1) — o (0,) + ¢4 (V3,1) — ¢ (v3,1)| Y2

with ¢95,7 = —1,0, 1 satisfying, according to (BI3]), the bounds

(3.1.26) gy (1)) < LAY, [9hges (1)] < O(A, Ay, ? [t NS ICNOE }

and expresswns that are, according to (BI13), BI6), O(t. 225 2< )y M) or
Ot z)™) for any N, as well as their 0, derivatives, so that they will
satisfy (BL20). Terms (BI23]) give [; with actually the explicit expres-
sion BIZI) for My, My, M_5. Terms ([B.I1.24) provide contributions to I

in (BI1.14).
To study terms in (B1.25]) that will provide I3, let us define

(3.1.27) Gr(\ 1) = e Mo (N 1).
By BI1), we have
(3.1.28) Dyga(N\t) = (Z,ds)e” M 4 apr (N t)e™ N

Then all contributions in (3..25)) may be written under the form e 3N le (t,z),
J=-1,0,1, with M; = given by linear combinations of expressions

V300 ()G (6V3, 1) Ya, L+6=1,0<60<1, ifj=1
(3129) g si(t)ps (V3 6)Ya, gue(t)pas((v/3,1)Ya, £=0,1, if j =0
e V30 o ()P (0V3, )Y, £+6=1,0<60<1, if j=—1.
Since by (BI128), BI16), BL7), BI4)
D2 (6V3. )] < Ct i (EVD)
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we deduce from (B.I13), (B16) that (BII7) holds for M]3 which is a combi-
nation of M;L and My, -1<j<1 In the case j = 1, we have to obtain

i.e. to find functions ®F,, UF,, ¢ =0,1 satisfying , such that
1,0 1,4
if we define according to the first line in (31.29])

(3.1.30) M, (t,2) = g2 ()p= (1 — 0)V3,1)Ya(a),
for ¢ in the neighborhood W of {—+/2,v/2}, we have

(3.1.31)  DNIE(,€) = (D + (VB =14 €2))&5,(t,€) + U5, (1,9).

Let us apply BL7) with \ replaced by A(¢) = /1 + &2 — ¢y/3 and £ € W, so
that A(€) remains close to Z+/3, and thus outside a neighborhood of {—1,1}.
We may then find functions ¢ (A(€),t), ¥+ (A(&),t) such that

(3.1.32) (De = V14 +0V3) 0 (M), 1) = (Z,1x) + Y (A(E),1)
with estimates of the form

(3.1.33) = (A€, 0] < (VD" 173, [pr(\(©), 8)] < (VD) !
uniformly for £ in W. Define

A

BE,(1,€) = g (ME), )e " 1703 g5 (1) V2 (€).
Then (BIL33) implies that
(D= (V1+€2 = VB) )85, (t,€) = (Z,5x)e =030, (1) T2 (¢)
(3.1.34) b (M(E), e 1=0V300, (1)Y5 (€)
+o2(A(€), 1)e V3 Dy g0 (1) P (€).
On the other hand, (3I30), (31.28), (3L6) and (ZIZ6) imply that

Ya(
Yo (

(3.1.35) DyNIE(,€) = (Z, 12 )e ™ 1=0V30y, (1)Y5 () + RE,(t,€)
with
(3.1.36) OFRE,(1,6)] < ct N (v (N

for any N. Making the difference between (3.1.34) and (B.1.35]), and using
(BL3), (L8], we obtain that (BI3I) holds, with functions @fg, \Illil satis-
fying (B.II8)) since the last two terms in (B1.34]) and ([B.I.36]) are

_1 3/
O Y 11212V ) = o1

for t < e 4.
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As fog(t,x) is also of the form B.I30), with Y5 replaced by xY3, the
same reasoning applies to that function and shows that (.19 holds as well
for M3 (with different functions ®;, ¥y in the right hand side).

We have thus obtained that the first term Fg[a®PP] in (B.L11) has the wanted
structure.

To study F§[a?PP], we notice that by (LZI4), (B19), (B1J), it may be

written as a linear combination of expressions of the form [BI24) (with Y5
replaced by another function in S(R)), that have been already treated, and
of products of a S(R) function by expressions that are, by BI13]), B1.0),
O(t-'t71), so that form part of the remainder term (FL20). O

We may now state the main proposition of this section.

Proposition 3.1.2. — Assume that properties (3.1.3)-(317) hold. One may
construct a function ui® : [1,T] x R — C (where T < e~* is the length of the
interval on which a’P® is defined by (3L8)), solving the equation

(Dy = p(D2))uP? = F§ (a™P) + Fi (a™P)
(3.1.37) +a™ " Op(mh 1)(uf™) + R(t, z)
7=1
PPy = 0

where m’LI is the symbol in the last sum of (2.2.2), where the remainder R
satisfies bounds

(3.1.38) |0%R(t,x)| < Contt  og(1 +t)(z) ™Y

for any a, N in N, with constants Co n(A, A") depending on the constants A, A’
m M) and where uapp has the following structure: One may decompose
PP = PP PP where PP satisfies for any r in N

(3.1.39) /PP (¢, )| e < C(A, A)é? ti
(3.1.40) [P (t, ) [lwroe < C(A, A')e
7

(3.1.41) Ly FP(t ) e < C(A, AN [(EVE) + (VD) eF]
where
(3.1.42) Ly =z +tp' (D),
and where u"°P" satisfies for any r

1.4 /7app o aye( L)

1. r <
(3,043 1220l < €, A0 5 )

(3.1.44) [u"PP (¢, ) [ < C(A, A)eXlog(1 + t)2
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(3.1.45) | L8P (L, ) |[wree < C(A, A')log(1 + t)log(1 + €°t).
For the action of the half-Klein-Gordon operator on w'***, we have estimates

(3.1.46) 1(Dy — p(D)) /PP (t, )| g < C(A, A')eXt

(31.47) 1Ly (Dy (D)1, Y < O(A, ) (VD) + (V) eb].

Moreover, we may write also another decomposition of ui™, of the form

(3.1.48) WP (1, x) = uPP (¢, x) + 2y (L, 2)
where uipp’l is a sum
(3.1.49) PPNy = Y Uja(ta)

where U; + solves the equation
/3
(D1 = p(D)) Ut = €977 M (8, 2)
Uj+lt=1 =0,

with source term M; given by (Z1.21). The second contribution Y, in the
right hand side of (3.1.78) may be also written as a sum Y5_ 3 U,(t, x), with

/3
U solving an equation of the form (31.250), with source terms e”tTSMj (t,z),
where M ; satisfies for any o, N

(3.1.50)

(3.1.51) |08 M (¢, €)] < Ca,n(A, A

and for any symbol m’' in the class g(’],o((@_l, 1) of Definition [Z11), one has
for any o, N in N estimates

(3.1.52) |zNOgOp(m') (T4 (¢, 2))]
_3 _1
< C(AA) [t 2+ 2+t 1] log(1 + ).

In addition, all constants C(A, A") in the above inequality depend only on A, A’

n ). 1 1 1 1
app, app,l _  sapp, 113pp, :
Moreover, may be decomposed as uy = w ;o +u T, with

u’ipp’l (resp. u”ipp’l) satisfying (31.39)-(31-41) and (3-1.20), (3147) (resp.
@FI73)-15))

Finally, all functions above are odd.

Proof. — The proof of the proposition will be divided in several steps, and
use the results of Appendix [AT0l below.
e First step
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We have decomposed in (B.LII) the source term of (BIL37) Fi[a*PP] +
F§[a®P]. 1In this first step, we construct a first contribution u‘j_pp’l to the
solution of (B.L37)) taking as forcing term the contribution I given by (B2

to (BIIT), i.e. we solve, with the notation (BI.I2])

. \/3
(D =p(D)i = 5 g (es)
Uipp’1|t=1 —0.

The functions M; in the right hand side are given by (B.1.21)), satisfy (B.1.13]),
and one may thus write uipp’l under the form (BI49), with U; 4 given as the
solution of (B.I.50]). We apply Appendix[AT0l The solution of (B.I50) is given

by (AI0.L12) with A = j% i3 and may be decomposed according to (AT0.1.3)) in
Uj . +U],. We define

rapp,1 __ / 1napp,l __ "
(3.1.54) wy = E Ujpo wy™ = § : It

and check that they give contributions to w3",v"%*" that satisfy BI39)-

BI41) and BI143)-BI45). By BII3), the M-’s in the right hand side
of (BI53) satisfy (AI0.1.6) with w =1 i.e. Assumption (H1); holds. By (i)
of Proposition [AT0.1.1] we thus get bounds of the form (B.I39)-(B.IT41), and
by (i) of Proposition [AT0.1.2] we have (BI1Z3)-BI45). We shall define the

contribution uapp’ in (B148]) by

app,l __ app,l 11app,1
(3.1.55) wy ot =

i.e. by the right hand side of (3.1.49)). Moreover, as M; is odd in x, so are
Uj+,Uj UL

e Second step

We consider now the term involving Op(m’L ;) in the right hand side of

(BI137), where we replace u® by uP*' given by (BI149) (with u*PP!
__,.app;1
uy )

ie.

(3.1.56) a®(t) " Y Op(my)(Uirs)

1T|=1je{—2,0,2}
with U — = —Uj ;. Recall that we decomposed Uj = U}, 4 UJ, according
o (AI0.13). Let us examine first the contribution coming from Op(m )(U/)
to (B.I5G). The symbol m/ ; lies in SLO(@)*IM(S’, 1), which is contained in
5’670(1, 1) (recall that My = 1 when there is only one £ variable), and it satisfies
IT). Since U/, is defined by (AI0.1.3) with A\ = j@ from some odd M;,
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we may apply Proposition [AT0.2.T], with M satisfying Assumption (H1); i.e.

(AT0.1.6]) with w = 1 according to (BI.I3]). We shall thus get from (A10.2.2))

(3.157) Op(mh ) (Uf4) = €5 M (t,0) + 14, 0)
with for any «, N, by (A10.2.4)),
(3.1.58) 1097 (t, )] < Cone?t Hog(1 + t)(x) ™V

and where M l satisfies by (AT0.2.3)
9226 )] < et )™
)

020 M ) (1, 2)] < Cante [t + -3 (VD | (1)~

By conjugation, we shall have also

(3.1.59)

(3.1.60) Op(my )(U]_) = e_ijth}’l_)(t,w) +r_(t,x)

with M ](12 (resp. r_) satisfying also (B.I59) (resp. (B L58)). We plug (B.I57),
(B160) in (B.1.56) and use the expression (B.1.9), (318 of a®PP. We get that

(BI56) is a sum of quantities of the following form:

— Terms of the form
(3.1.61) ('t M (te), = -3,-1,1,3
coming from the product of the first term in (B8] (or its conjugate) and of
the M g(,li) terms in (BI57), (B160). One gets thus smooth odd functions of
x, that satisfy by (3159, (B13]) estimates

_3
o) 92 M) (1, 2)] < Cante 2 a) ™

i,y o8 309, =

020, M P (t,2)] < ContMte > + 172 (V) (@) 7N,

— Terms satisfying (8.1.38) and thus contributing to R in (B.137)). These
terms come from the product of (B.57)) or (B.1.60) with all terms in the right

V3
hand side of (B8], except e g(t) (and its conjugate), and from the product
_1

of a®P with ry in (BIL57), GIL60). As 2t 1. > < Ct 1 tift < e 4 we do
get that these terms satisfy (B.138]).

— Terms of the form
(3.1.63) aP(t) Y Y Op(mh )(U))
[I|=1j€{-2,0,2}

where U7 ; is given by (AI0.L3) in terms of M; satisfying Assumption (H1),
with w = 1. We shall see in fifth step below that (3.1.63]) satisfies also (B.I.31))
and thus contributes to R.
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It follows thus from (B.I.53]) and the fact that (3156 is given by (B.I61]) up
to remainders, that
(Dy — p(Da))uP> — a®P(t) > Op(mh ;)(uf™)
(3.1.64) =1
=1 — IV + R(t,z)

where I is given by (B.1.12)), Iél) is the sum of terms (B.161]) and R satisfies

(BI38]). Making the difference between [B.L3T7) and (B.1.64)), we get, taking
(BIII) into account

(3.1.65) (D¢ — p(Dg))[ufP — u?P™"]

=L+ I+ LY +a® (1) 3 Op(m) )i —ufP) + R(t,z),
7]=1

with R satisfying (B.1.38]). Notice that by (B1.62), 12(1) has the same form
as I given by (B.1.14), (BII%5) so that we shall be able to treat both terms
altogether.

e Third step

We now construct an approximate solution in order to eliminate Iy + Iél)
in the right hand side of (B.I.65]). Define v} %P2 45 the solution to the linear

equation
(Dy — p(Dy) )uPP? = I + I3V
uipp’ lt=1 = 0.
As the right hand side has structure (B1.14]) with M; satisfying B1I5]), we

may express the solution as a sum Y jcr_3 113} U +(t,x), where U; 4 is ob-
tained from the j-th term in (BI.I4) and expressed under form (AT0.1.2)

with A = j?. By (AI0I3), Uj4 = U, + U/, and since (B.II5) shows
that (AI0.L6) holds with w = 3, Assumptlon (H1)3 holds. By Proposi-
tion [AT0.TT], bounds (AI0.LI7)-(AI0.LI9) with w = 3 hold for Uj ., and by
Proposition [A10.1.2) (A10.1.23)), (A10.1.24)) and (A10.1.26]) are true. If we set

/ 2 / " 2 "
(3.1.67) ul, PP = Z Uj 4o ug ™7 = Z Uj+
]e{_37_17173} ]e{_37_17173}

(3.1.66)

this shows that these functions provide to v/, u”?"" contributions satisfying

estimates (B.139)- 3141 and B.I143)-BI145).

Let us study

(3.1.68) a™P(t) 3 Op(mf ) (uf™?).
11=1
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If we apply Proposition [AT0.2.7] using that Assumption (H 1) holds, we get

from (AT0.2.2)), (AT0.2.3), (A10.2.4) and the fact that a®PP(t) is O(te 5), that
the contribution of u/ 2PP2 to BLBS) is O(t- 't () ") i.e. may be included
in R satisfying (B:IBEI) On the other hand, if we replace in BLB8) u?*” by
', *PP2 we shall get terms of the form ([B.1.63)), with U ;1 given by (M)
terms of M; satisfying Assumption (H1),, with w = 5. These terms are thus
better than those in (.63 and the fact that they fulfill remainder estimates
(BI38) will be seen in Step 5 below.

Consequently, we have shown that

(Dy = p(Da))uPP? — a™P(t) > Op(mh ;)(ug™?)
(3.1.69) |I|=1
=L+ 1" + R(t,z)

with R satisfying (3.1.38]). Making the difference between (B.1.65]) and (B.1.69]),

we get

(3.1.70) (Dt —p(D, )) [uipp ipp,l _ uipp,z}

= I3+ a"P(t ( > Op(mh 1) (uf? — uiPP 5P 2)) + R(t, x).
7]=1

e Fourth step
We construct an approximate solution in order to eliminate I3 in (BL7T0)
i.e. we solve

Dy — p(Dy))ulPP? =TI
(3.1.71) (De = p(Da))u ’

app,3 _
Uy ’tzl =0

with I3 given by (B.II6]). For each contribution eijt\/ng(t,x) to (B4,
with —1 < j < 1, we get an equation of the form (AIQ.LI) with A = jv/3.
Moreover, by BII7), BII8), BII9) assumptions (AI0.1.7), (AI0.1.8)),
(AI0.1.9) hold (the last two ones being empty if A = j/3 with j = 0 or

—1), i.e. Assumption (H2) of section (AT0.1.]) holds. We may thus apply (ii)

of Proposition [AT0.1.1] and Proposition [AT0.1.2] that allow to write uipp’g as
a sum

3 _
(3.1.72) usPP Z Uj+(t,x), UL =Uj +Uj,
j=—1
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with Uj , satisfying (I,A_lQ._’L.ZQI) (AI0.1.22) and U7, satisfying (AI0.1.27)-
(m. If we set uiPP” = o/ #PP3 4 o/f] aPP3 Wlth
1

(3.1.73) u!, PP — Z ! (), WP = ST U (),

j=-1 j=-1

it follows that (B.1.39)-B.IL41) and B.L43)-(B145) hold true. Let us check

that
(3.1.74) a™P(t) S Op(m) ) (uF™?)
[1|=1
is a remainder satisfying ([B.I.38]). Since we are here under Assumption (H2),
we shall apply Proposition [A10.2.4] splitting each U; 1 in BI72) as

(3.1.75) Ujt =Ujr1+Uja

1
according to (A10.2.23)). Then by (A10.2.24)), and the fact that a®®? = O(t. ?),

the contribution coming from U, ; obeys remainder estimates (3138, so
that (B1.74) may be written as a contribution to R in (3.I.37)) and as

(3.1.76) a*PP(t Z Op(m/ 7)(u"PY 3)
[]=1
with
(3.1.77) P = Z !t )
j=—1

We shall see in step 5 below that ([B.I.76]) provides also a contribution to R.
Consequently, we have obtained that

(Dt - p(DI))u‘j_pl:”3 — a®PP(t Z Op(m/ 1) (uf™® Y = I3 + R(t, z).
=

Making the difference with (BIZ0), we conclude that w3 will solve (BI.37)
if and only if

(De = p(Da)) [ Zuapp ]
a®P(t) Z Op(mj ; ( P Zuapp’ ) = R(t,x).

[]=1

Consequently, we just have to take ui™® = uapp’ + ufP 24 ufPP, 3. We have

checked that then estimates (B.1.39)- (BE]) and (B:EI{I) (BI45) hold. It
remains to check that terms of the form (B1.63]), (B.I.76]) provide remainders,
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and that estimates (B.1.46]), (B.1.47) hold true, as well as the properties of the
decomposition [BL48]). This will be done in the following steps.

e Fifth step

Let us show that (B1.63]), (B.LT6) are remainders. Let us use the same
notation U] , for either U] | in (B.1.63) or U] , ; in B.ITT). Notice that since
the M;’s in (BI12), BII4), (BII6) are odd in , so are the Uj, defined

from them. Moreover, as m/ ; is in Si,o((@_l, 1), we may write

(3.1.78) Op(m} +)(Uj +) = Op(in +)[(De) ™' Uj 4]
with 7] ; in 5’{70(1, 1). By oddness of Uj |

_ iz Y/ D,
(D) Vi =5 [ (7peyUhee )t o)

(3.1.79)

ix 1
(29
o /_1 [(L+Ug,',+)(f,u~"3) - uxU;7+(t,N;,;)] dp.

As 1y 1 has rapidly decaying coefficients in z, we rewrite (3.I78)) as a linear
combination of expressions

1. ! _
(3.1.50) t0u )| [ (0] . k=01

for new symbols 1} ; in 5‘10(1, 1). Using (A10.2.5)) with w =1 or (A10.2.25),

we bound any L norm of #7092 acting on (BL80) by Ce’*t~!. Taking into
_1
account that a®PP(t) is O(te ), we see that (BLG3), (BLT0) satisfy (BL3S)

(using again t < e~ %).

e Sixth step

We shall prove estimates (B1.46)), (31.4T). Recall that by definition v/ =
ul PP g BPP2 gy APP3 ith o/ 2PPL given by (BL54), u/, PP given by
(BL67) and o/, *PP3 given by (BLT3). Consequently, (Dy — p(D;))u/P is a

sum of expressions (D; — p(D,))U; , where U; , is given by an integral of

the form (AI0.1.3) (resp. (A10.2.23)) with M replaced by an M; satisfying
either (B.II3) (for those coming from (B.I54)) or (B.LIH) (for those com-
ing from BILGT)) (resp. satisfying B.II7) for those coming from (BIT3]).

Consequently, for contributions of the form (A10.1.3)),

(3.1.81) (Dt oD ))U‘ _ 1 /+oo 6i(t—7‘)p(Dx)+i>\jT>z(i

L. x ]7-}— 2t 1 \/Z‘
where X(7) = 7X/(7) and ), is some integer multiple of @ In other words, we
obtain still an expression of the form of the first line in (AT0.1.3)), but with a
gain of a factor 1. The estimates (3.1.39) and (B.L41) that we have already
obtained for «/3"" furnish thus (BI1.46), (31.47) multiplying them by ¢! (the
change of cut-off ¥ does not matter, as it has support contained in the one of

)Mj(T, ) dr
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X). This shows also that (.1.486]), (3.1.47) hold for u/®PP:! 4 4/3PP:2, The case
of u/@PP3 is similar, using (AT0.2.23]) to get an expression of the form (B.L81)),
but with X(%) replaced by )2(%), i.e. again an integral of form (A10.2.23))
with the gain of a pre-factor ¢!

e Seventh step

We have to establish still (3.1.48]). The contribution uipp’l in the right hand
side is the one that has been defined in the first step by (B.153]), with right
hand side given in terms of M; defined in (BI.21). The term ¥ in (B148]) is
thus given by u%”? + w%P»% introduced in (3167, (BLTZ). These functions
are constructed as sums of contributions U; that satisfy equations of the form

(BI50), where the source term satisfies (B.L15]) or (B.L17) and thus (B.I5I]).

It remains to show (B.I52). As m' has rapidly decaying coefficients in z, we
may forget the ¥ factor in (BI52)), and are thus reduced to the study of
2 3
93 0p(m/)(ui™”) and 93 Op(m )( 0.
Consider first 32Op(m’)(u%P*?). By (BL6T), we express that from

(3.1.82) 920p(m')(U}. ), 950p(m')(UL,).

As Assumption (H1),, holds with w = %, according to (BLI5]), the second term

above is given by (AI0.2.2]) of Proposition [AT0.2.7] It follows from (A10.2.3)),
(A10.2.4) that its modulus is smaller than

_3
te 2 +Et og(l + 1),

so than the right hand side of (3.1.52)). On the other hand, Op(m/)(U; ;) has
been expressed in fifth step under the form (BL80). If we plug there estimates
(AT0.2.5]), we see that the modulus of the first term in (3.L82)) is O(e3t~1), so
better than the right hand side of (3.1.52)).

Consider next 92O0p(m/)(uP?). Solving (BLTI), we have written u?""
under the form Z}:—l(UJ/,+,1 + U/, ;) according to (B.LTH). If we plug thls
decomposition in 9¢Op(m’)(-), we get on the one hand expressions of the
form (AT0.2.24)), that are bounded by the right hand side of (3.1.52)). For the
contribution 95 Op(m’)(Uj , ;), we use again that we can write an expression of
the form (B.L80) and bounds (AT0.2.25). We get an estimate in O(e?t~!) that
is better than the right hand side of (B.1.52]). This concludes the proof. [

To conclude this section, let us compute some integrals that will be useful
in the sequel.

Proposition 3.1.3. — Let Yy be the function defined in (31.22). The func-
tions Uj 1, j = —2,0,2 in the right hand side of (3.1.49) satisfy the following:

(3183) [ Uas(tbap(De) Yade = (a2 + i)™ g0 + (1)
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where g s real,

(3.1.84) By = —%Yz(\/if

for the function Ys defined in (I.1.6), and where r(t) satisfies

(3.1.85)  |r(t)] < C(A, A) (72 +17% 4 et ™2 (e 2,/5)? )gC’(A,A’)t;l

Moreover,
(3.1.86) [ Vot 0)p(D2) Yo do = aolg(®)* + (1
(3.1.87) / Us_(t,2)p(Dy) Yo d = a_sg(t) =3 1 1()

where o, o are real constants, and where r satisfies (31.83). Finally, the

function ¥4 in (3.1438) satisfies
(3.1.88)

'/2+ (t,2)p(Dy) ' Yada| < C(A, A)[te 2 e 2l et ]log(l +1).

Proof. — Let us establish (3.1.83]). The function U, 4 is defined as the solution
of BI50) with j = 2 and M» in the right hand side given by BL2I). We

write (B.L83)) as
o [ Do €006 Fa(-6) e

Since Y3 is odd, we get from (AI0.3.2) applied with Z(£) = —p(&)~1¥a(¢),
M(t,€) = My(t,€), A = /3, a contribution to r and two integral terms. By

(BI21), the second one is

etV3 1 (1=x5)(E) Ya(€)?
V3— 1+ /1+8

which may be written since Ys is real and odd, under the form O/Qe"t\/gg(t)2
for some real of.

Using the definition (AIQ3.1)) of x, and the fact that Y2(€)? is even, the
first term in the right hand side of (A10.3.2)) brings the contribution

Leit\/gg(t)Q lim +Oo/eiT(” 1%27\/5)707)((5 -?2)

3T o—0+ Jo

(3.1.89) dég(t)?

(3.1.90) N
X ——=r— Y(§)2 dédr.

NEas
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Denote by £(¢) the reciprocal of the change of variables £ — ¢ = v/3—+/1 + £2
defined from a neighborhood of ¢ = v/2 to a neighborhood of ¢ = 0. We rewrite

(L) as

Leit\/g £)2
(3.1.91) T peo A L de
< Jim [T [T (e - VD) gy
Notice that
lim o e~ dr = —i(¢ —i0) "t = wdy — ip.v. 1
a—0+ Jg ¢

Plugging in (B.1.91]), we obtain an expression o + i3y with af, real and So
given by (B134).

To obtain (B.1.86)), (3.ILR7), we apply again Proposition [A10.3.1] but with
A=0or A\ = —/3so that y, = 0 and in (AI0.3.2)) the first term in the right
hand side disappears. Only the second one and r remain, so that one gets no
imaginary contribution to (3.1.86), (3-1.87).

Finally, let us prove (B.1.88)). As Y53 isin S(R), the integral may be expressed
as an integral of Op(m/) (X ) for the symbol m’ = Ya(z)p(¢) !, so that (B152)
brings the conclusion. U

3.2. Asymptotic analysis of the ODE

In this section, we shall prove that solutions of the ordinary differential
equation ([L220) have a certain asymptotic expansion by a bootstrap argu-
ment.

We make some a priori assumptions on the functions ®;,I'; in the right
hand side of (T.2.20).

Assumption (Hj): Assume that ui is a solution to equation (LZ.I3)
defined on [1, 7] xR for some T' < €~4 such that the functions ®s, T';, j = 1,2, 3
defined on (.2:22)) satisfy the inequality

3 3.4
(3.2.1) [®2(us ;) u- ()] +jthe§+2 T (ug (¢, ), u(t,))]

S B/t7%(€2\/%)2€/
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for some constant B, some 0’ €]0, %[ (close to 1), all ¢ in [1,7], and assume

that the function ®; given by ([.2.22) satisfies for any ¢ € [1,T]
\/g — a a
( ) q)l(u-i-(t?')?u—(t?')) - ?<Y7Y’%(‘T)b(x7Dl‘)p(Dx) 1<u+pp _u_pp)>
3.2.2

—<<Z7ﬂ+> - <Zaﬁ—>)

where u3™" is the approximate solution constructed in section Bl Z is a
function in S(R), @y are functions verifying inequality (3.1.4]) such that for
any A in R — {—1,1}, one may find functions ¢ (\,t),%+ (A, t) as in (BLH),
solving equation (BL7)) and such that estimates (B8] hold true, for A outside
a given neighborhood W of {—1,1} in R.

We consider on interval [1, 7] the solution a4 of equation (L2:20]), namely

< Blt7%(€2\/5)29/7

(3.2.3)

with an initial condition at t = 1 satisfying
(3.2.4) lat(1)] < Ape

for some constant Ag. We introduce as a second assumption an estimate on
a4, that we give in terms of upper bounds (B.2Z.8]) below:

Assumption (Hj): The solution of equation (B:2.3) with initial condition
(BZ4) exists on some interval [1,T] with T < e~* and satisfies on that interval
the following requirements: One may write

(3.2.5) ay(t) = afP(t) + S(¢)

where a®PP(t) has the structure

a it o2 i N2, i

atP (1) = ¢ g(1) + wag (1™ + wolg (1) + woag (D) e P
i1 3/3

(3.2.6) + e g(6) (94 (0,) — o (0,1))

+ e g0 (04 (V3. 1) — o (V3,1))

and where

(3.2.7) S(t) = wgg(t)?’e?’”TS + w_l\g(t)\zg(t)eﬂtTS + w_gg(t)ge*?’”Ts

with the following notation:
e The coefficients w; in (B2.6) (resp. (B27)) are real (resp. complex) con-
stants that will be chosen below.



54 CHAPTER 3. CONSTRUCTION OF APPROXIMATE SOLUTIONS

e The function g satisfies, for some constants A, A" and t € [1, T

_1 _3 39/
(3.2.8) 9] < At E, |ong(t)] < AJte 2 4175 (V)2

where ¢’ €]0, 3] is close to 3 and has been introduced in (H}).

e The functions o (0,t), v+ (v/3,t) satisfy conditions ([BL5)-(BIL1) with Z
and @4 introduced in ([3:22), i.e. one has estimates
eI < (@VD 1, s 0)] < VD)t
(Zis (t,)] < (VD) 173
(when € is small enough) and one has the equation
(3.2.10) (D = Ne=(A 1) = (Z,ax(t, ) + £ (A, 1)

for A =0 or /3.
We shall bootstrap Assumption (H}) i.e. estimates (B.2.8]) assuming that
(H{) holds:

(3.2.9)

Proposition 3.2.1. — Let ¢ €]0,1[, ¢ €]0,%[, 0 close to 3. There are
constants A, A’ ey > 0 such that if Assumption (H}) holds and if the solution

ay of (32.3) exists on [1,T| and has structure (3.2.5) with g satisfying (3.2.8)
n [1,T], then if € €]0,¢], T < e~*t¢, one has actually, for any t in [1,T]

1 _1 1 _3 EYY;
(3.2.11) 9(t)] < At 2, |2g()] < At ? 3Vl

As a first step towards the proof of the proposition, let us rewrite equation

.2.3)

Lemma 3.2.2. — There are a real constant 1, complexr constants
Y3, Y—1,Y—3 Such that, under the assumptions of the proposition,

(D= L0y = 2 g0) Po(0) o1 - 1 07(V2)]
o1 + 80T g(t) s+ e 7 g(1) Pg(B)71
(3.2.12) n 673#@@%73
+(ay —a-)*®g + (ay —a_)’Ty
+ (a4 —a_)[(Z,iy) — (Z,0-)] +r(t)
where r(t) satisfies
(3.2.13) ()] < C(A, A", B3 (VD)™

for a constant depending only on the constants A, A', B' of (3.2.8), (3.21)),
(3.22).
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Proof. — Consider the right hand side of (3.23]). By (B.2.1), the ® contri-
bution is bounded by B’t_%(GQ\/E)% , so satisfies (B2213)). By (B.2.3), (324),
B23), B23)

(3.2.14) lay ()] + |a_(t)| < C(A)te 2
so that (3.2) implies that the contributions (a4 — a_)>7I;, j = 1,2,3 to
B23) satisty [B.2.13]). We are thus left with studying

(3.2.15) Do(ay —a_)* + ®1fur,u_](ay —a_)+Tolay —a_)>

The first and last terms in (3215 are present in the right hand side of (3:212)).
Consider (a4 —a—)®y. By (322), up to another contribution to r, we get on
the one hand the last but one term in the right hand side of (8.:2.12]) and the
quantity

-

\/g — a a
5 (@ = a )Y, Ya(@)b(z, Da)p(De) ™ (P —uP))
that, according to the definition ([B.1.22]) of Y3, may be written
3
(3.2.16) i(m —a_) (Yo, p(Dy) H(uiPP — uP)).

3
We replace above uP? by expansion (B:’EEI) According to (3.1.88])

(Y2, p(D2) 7S] < C(A A [t 2 + 1706 1742 log (1 +1).

If we use also (BZI4), (BII), we conclude, since t;? < Ctig(EQ\/%) and
_1
te 2t e < Ot 3 (2VA), t 171 < Ot 3 (2V/1), that (32I6) satisfies (F213)

(if we absorb the logarithm using that we assume e2y/t < €3, 0 < %, and that
we take € small). We are thus left with the contribution to (B:Z.I6) of

(3.2.17) ?(QJF _ a—)<Y2,p(D$)_1(uipp’1 _ uipp’1)>,

with uapp’ given by ([B.IL49). The bracket above has been computed in
(B:BE]) BI86), BI87). It is in particular O(C(A4, A’)t‘ ). By BZ3),
BZa), (BIZ'_ZI) (B:QEI) (B:ZQI) the difference a;, — e = g is bounded by

CAt +te 215_5( 2\/_) ] so that if we replace in (ZZIT) ay by e =3 g, we
get an error bounded by

(3.2.18) C(A, A2 117 5@V ] < o, eV,
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so that we get a remainder. Consequently, using again (B.1.49]), we have

reduced (B2.17) to

(3.2.19) —(g(t)e“ — it

S (Vp(D) MU + T
j€{-2,0,2}
up to remainders. We have computed the bracket above in (B.L83)), (31.80)),

1
BI8T). Up to terms bounded by the product of (BI85 with ¢, 2, which still
provides remainders satisfying (.2.13)), we get that (B.2.19) is given by

V3 43 _a 3 —~ gy ——3
T y3g(t)* + €T A11g(D)Pg(t) + ey ag(8)Pg(t) + e Ty 3g(D)

where v; are complex constants, with 4; = @(2@0 + oo + a9 +if32), where
g, g, ar_g are real and o is given by (B.I.84). We obtain thus the first four
terms in the right hand side of ([B:2.12]). This concludes the proof. O

We shall next compute from expression [B.25]) of a4 and from (BZI2) an
equation satisfied by g.

Lemma 3.2.3. — One may choose the coefficients wj, =3 < j <3, j# 11n

(3.20), (327) such that if ay is given by (F2.0) and satisfies (3.212), then

g solves

(3.2.20) Dig(t) = (a - z{—fs@(f 2)%)|g(t)g(t) + 11 (t)

where o is real, Y (v/2)? is negative and r1(t) satisfies
_1 '
(3.2.21) |m(t)] < C(A) 2t~ (VD)
+OAA B2 + i @V + @V
_1 3 5g/
+t 2t7%(e2\/¥)26 +t72(€2\/¥)29]
where C(+) are constants depending only on the indicated quantities.

Proof. — Let us express in a more explicit way the right hand side of (3.212]).

By B.2.3), B.24), BZ7), B.2.8), B.23)

ar(t) = (¢ g(t) + wag(t)2e™3 + wolg(t)? + woag(D) e V)

(3.2.22)

Nl

< O3 VD + oA

for constants C'(A) depending only on A.
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It follows that

(a4 (t) — a_(1)? = €™g (1) + 2g(t)* + g ()’
+ 2657 g (1) (wn + w_o)
(3.2.23) + 267 |g<t>|2 (£) (2wo + w2 + w_s)
+2¢7 |g<t>| 900) (20 + w2 + w_2)
4 2¢73% g(t) (w2 +w_2) +7r(t)

where r satisfies (B:221]).

In the same way

(a4 (t) — a_ (1)) = &% (1) + 3¢1°F (1) g (t)

(3.2.24) /s s
_ V3 — _9:43V3———3
+ 367 (1) g(8) + e ¥ g(t) + ()

where r satisfies (B.2.2T). We plug 32.23)), (3224 in the right hand side of

BZT12). We get, as ®g, I'g given by ([L2:21]) are real constants, the expression

¢™3Pog(t)? + 2g(t)[*Po + 67”‘/%0@2

g0 Po(0)(a, (V)
(3.2.25) n 63it§g(t)313 4 it 7|9(75)|2ﬁ1,1 n 6,3%@%3173

+ et g2, 0y ) — (Z,7.)]
+ e T G2, 0y) — (Z,5)] +1(2)

where Y J = —3,—1,1,3 are new constants with ~, real, Vo3 g0 depend-

ing on w_g,wp,ws but not on w_3,w_1,ws, and where r(t) satisfies (B2.21),
V3

and contains in particular the product of (Z,a4) with ay(t) — eltng(t),

a_(t) + e”TBg(t), according to estimates (3:222]) and ([B.2.9]).
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On the other hand, we may compute the left hand side of (3.2.12)) replacing
ay by its expression (BZH). We get, using (32Z10) with A = 0 or /3,

V3 13 V3 V3
(Dt _ 7)a+ = elt 2 Dtg + TGZt\/ngg(t)z - TWO‘g(t)‘Q

3 R v
- 3§w26”‘/§g(t)2 + \/§W363Zt739(t)3

it 3
(3.2.26) — V3w e "7 g (1) *g(1)
_ 2\/§w736—3it3§m3

V3

+e" T g()(Z ay) — (Z,a-)]
B _

+e SO Z i)~ (Z)] 4+ (0)
where 71(t) is made of terms of the form

O(lgDugl), O(|Digp+(0,1)]), O(|Digps(v3,1)))
O(lg¢+(0,8)]), O(lgp+(V3,1)]), O(g° Deg)).-
By a priori estimate (B.28]) and (B.2.9]), these terms are bounded by

(3.2.27)

N[=2 3 =30 2 /2% =132 0 202 /53¢

CA ANt +t 272 (V) +t 2t 2(EVE) +12(EVE? ]
1 /

+O(A)t T (EVD

the last contribution coming from the first two terms in the second line of
(B2217). We choose now the free parameters wj, j € {—3,...,3} — {1} setting

(3.2.28)

V3 2v3, 4V V3

w3 ?W?), w2 = —— %0, Wo T3 Yo wfl——?W,l
_ 23, _ V3

M T Tyt e E e

(which is possible as VoY 1073 do not depend on w_3,w_1,ws). In that way,
when we make the difference between the two expressions (3.2.25]), (B:2.26]) of

(Dt - @) we obtain equation ([B.2.20) with a remainder satisfying (3.2.28]).

This concludes the proof, as 172(\/5) being purely imaginary (since Y3 is real
and odd), Y2(v/2)? < 0 and moreover, by Proposition AT4.1.2] Y>(v/2) #0. O

Proof of Proposition [3.21: Let us show first that under the assumptions of
the proposition, the first inequality (B.2IT]) holds if A has been chosen large
enough, € small enough and ¢ < e~#*¢. In a first step, consider the case when
€%t is small, i.e. let us show that there is 79 €]0,1] such that if 1 <t < %, and
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€ is small enough,

(3.2.29) l9(t)] <

Since for these t one has % < t-! < €2, the a priori bound ([3:ZF)), equation
B220) and estimates (3221)) imply that, for any such ¢,

g(1)] < |g(1)] + KA3S3t 4+ C(A, A, B[ 4 47,

te

N|—=

IS

where K = 'a—i\l/—g?g(\/i)2' and C(-) is a new constant depending on
A, A, B (and 7). IfA is taken such that [g(1)| < 4 £ \/i’
so that KA1y < G \/i’ and if we take € small enough, we get, using that ¢’ is
close to 3, that [g(t)] < \/—E < Ate ? ie. (3.2.29).

We shall thus study from now on equation (3.2.20) for t > 3 and initial
condition at Z bounded by 4—\‘%6. In this regime, for some new constant

C(A, A, B'), (8221)) implies

and 7y small enough

(3.2.30) m ()] < C(A, A, B 73 (VD) +177],
remembering that ¢ stays in [rpe =2, e~*+¢]. For ¢ in [rg, e 2%, set
t
3.2.31 H=ecl(1+t)7g(=).
(3.2.31) e(t) = (1 + >zg(€2)
We deduce from (3220, (B:2.30) that if 8 = _ /6 Y2(v/2)? >0
le(t) —-f+ia 2
.2.32 S
B23)  ae) = 5o+ R 4 R
where
(1+1) PRCEOL
R < CA A, B) (VD) + ]
(3.2.33) A A B) t2
bl bl — 3 e—/c -1
< 17—1%(1 +15 )2 [62 + €7y 2].
Denote w(t) = |e(t)]*. Then
1 2

(3.2.34) dyw(t) = T [w(t) — 28w (t)* + Q(t)]
where according to (B:2Z33)), for t € [r, e 21|

' 1
(3.2.35) Q)| < C[e7¢ + ery 2| w(t)|2
for some constant depending on A, A’, B’, 79. Moreover, we have

AN2

(3.2.36) w(ry) < (Z) .
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We fix A large enough so that (g)z — 2,8(%)4 < —g and then take € < ¢
small enough (in function of A, A’, B’,7y) such that ([B:235]) implies |Q(t)| <
%\w(t)]% Then it follows that if, at some time ¢,, w(t,) reaches (é){ the
right hand side of (3:2:34)) is strictly negative. Consequently, taking (3.2.36])

2
into account, we get w(t) < (é) for any ¢ in [rp, e 2+¢]. Using (3231, we

_1
conclude that |g(t)] < éte 2 for t in [:—8, 6_4+C]. This gives the first inequality

B.2.11).

To get the second one, we notice that we may bound the right hand side of

B.22T) by
C(A) [t;% - t*g(e%/%)%@/}

o
2

+C(A,A’,B’)(e+(€2\/2) )[t?gﬂ—%(e?\/i)%e,}

for new constants C(A),C (A, A’, B'), depending only on the indicated argu-
ments. Plugging this in (3.2.20]), we get

_3 EXY
B19(0)] < Klg() + [C(4) + (A4, A, Be(t, [t * + -}V
with lime o4 SUp;(y c—1+¢] e(t,e) = 0. If we plug there the first inequality
(BZTT), choose A’ large enough relatively to A, so that

K(§)3+C(A) gAZ/

and then take e small enough relatively to A, A’, B’, we get the second inequal-
ity (B2ZI1). This concludes the proof. |



CHAPTER 4

REDUCED FORM OF DISPERSIVE EQUATION

In section 2.2, we performed a quadratic normal form on equation (ZI.1T)
satisfied by u in order to get equation (2.2:2). On the other hand, in sec-
tion B.I], we constructed some approximate solution solving equation (B.I37]).
Making the difference between ([2:2.2)) and ([B.I137]), we shall get an equation
for the action of Dy — p(D,) on

Uy = Uy — Z Op(rno,1)(ur) — uiP®.
17]=2

The goal of this chapter is to invert in convenient spaces the map wy — 4y,
to obtain an expression for w4 in terms of %, and to write down the equation
satisfied by 4y in closed form.

4.1. A fixed point theorem

We establish first some abstract theorem. We consider E, F' two Banach
spaces with norms |-z, ||-||. We consider also two other normed spaces E, F
such that ENE (resp. FNF) is also a Banach space. We set Bp(r), Bg(r) for
the closed ball of center zero, radius r in F, . We assume given a function

®: (ENF)x (ENF) = ENF
(", f) — 2", f)

satisfying the following estimates: There are C' > 0,0 > 0 such that for any
parameter A > 1, any u”, f, f1, fo in EN F, one has

(4.1.2) 1@ (", e < C(Il"Ilr + 1LA1E) (a2 +11£1lz)
(4.1.3)
2
1@, e < CX ([ |lF + 1fllr)” + CA (1”7 + £ lle) (1"l + [1f]|2)

(4.1.1)



62 CHAPTER 4. REDUCED FORM OF DISPERSIVE EQUATION

12", f1) = 2", )l < C(Il"IF + [ f1llr + I follF)lf2 = Foll

(4.1.4) .,
+C (" e + If1lle + I fell2) L1 = follr

(4.1.5) [|®(”, f1) — ", f2)|F
< C[)\U<HUHHF I fillr + Hfz”F) + )\*I(Hu”HE + | fille + ”f2HEﬂ
X |Ifr = follr
+OX Y1 + 1 fille + 1 f2lle) |11 — folle:

We assume also that if, in addition to preceding assumptions, v is in F and
fisin E, then ®(u”, f) is in F, with estimate

(4.1.6) 1@ (", Nz < ClIa" gl Lz + (la” e + 1 1e)I1F 1l )
and if fi, fo are in E,

(4.L17) [ e”, fr) = @W", fo)llp < C(Il" | F + lsllr + I f2llr) 11 = Foll -

Lemma 4.1.1. — There is 9 > 0 such that for any r in |0,7¢[, any A > 1,
any u',u” 4 in Bp(r\) N Bp(rA~=7), the fized point problem

(4.1.8) f=u +a+o",f)

has a unique solution f in Bgr(3rA\) N Brp(3rA=7). Moreover, if one defines

inductively
(4.1.9) ®'(u",a,9) = a+ ®(u",g)
I I ¢n+1(u/l’a’g) — @n(u”,a,@l(u”,a,g)) — él(u”,a, ‘I’n(u”,a,g)),

and if one sets
Ex =2 (" |7 + 1/ |7 + llalle) + A (Il + 1|5 + ] s)
one has for any N > 1 and a new constant C > 0
(4.1.10)
If =@V (W o' +a,)|p < CVHEYf — || p
+ CNHENT (|2 + 1|2 + llall) 1f — /Il
If =N (u" o' +a,u)|[p < CVTEY|f — o ||p + CVHEINTf — ||

Furthermore, if one assumes that u', i are also in E and u" is also in F', then
f isin E and one has for any N > 1

(4.1.11)
~ - N
If = @V ' + ad)lp < V(I lr + llale + lu"llr) " I1f = u'll5-
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Proof. — We define the usual sequence of approximations
g1l =N W a0 =0+ a+ D@, fy)
Jo=0

using notation ([AI1.9). By (£I12), (Z1.3]), we have
Ifnille < llle + lalle + (e lF + 1inle) (la"le + 1 fxlE)

I 5+lF < [lelle + lalle +C X (a2 + 1 fvlle) + A7 (e ll2 + 1w le)]
x (Il 17+ [lfwlF).

It follows that if «/,u”, @ are in Bp(rA~7) N Br(Ar) with r small enough, one
has for any NV

1
[fnalle < (IIUHEHIUHE) 3z

) 1
vl < g(l!u e+ lalle) + 5l -

In particular, (fy)n remains bounded in Br(3rA~7) N Bg(3Ar). Moreover,
by (@14, (£1.5) and the above bounds, for r small enough, (fn)xy converges
in ENF to a limit f satisfying
f=v+a+oW, )= "« +a,f).

Then (ZI1I0) with N = 1 follows from (£I4]), (I5). One obtains the general
case by induction, using (£.1.4)), (A I1.5]). In the same way, [{IIT]) follows from
@ET7). O

We shall apply the preceding lemma with E = H*(R), F = W”®°(R), s > 0,

A=1t>1, pe N. We define the spaces E, ' by
(4.1.12)

E={f e L’(R)af € L’(R)}, F = {f € W>(R);zf € W™(R)}
and we endow them with norms depending on the parameter ¢:

£l = thflle2 + e fliczs [1fllp = tlfllweee + [z fllweee.

The functions u/,u” of [ILE) will be the functions u'5"", v”"? of Propo-
sition B2l By (B.I139)-B.I41) applied with a large enough r, and using
BT, we st

[P (¢, )| < C(A, A")et
(4.1.13) [u"PP(t, )| < C(A, A)é?
7
PP (8, )| 5 < C(A, A [ + t3(EVE) P es]
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In particular, for € small, t7||w/ PP (¢, )| + ¢t 71||w/ PP (t, )| p may be made as
small as we want (uniformly in ¢ < e~%) if € > 0 is small enough. In the same

way, by (BL43)-(B145)
[u"PP(t,)|e < C(A, A
(4.1.14) PP (¢, )1+ < C(A, A’
[P (t, ) < C(A, A

€

e?(log(1 +t))?

te*(log(1 + ).

t, )HF + tilHu”ipp(t, )”E may be

~— ~— ~~—

Again, for t < €%, we see that t7||u"5"P

made as small as we want for € > 0 small. 3
We shall take some function @4 in Bg(Ar) N Brp(A™7r) N E, and shall solve
in u4 the equation

(4.1.15) Uy = Uy — Z Op(rio.1)(ur) — u/ipp ul/ipp
I|=2

—~

where 17 r are symbols in S o (H?:l (&)~ My, 2) defined in Proposition [2.2.1]
Setting f1 = uy — v, we rewrite (LIIH) as

(4.1.16) fr =Py + S "EP, fy)

where

(4.1.17) O(u" PP f1) = Op(mo.)((W™® + f);).
V=

Let us check that the assumptions of Lemma [ T.T] are satisfied by the preced-
ing map.

Lemma 4.1.2. — If we take £ = H*(R), FF = W?>(R), with s,p large
enough and E, F defined by ({.1.12), then inequalities (4.1.3) to (§.1.7) are
satisfied by the function ® defined by (4.1-17).

Proof. — To prove ([AI2]) we have to check that, for any I with |I| =2,
10p(720,0) (@ + £)1) s < C ([t lwooe + | fllweoe ) (0" |zzs + |1 f 122+
which follows from (AIL.I1.30Q) if p is large enough, since Proposition [ATT.1.6]

applies in particular to symbols that are independent of x, which is the case of
elements of Sy o (H?Zl (&) My, 2) according to Definition ZT.1] In the same

way, (£I1.3) may be written

10D (m0,r) (" + f)r) llweee < C[t7([[u” lwoee + | fllwesx)
([l e+ 1 ) [l oo + 1 fllwenee]
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which follows from (ATL.I.37]) with r = 1 if (s — p)o is large enough. Inequal-
ities (414 and (ZI35) are proved in the same way using the bilinearity of
Op(mQ [).

Let us prove (L16]) and (£I1.7). To simplify notation, consider for instance
the case I = (2,0). It is enough to prove the estimates

(4.1.18) 10p(R0,1) (f1, f2) 122 < Clfullweee | ol 12
(4119)  [2Op(mo.)(fr, fo)llzz < C [t fullwees + e fillwese || foll 2
(41200 [20p(h0,1)(f1, )22 < Cllfallwess [t follz + 2ol 2]

(and the symmetric ones) in order to get (LIL6) and (LIL7). But @IIIR)
(resp. (ELIT)) follows from (ATT.I.3T) (resp. (AI1.1.35))) if in the right hand

side of the latter inequality we estimate
ILsvjllweo < C[llzvsllweos + tojllworros-]

To get (Z.I.20), one applies instead (AILI3]]) after commuting x to Op(rmo, 1)

in order to put it against the fo argument.
This concludes the proof of the lemma. O

We may now state the main result of this section, that will show that the

implicit equation (LI.I6]) may be solved in f, and that we get an expansion
for fi in terms of w/5"", w”%"* and ;..
Proposition 4.1.8. — Let WP u""" be function satisfying (£.1.13),
[#1.13). Let also iy be a function of (t,z) € [I,T] x R, with T < e **¢
satisfying for some 0 < 6/ < 6 < % (0" and 6 being close to %), some & > 0,
some constant D the following estimates

a4 (¢, )| < Det?

)
(11.21) s (¢, < D%

~ 5 0
s (& )l5 < DE (VD).
Then, if € is small enough, there is a unique function fi in ENF with
(VD)

If¢ 1P < 3max(C(A, A'), D) max € (log(1 + 1)?, ~— =)

(4.1.22) NG

141z < 3max(C(A, A'), D)et’
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such that, setting f_ = —f
(4.1.23) fe=uPP + iy + > Op(mo,r) (W™ + £)p).
11=2

Moreover, one may find symbols (my)a<|11<4 in the class 5’170 (H‘le‘l (§j>71M0”, |I|)

for some v, such that one may write the solution fy to [{-1.23) under the
form

(4.1.24) fr=uPP fa, + 3 Op(my) (i, ufiP) + R
2<|1|<4,I=(I",I"")
where R satisfies
vt

4
(4.1.25) IR, s < C’(A,A’,D)(T) et

6, g
(4.1.26) lzR(t, )| < C'(A, A',D)(W%ft%(e?\/f)e

for some new constants C'(A, A', D), o > 0 as small as we want.

Proof. — Equation ([LI1.23]) may be written under the form (ZII6]) with ®
given by ([@IIT7). We have seen in Lemma that inequalities (L1.2)
to [@I7) hold true, with the spaces F, F,E, F defined in that lemma. By
@EII3), @ELI4) and @ELZI), if t < ¢ * and e is small enough, we can
make (L, ), | PP, 17T, (4 and ¢ PP,
PPt ) ey @ (¢, )| as small as we want. We may thus apply
Lemma [ TT] that gives the solution f to (£I1.23]) and its uniqueness. This
lemma gives as well the first inequality ([LI1.22]). To get the second one, we

deduce from (18, (£12) that
(4.1.27) 1f+lE < 0P lE + laslle + (o) [l f+lle + 1"l e]

where o(e€) is controlled by ||f4||r and [[u”$™P||p, so goes to zero if € goes

to zero by the first inequality (£I1.22)) and (LI1.14). Using (£I1.13)), (£1.14)),
(A121)), it follows that, for € small enough,

(4.1.28) £+l < 3max(C(A,A"), D)et’.
In the same way, we get from (A3, (£1.0)

Ifellg < 5P + lallg + Cllu" Pl plu" P e + o)l 4z

where o (€) is controlled by ||u”3*?|| g+ f+| #, so goes to zero with e. Plugging
(@113, (4.114), ({.I12I) in this inequality, we get for e small enough, and
some new constant C(A, A, D)

(4.1.20) |f+lls < C(A, A, D)k (V).
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We apply next (LII0) with N = 4. We obtain, using (LI1.13]), (AII4),
(4.1.21), (4.1.22)) that

(VD) 174
T} et

since we assume ¢ < ¢~ 4*¢ with some ¢ > 0. In the same way, by (ZIIT)
(4.1.31)

(4.1.30) H fi— B (u"PP /2P +a+,u'i’f’p)HE < C'(A, A',D)[

b 1a . 24)" 1914 0
Hf+ - ‘1>4(U”+pp,ul+pp + @+aul+pp)HE < C'(A, A, D) [%} 75%(62\/5) .
The right hand side of (£T.30) (resp. (£I.3T])) is controlled by (LI.25]) (resp.
(E1.26)

To finish the proof, we have to rewrite ®*(u”P, v/ P + 4y, u/'5P) as the
main term in the right hand side of (Z1.24]), up to remainders. Let us show
by induction that one may write

(11.82) NP P i )

=P+ ay+ Y Op(mf)(ap,up’)
2<[I|<N+1
I=(I',1")
for some new symbols m¥ in S o (H‘le‘l (§j>_1M(’]’, ]I]) for some v. For N =1
this follows from the definition (ZTL3) of ®! and of (ZLIT). The general case
follows using (£I1.9]) and Corollary [A9.2.6]i.e. the stability of operators of the
form Op(mﬁv ) by composition.

We apply (£I1.32) with N = 4, and according to (EL30), (L3I, equality
(I24) will be proved if we show that the contribution to the right hand
side of (AI132) given by I with |I| = 5 forms part of R in (Z1.24]). Using
(ATI1.1.31)), we estimate the H* norm of such a term by

~ 4
Cllas [wroee + /PP lwooe + [[u"SFP [wno.oe]

B[R PR e PR el P8

so by the right hand side of ([LI.25]), using (ZT13)), @114, (EI12T]).

To study the L? norm of the product of z and of the terms in the sum
(A132)) with |I| = 5, we rewrite the latter, decomposing u®PP = u/2PP 4 ¢,//aPP
under the form

. pimyp)\ur U rpr s W m
4.1.33 Op(m}) @y, u'BP  u"3F
T|=5,1 17, 77)

with symbols 707 in S ¢ (H?:l (&) Mg, 5)-
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In (ALI33)), we distinguish the cases |I”’| < 5 and |I"”"| = 5. In the first one,
we use (ATT.1.34]), making play the special role to one argument different from
u”%PP. We obtain a bound in

- 4 -
[ lweoee + a2 lwooce + [|u" PP llweooe | [0/l 5 + il ]

which is controlled by the right hand side of (£I1.26]). When |I"'| = 5, we use
(AI1.1.35)), to obtain a bound in

8
[0 3PP |[Byr00.0 (10" 5PP | 2 [0 PP || o < C(A, A')t(log(1 +1)) ¢

by @EII4). Since t < e *t¢ the last bound is smaller, for ¢ small enough,

o'\ 4
than C'(A, A', D)(%) t%(eQ\/z)e, so than the right hand side of (ET.26]).
This concludes the proof. O

4.2. Reduction of the dispersive equation

The goal of this section is to deduce from equation (22.2]) satisfied by wu
an equation satisfied by the function 4 defined in (AII5]). More precisely,
we shall prove:

Proposition 4.2.1. — We fix ¢ >0,0< 0 <0 < %, with ¢ close to 1 and
0 > 0 small. We take numbers satisfying s > p > 1 (that may depend on the
preceding parameters c,0,0'). Let € €]0,1] and T € [1,e"*¢]. Assume we are
given on interval [1,T] a solution uS*® = w'PP + P of (ZLF7) satisfying
bounds (Z1.3%)-(3-1.71) and (3 1.73)-(3-1.45). Assume also given a function
uy in C([1,T], H*(R)), odd, solution of (ZZ2) and such that, if we define

by [FITY) ic.

(4.2.1) Uy = Uy — Z Op(ro,r)(ur) — uPP — u"5PP,
=

then U4 satisfies for t € [1,T], bounds
a4 (t, s < Det’

62 o
(122 s 6 e < DD

|Liie(t, )2 < DI (EVE)

for some constant D.
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Then 14 solves the equation

(Dr = p(D2))ity = Y Op (1) (i, ugi?)
3<|I|<4,1=(1",1")

+ ). Op(mg)(ar, up?)
|l=2,T=(1",1")

(4.2.3) +aP(t) Y Op(mh ;)(ar)
1=1

2 (T () + e Tgm)” Y Oplomy ) (i)
11|=1
+ R(t,x)

where for some v in N, iy are symbols in Sy g (H‘fz‘l (&) My (€)Y, \I\), 3 <

[I] < 4, where mg ; and ™ | are in 5{,0(]_[']»]:'1 <§j>_1M0(£)”,|I|), all these
symbols satisfying (21.7), and where

N

(4.2.4) QP () = 3

aPP(t) — a* (1))

with a°PP(t) being given by the first four terms in the right hand side of (3L.38),
namely

V3

a it Y3 i 2 i
(4.25)  a¥PP(t) = €T g(t) + wag(t)?e™V? + wolg(t)| +w_og(t) e V3

and a’®(t) = —a’PP(t), and where R(t,x) satisfies the bounds for t in [1,T)

(4.2.6) IR(t, )| s < et® Le(t,e)
(4.2.7) ILLR(t, )2 < 73 (VD) elt, )
where

(4.2.8) lim sup e(t,e) =0.

€0+ 1<p<ete

As a preparation for the proof, let us rewrite equation ([2Z:2.2)) replacing in its
left hand side u4 by the expression of that function that follows from (£.2.1]),
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namely
(4.2.9)
(Dy = p(Dy)) [ty + u/SPP + PP =FFla] + Fja)
+ > Op(mo)lug]

3<[1|<4

+ Y Op(mg p)ur]
I|=2

3
+>_at) > Op(m) pusl.
=1 1<I<a—g
Recall that we have written in (B.1.37) an expression for ( D; — p(D )) uiPP,

Making the difference between (£2.9]) and (B.1.37), we get that (Dt— (DI))uJr
is equal to the sum of the following expressions:

(4.2.10) Fgla) — F§[a®P] + Fla] — F{[a™™]
(4.2.11) > Op(mo,r)[ur]
3<11<4
(4.2.12) > Op(my )lur]
=
(4.2.13) (t) > Op(m} lur] — a®P(t) > Op(m p)[u™)
|I=1 =1
(4.2.14) a(t) Y Op(mgp)lur)
2<|1]<3
(4.2.15) a(ty Y Op(mgplur), j=2,3
1<|1]<4-
(4.2.16) — R(t, x)

where R satisfies (B.1.38]).

We shall analyze successively the expressions (L.2.10) to (4.2.16]), using
equation (A21]), in order to rewrite their sum as the right hand side of ([Z2.3))
with a new remainder R.

We first write in a lemma some elementary inequalities that we shall refer
to in the sequel.
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Lemma 4.2.2. — We denote by e(t,z) any real valued function defined on
the interval [1,e4%¢], satisfying ({.2.8). We have then the following inequal-
ities:

(4.2.17) t=177 = O(ette(t,€)) if v > %
(4.2.18) log e[t 7t 2 = o(t*%(e%/i)@e(t, e)) if v > %,9 < %

(4.2.19) [67 + (62\/¥)W/t71]6t5 = O(et‘sfle(t, e)) if 6 >0,y>4,9 >0
(VD) ogelt=H (VD) = O (1 1@V e(t. )

(4.2.20) 1

ifv>00<0< 5

(VD) log el =3 [13 (V)] = O(et™e(t, €))
(4.2.21) 1 1

if5—0<v<5-0+250>0

1

(4.2.22) logef?et=% = O(t~H(2VD) e(t.€)) if 0 < 0 < 5

P -1 1
(4.2.23) llog e|“ete 2t77 = O(et™ "e(t,€)) if 5 <7< 1

(4.2.24) 11 = O(ete(t, €)).

Proof of Proposition 21  Since (Dt — p(Dy))uy is given by [AZI0) to
(£216]), we have to write each of these terms as contributions to the right
hand side of ([L23]). We study them successively.

e Terms of the form (4.2.10))

Recall that a = @(a+ —a_) with a_ = —ay (see (LZIY)) and that a4 (t)
1

is given by (BZH). Since by BZF), g(t) is O(te ?), it follows from (FZH),
3

BZT) that ap(t) — a®PP(t) = O(te ?). The definition (LZI4) of Fylal, F§[al
implies that for any «, NV integers

(4.2.25) < Cont72(@) N, j=2,3.
Thus (£ZI7) implies that (£Z6]) holds (even with 6 = 0) and ([@218]) implies
that (27 is true for any 6 < 1. So these terms contribue to R in (Z23).

e Terms of the form (4.2.17))

Notice that if @ satisfies estimates ([@2.2]), then it satisfies bounds (ZI1.21])
(with a new constant D) in view of the definition of £ = H*, F = W~

and @II2) of E. Moreover, if we set f, = uy — u"P, equation (ZZI)

02 (Fila] — Fi[a™®)) (¢, )
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may be written as ([LI1.23]). Then Proposition LT3 implies that for e small
enough, there is a unique solution f solving equation ([ALI.23]), and we have
an expansion ([LI.24]) for f, in terms of @, u*PP. We may rewrite this as

(4.2.26) uy = ufP +ag + Z Op(mp)(ap,up?) + R

2< 1|4, I=(1",1")
with symbols mj in gl,O(HIjI:I1 <§j>_1M6’, |I|) and R satisfying (AI.25),
(£126). We plug expansion (£2.20) inside (42.I1]). Recall that by Propo-

sition ZZ2T] the symbols mg ; in (Z2ZI1]) belong to gl,o(nljlzll <§j>_1M0, |I|)
By Corollary [A9.2.6], we shall get terms of the following form:

(4.2.27) Op(ry)(ap,upr), 3 <|I| <4, =I",1")

where 7y is some new symbol in Sy g (H‘le‘l (§j>71M0”, |I|) for some new v;

(4.2.28) Op(my)(Uy,Uy,...,Uy), k=|I|
with m; as above and either

(4.2.29) k> 5, Up € {tg,u TP, 0"}
or

(4.2.30) k>3, Up € {ue, ' u"FP, R}

with R satisfying (4.1.25]), (4.1.26]), one of the U, at least being equal to R.
Terms of the form (@227 are present in the right hand side of ([A2.3). We
have to show that ([A2.28]) contributes to the remainder in that formula. By

(AT1.1.30), under (£2:29]), the H* norm of ([{2.28) is bounded from above by

o (e [ e (T [y
X (g llzrs + PP + "3
By [(@22), (I13), (£114), and since k > 5, we obtain a bound in
6/
(V1) )4@55
Vit

so that (£ZI9) implies that (A206]) holds. On the other hand, consider the
action of Ly on (ZZ2Y) and let us estimate the L? norm of the resulting

expression by the right hand side of (£27). If we multiply (LZ28)) by z, we
have to study

(4232) xOp(fn[)(Ul,... 7Uk717Uk)-

(4.2.31) C(ogef* +
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Consider first the case when among the Uy’s in (£.2.28)), at least one of them
is equal to @y or v/PP| say Uy. We apply (AI1.1.34) (with j = k) and obtain
thus for the L? norm of the relevant quantity at time 7 a bound in

(4.2.33)  C([[ay lwoee + [0/ PP llwoeo + [[u" PP [woee)
% (Thaglize + 1Lqtglle + 7luPPl e + | LowFP]l12).

By (@22), BI140), B.I44), BI39), (BI41), and the fact that k > 5, we

obtain a bound at time 7 in

o
(4.2.34) C(logef* + @2%)47%(62\/?)9.

By ([@220) we get a bound of the form ([@27) for (Z2Z33)).
Consider next the case when in (Z2.28)), all the U, are equal to uv”3*P. In

this case, we use (ATLL35]) (with p > pg) to estimate the L? norm of (£.2.32))
at time 7. We get a bound by

(12.35) Ol (e [y + Lyt e ) [ 2.
By BI43)-(B.I45) we get an estimate by

06(62\/7_')4|10g ePrt + 6(62\/’7_')3|10g e|87'_%
to which (ZZ20]) largely applies.

On the other hand, the L? norm of the product of (EZZ28]) by T is estimated

using (AILI.3T)) by ([E233) or (£Z35]) as well. We thus have obtained that,

under condition (£2:29]), (LZ28)) forms part of the remainder in (Z23]).
Let us study now case ([AL230). If we compute the H® norm of (L2Z28)

applying (ATL.1.30), we obtain a bound in

k—1
C it llwoee + [0SR llweoe + 1" PP lwoce + [ Rllwees| ([ Rllms

(4.2.36) +C{Hﬁ+”wp»oo + Hu/ipp”wp’oo + |’u1/2_3:_r>]!>”pro + HR”Wf),oo:|

) [ s + /5P s + 1" s [ Rlweo .

By (AI2Z5), that allows to bound ||R||wee by Sobolev injection, (B.I.40),
(BI44), (£22), the first line is bounded by (£I1.25]), so it satisfies (L2.0]).

The second line of (L230)) is also estimated in that way. Notice that the
assumption k > 3 is not used here, and that k > 2 suffices.
If we compute instead the L? norm of the product of (Z228) by x from an

expression of the form ([£232]) with Uy replaced by R and apply (AI1.1.34)),
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we obtain an estimate at time 7 in

k—
Clllas lwooe + [ EP [wooe + 1" PP lwooe + [ Rllweos]

x[FlIR|2 + 2Rl 2]

The first factor is O(e?’) by BIL40), (L4, (EZ2) and ELZ5) (coupled
with Sobolev injection). The last one is bounded from above using (LI.25]),

([@EIZH), so that it satisfies (Z27)) using (ZZ20). The L? norm of the product
of [@228) by 7 is also estimated by (L2Z37). Again, only k£ > 2 is used.

e Terms of the form (4.2.12)

We plug in (£.2.12)) expansion (£2.26). By Corollary [A9.2.6] we get terms

of the form

(4.2.37)

(4.2.38) Op(mg ) (ap,ug?), |I| =2,1 = I',1")

and terms of higher degree of homogeneity. We may thus write these terms as
(4.2.39) Op(my)(Uy,...,Uy), |I| =k

where m/ is in 5’{70 (H|]Iz|1 (&) tmy, |I|) for some v and where either

(4.2.40) k>3, Uy € {ig,u P "5}

or

(4.2.41) k>2, Up€ {iy,uFP " PP R}

with at least one factor equal to R. Terms (£239) under condition (£.2.41))

provide remainders satisfying ([A2.6]), (£.2.7)), as it has been seen in (£2.30)),
(Z237)). (The fact that & > 3 there has not been used).

Terms (£238) are present in the right hand side of (£Z3]). Let us show
that terms (£239) under condition (A.240), provide contributions to R in
(@23). To estimate the H® norm of ([A239), we may first split the symbols
in new ones satisfying the support condition of Corollary [AT1.2.12] i.e. for

instance [&1] + -+ + [§p—1] < K(1 + [€|). We shall apply estimate (A11.2.39)
with n = k,£ = k — 1. Let ¢ be the number of indices j between 1 and k — 1

such that in (ZZ39), U; is equal to i+ or u/S"P. Then by (A11.2.39)
(4.2.42) [|Op(my)(Us, ..., Ug)llms
—(k— - - v
< Ot (| Ly | g2 + | Lo/ PP |2 + | s + [|a/ P s )
1 k—1—¢/
X (L P llwooce + " fwo oo + 172 "5 122

< (s + [l zzs + " e )
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Since k > 3, we obtain from (BI139)-B141), BI143)-B.IL45) and (£22) a

bound in
Ct72 [t%(ezx/%)eﬂog €|2]2€t6 < Ct7le(t, €)et

if o is taken small enough, so that (Z2.6]) holds.

We consider next the L? norm of (ZZ39) multiplied by z or ¢. The rapid
decay of symbols in the S} ; class relatively to Mo(&)™"|y| given by (ALI5)
implies that the product of 7/ by z is still a symbol of the form 7/ (with a
new value of ). We thus have to estimate just

(4.2.43) t|Op(my)(Un, ..., Ukl L2
with Uy satisfying (@240). If at least one U; is equal to @y or u/5P, we use

(AT11.2.32) with that value of j. We get a bound of ([£Z743)) in

@249) (s llwrooe + 4% fsyonoe -+ [ fyyon
X [ILigllze + IL4wSP 2 + g2 + 0/ 2]

If all U; are equal to v”3P, we use (AI1.2:33)) in order to obtain a bound in

(4.2.45) Cllu"%PP |72 o (\|L+u”ipp||wpo,oo + Hu"j_ppHWpo,oo)Hu”ippHLz.

By (BI139)-@I4I), BI143)-3145) and @22), the sum of [@244) and
(£.249]) is estimated at time 7 (since k > 3) by

2 o
(4.2.46) C [m + €%|log eﬂ 27'% (62\/7_')0 + llog e,
\/7_-

By (£Z20)), the first term is smaller than the right hand side of (£.27)). The
same holds true trivially for the last term in (£2.46]). This finishes the proof
that terms (£.2.12)) contributes to the remainder in (Z.2.3)).

e Terms of the form (4.2.13)

We need to prove that (A2I3]) contributes to the remainder and to the
a*P 37 71=1 Op(1g 1) (ur) terms in the right hand side of [@2.3). Substitute

(£220) in (L2ZI3). We get the following terms

(4.2.47)
a(t) = a®(t)) Y- Op(mi 1) (ui™) + (a(t) — a®P(t)) > Op(mr)(ar)
1]=1 1]=1
(4.2.48) a®(t) Y Op(m r)(ar)
11|=1
(4.2.49) at) Y > Op(my 1)Op(my) (i, u'py)

[T|=1 2<|T| <4, T=(I",I"")
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(4.2.50) a(t) > Op(m) [)(R)
|1]=1
where R satisfies (4.1.25), (4.1.26)).
By (M) (L’L-l-ﬁ') BLE), B13) and BZ5), B27), a**(t) — aapp(t) =
Ot 213 (VD)) alt) — a™(t) = Ot ?) = Ot *1-3(VD)). By
(AT1.1.29), the H® norm of (£2.47) is thus bounded from above at time 7 by

1 _1, 9 0’ rapp 1app ~ 1,2 0 5
Cr A EVD) [P e + P s + [y lne] < O (@) er

using (B1.39), BL43), (A22). This quantity satisfies (ZZ6]). If we make
act Ly on (LZAT7) and use (AI1.2.32]) to estimate the L? norm, we obtain a
bound in

_1 _1 ~ ~
Cre 2772 (e 2\/_) [\|L+u/ipp||L2 + | Ly tg gz + ([P 2 + ||U+HL2]

for the contribution of «/%** and @+ to (£247). Using EZ2) and (B.1.39),
BI4I), we get by (IIZZIII) the wanted estimate of the form ([L27). On the

other hand, if we consider the contribution (a(t) — a®P(t))Op(m7] ;)u"" to

(EZZT) on which acts L, we may estimate the L? norm from the L* one, as
m} ;(z,€) is rapidly decaying in z. Then, by (AIL2.38) with £ =n =1, we
obtain a bound in

(4.2.51)  Ctla — a®P|[t" (|0 P [[weoe + 3 [0 PP )

+ t71+0<||u/lj_pp||WPOvoo + ||L+Ul/j_pp||WPO’°°>]-

3
As a—a®PP = O(t. ?), it follows, taking for instance r = 1, and using (B.1.43)),
(BI44), BI45) that (EZ5T) at time 7 may be estimated, if o is small enough,

from
3
Cr. 277 log e]* < CTE_%T_%El_QU“Og e’
By [#218), (427) will hold largely. We have thus obtained that (£Z47) is a

remainder.
Term (A248)) is present in the right hand side of ([A23]).

Consider next ([@.2.49]). By Corollary m the composition Op(m'1 1o

Op(ml) may be written under the form Op(m/ ) for new symbols m/ i

(Hm &)~ "y, |I|) for some v and 2 < |I| § 4. Consequently, we write

(IZIQZQI) under the form

(4.2.52) a(t) > Op(m) ;) (g, uz").
2<| [ <4, T=(1", )

Since such expressions will appear also in the study of terms of the form
([£2:14)), we postpone their study.
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Finally, let us study (£2.50). As Op(m’LI) is bounded on H*, the Sobolev
_1

norm of (LZ50) is O(te ?||R(t, )| m+). Using (LI127), it satisfies (Z2Z6]). If we

make act Ly on ([A250), the rapid decay of m’1 ; and (LI.25), show that we

obtain at time 7 an expression whose L? norm is bounded from above by
CT;% (62\/7_')40 71 (e79)
that trivially satisfies ([L2.7).

This concludes the study of terms of the form ([L2I3]).
e Terms of the form (4.2.14) (and (4.2.52)))

We study now expressions of the form (£2I4]) and the related ones intro-

duced in (A252]).

We plug expansion (EZ.26) in (AZ14). By Corollary [A9.2.6] we get again
terms of the form @Z5Z), with 2 < |I| < 6 instead of 2 < |I| < 4, and terms
of the form

(4.2.53) a(t)Op(my (U, ..., Uk), [I| =k >2

1]
j=1

with again 7 ; in 5’{70 (H (&)1 my, |I|), Uy belonging to

~ /app _ //app
{ui,ui y U ,R},

one of the arguments at least being equal to R satisfying (4.1.25]), (4.1.26]).
We have already checked that terms of this last form provide remainders (even
without the pre-factor a(t)) (see (£230]), ([A2.3T), where the assumption k > 3
was not used). We are thus reduced to the study of terms of the form (£.2.52)),
with |I| > 2 in the sum. If [I| > 3, we get terms of the form [EZ39) with
conditions (£Z40)), that have been seen to be remainders. We must thus just
study

(4.2.54) a(t)Op(my ) (U1, Us)

with |I| = 2, Uy, Us € {ay, 5P, u"5PP}. Moreover, we may assume, in order
to bound the Sobolev norm, that ) ; is supported for |§1| < K(1 + [&2])
for instance. Applying (AI1.2.39) with ¢ = ¢ = 1 if U; = @ or «/5*® and
(=10 =0if Uy =43P, we bound the H® norm of (£.2.54) by
|a() [t Ltz + |G llrre + 1Lt/ 2 + 1/ e
1
1Lt o + [ oo + ¢ 5P 7]

X s s + /5P s + ") s

_1
As a(t) = O(te ?), one gets at time 7 a bound in e 'e(t, ¢) using (BI139)-

B14I), BI43)-BI45) and (@22]). It follows that (L26]) will hold. On the

other hand, if we make act Ly on (£Z54]) and compute the L? norm, we get a
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_1
bound given by |a(t)| = O(te ?) multiplied by (£244]) or (L.2.45]) with k = 2.
Using again (3.1.39)-B.141), B.1.43)-(B3.1.43]) and (£22), we obtain at time
T an upper bound in

o 1
CTe_% [(7(62\\;_? + €2|log 6’2)7'%(62\/7_')0 +log(1 + 7) log(1 + 762)5(%) 2]

By (@Z20), (£222), [@27) will hold true. This concludes the estimate of

these terms.

e Terms of the form (4.2.15])
Terms ([LZTI5) with |I| > 2 are of the same form as (£214]), with a smaller
pre-factor a(t)?, so they are remainders. We have thus to study

(4.2.55) a(ty S Op(miy 1) (ur), j = 2.5
11=1
By BZ3), B2Z4), B27), (329) and the definition of a(t) = @(mr —a_),

one may write (255 from the term

(4.2.56) é > (e“@g(t) + 6*it§g(t))20p(m671)(u1)
11]=1

and from terms like

(4.2.57) a(t) » Op(mg r)(ur)
17]=1
where
(4.2.58) ()| < Ceo 3 @VD” 7).

Terms (£2Z50) are present in the right hand side of (£2Z3]). We have to show
that (LZ57) provides remainders. The H® norm of these terms in bounded
from above, using the Sobolev boundedness of Op(my, ;) and estimates (.1.39),

(BIZ3) and (E22) by Cet®~1*? so that (EZ6) will hold.
On the other hand, if we make act L+ on ([LZ5T) and compute the L?

norm, we have to estimate by ([£Z58]) expressions of the form

/ _1
(4.2.59) tt ! [t—%(eQx/Z)e +te 2] Op(mp 1)U || 12

where 1) ; is of the same form as m(, ; and U = a4 or v/ or u

When U = @y or v'3P we use (A11.2.32)) to bound ([E259) by

qr, -1 o -3 -
Ct; ' 172 (V) +te ][I Lytip |2 + | Lo/ 2

+ s + 2P 2]

/1app
:I: .
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Using (B.1.39)), (3.1.41)) and (4.2.2]), we see from (£.2.20) that (£2.7) will hold.
On the other hand, if U = u”°"", we estimate the L? norm in (ZZ59) from an
L one, using the rapid decay of my, ;, and we use (AIL.2.38)) with £ =n = 1,
r =1, in order to obtain a bound in

-2 0 -1
o O e O | [ Al
1
4+ t3 Hu”ippHHs]-
By B.143)-(B.145]), we bound this by
Clog e|2et_%(t(’e)

so that, since t < ¢~ and o may be taken as small as we want, ([E2.22) implies
that (A27) holds. This concludes the study of terms (ZZ.I5]).

e Terms of the form (4.2.16))

These terms satisfy ([BI38). It follows immediately from @ZI7) that

(£Z30) holds. Using (L.2Z18]), we get as well (L27).

This concludes the proof of Proposition 211 O

The reduced equation ({.2.3]) obtained in Proposition B2l still needs one
more reduction before we are able to deal with it. Recall that in Proposi-
tion B2, we have decomposed u**® under the form BIA8) u?P = uPP" +
%, where u%"™' was given by (B49). We refined this decomposition in

BI52) as

uipp,l _ u/ippJ + u//ipp,l
W= 3 Ujata)
u/lipp,l = Z _]/:‘f’(t’ a’,‘)

where Uj U/, are defined in (AI0.L3]) from the right hand side of (BI50),

namely

too .
I (ta) = 2/1 el(t—T)P(Dx)HJ@X(L)M].(t’ N dr

(4.2.61) _

t i ..
£ [

with M; given by [B.I2I)). Let us prove the following corollary of Proposi-
tion [£2.7]
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Corollary 4.2.3. — Under the assumptions of Proposition [{.2.1], iy solves
an equation of the form

(4.2.62) (Dt —p(Dy) )u+ - Z ¢iti% Op(b iy — Z ¢iti % Op(b _)a—
j=—2 j=—2

= Z Op () (ar, upi’)

3T <AT=(1",17)

+ Y Op(mq ) (ir) + > Op(mip 1) (@, u' TP
|I]=2 I=(I',1"),|T'|=|1""|=1
+ Y Op(mp ) (W) + Ry (t, )
|I|=2

where (M1)3<|11<4 15 as in the statement of Proposition[{.2.1], where (m671)|1|:2

are in Si,o(H?zl (€)' My(€),2), where R,y satisfies ([1.2.6), (4-24), and
where the symbols b;}i satisfy (Z170) and the following estimates for a, 3, N
in N:

Ifj=—1orj=1,

0200Y, (1, €)| < Capte ()N (9!
D200, 4 (1,2, €)| < Capn [t ® + (VD 3] (@) V)
and if j = —2,0,2

10200V, 4 (t,2,6)| < Cagnts o) N(g) ™
0208, 4 (t,2,6)] < Capnte T 12 + (VD 3] ()N ().

(4.2.63)

(4.2.64)

Proof. — Let us analyse the different terms in the right hand side of (Z2.3)).
The first sum appears unchanged in (£.2.62]).

By the definition ([@235) of ai”, the fact that a®PP = @(Qipp + aP)
and (B.I3), the a*P(t) 3= 1=1 Op(m )(@r) term in @Z3) contributes to the
terms involving b} , in the left hand side of (£2.62). The same holds true for
the last but one term in [@23]). We are thus left with studying

(4.2.65) Y. Op(mgg)(ay,ufi’).
|T=2,1=(1",1")

o If [I"| = 0, we get the Y7|;—o Op(my ;)(@r) contribution in (E262).
e We consider next the contributions to (IZ:EE) with |I'| = 1, |I"| =

As one may decompose u5PP = /PPt 4o/ PPt L 3| by BIER), (BBH), we
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shall get three type of terms:

(4.2.66) 3 Op(mj 1) (@p, w55
I=(1",17),]T'|=|1"|=1

(4.2.67) > Op(my ;) (ir, u"BP 1)
I=(I', I"),|I'|=|1""|=1

(4.2.68) > Op(mp 1) (i, Spm).
I=(1',1"),|1'|=|1"|=1

Term (A.Z60) appears in the right hand side of (£262]). From (Z2Z60), we

may rewrite (L2.67)) as a sum of expressions
(4.2.69) Op(mg 1) (ar, U} 1n), j=—2,0,2.

We shall apply Proposition [A10.2.2] with x = 1,w = 1. Since U}, is defined

by ([@2.61]) from a M; given by (BI.2I]), thus satisfying by (BI.3)) inequalities
(AI0.1.6) with w = 1, Assumption (H1); of Proposition [A10.2.1] is satisfied,
and so Proposition [AT0.2.2] applies. It follows from (AI0.2.19)), applied with

A= j@a Jj=-2,0,2, that (£269) may be written as
(4.2.70) 12 Op(b])iiy + Op(b)iiy

where b} (resp. b)) satisfies (ZL7) and the first two lines (resp. the last line)
in (A10.2:20) with w = 1. The first term in (Z270]) brings thus contributions
to the last two sums in the left hand side of (LZ62]), for j = —2,0,2, with

symbols satisfying (L2.64) and (Z.1.7).

We have to check next that the last term in (ZZ70) contributes to the
remainders.

By the last line in (A10.2.20) and (AT1.1.30]), (£.2:2])
10D (V)i || e < Ce?t log(1 + t)et?

from which a remainder estimate of the form (@26 follows. If we make act

Ly on Op(b})ay and use (AI1.2.32) with n = 1 and the bounds (A10.2.20)
for the seminorms of &), (with w = 1), we obtain from (Z.2.2])
(4.2.71) Ly Op(B)ar |12 < CetVlog(1 + t)tt (e2v4)

so that a bound of form (£27) holds.
It remains to study (L.2.68]). Recall the definition of ¥ given after (.1.50):
this function is a sum Z?:—g U,(t, z) where U solves (3.1.50) with source term

/3
e M ;, where M ; satisfies (BI51) i.e. the first inequality (AIQ.IT). We
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may then decompose each U; as U’ + U7, according to (AI0.2.23) with

A= j@ and rewrite the terms in (ZZ68) from

(4.2.72) Op(mg 1) (ar, Uy 1), Op(mg )@, Ujy 1)

to which Proposition [AT0.2.5] applies. This allows us to rewrite these terms
as Op(b)(u4) where b satisfies estimates (A10.2.30]), namely

(4.2.73) 100006b(t,y, £)] < Ct 2t og(L + £)(y) N (€)1,
By (A1L1.30) and (4.22]), we thus get

1
10p(b) (@) |+ < Cte >t log(1 + )ty ||+

_1
< Cte 2t log(1 + t)et’.

An estimate of the form (£26]) follows at once. If we make act Ly on

Op(b)(@4), use the rapid decay in y of (£273) and (ATL.2.32]), we obtain
an estimate of the L? norm by the right hand side of (ZZT7T]), with €2 replaced

1

by te > < e. This suffices to imply that (27 holds, and thus shows that

(£Z68) is a remainder.

e We study finally contributions to (£2.65]) where |I’| = 0. Again, we use

BIAR), BI55) to write
app __ , rapp,l /1app,1
uylt =uw du s XN

Plugging this expression inside the terms (£Z65]) with |[I’| = 0, we shall get
expressions given by

(4.2.74) Op(mf ) (W31, 1] =2

(4.2.75) Op(m ) (S, /5P, | = 1" = 1,1 = (I',1")
(4.2.76) Op(mg ) (21), 1] =2

(4.2.77) Op(mf ;) (W"$™1), |I| =2

(4.2.78) Op(mp ) (Sp, PPN, I = [I"| = 1,1 = (I, I")
(4.2.79) Op(mp 1) (w2, | I = |17 = 1,1 = (I, I")

where my, ; are still elements of 5’{70 (H‘le‘l &) tMy, \I\)
Term (A274) appears in the right hand side of (£2.62))

Term (EZTH) is treated as @EZBY): actually, w3 satisfies (31.39)-
(BI4T) as has been established after ([3.1.54)), and these bounds are better

than inequalities (£22]) for @
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Term (£2.76]) may be treated in the same way: we have seen in the study
of @268) that Op(myg;)(-,Xv) may be written as Op(b)- for b satisfying

@2703) (see (E272)). By BI52]), we shall get for any N

(4.2.80)
12 Op(mp, ) (Z1)|las < Cllz" Op(b)(Zx) | e

_1 _3 _1
< Cte 2t log(L+1))2[te 2 +1 1t 2+t 1€,

By (£Z23]), we see that (£26]) will hold. Estimating the action of Ly on
Op(m{)J)(E]) in L2, we get an upper bound by the right hand side of (ZZ.80)
multiplied by ¢. Then (£Z22]) shows that (L27) holds.

To study (EZTT), we recall that u”%"™! is given by (BL54) where U, is
given by the second formula (AT0.1.3)) in terms of an M that satisfies (.L13)),
i.e. such that (AI0.1.6]) with w = 1 (Assumption (H1);) holds. We may thus
apply Corollary [A10.2.3] with w = 1. Tt follows that the H® norm of (Z2.77)

is bounded from above by
Clto? + 't (log(1 +1))?].

This largely implies (EZ8]). On the other hand, the L? norm of the action of
Ly on (£2T7) is bounded by

Cltt 2 + 't (log(1 + 1))?].

Then (£.2.22]) implies that (£2.7)) largely holds.
Terms (A2.78)) may be treated in a similar way as (L276]): we have seen

that Op(m}) (S, u"3HP") may be written as Op(b)u”P™! with b satisfying
(@2.73)). By the expression (B.1.54) of u”ipp’l = Yje{-202 U} 4, where U/ |
is defined by the second formula (AT0.1.3]) with A = j@ and M = M; given
by (B.L2I]), we see that we may apply Proposition [AT0.2.7lwith w = 1. Taking
into account the time decaying factor in the righty hand side of (L2773, it
follows from (A10.2.2)), (A10.2.3)), (A10.2.4)) that

_1
(4.2.81) |020p(mp ) (Sp, u" PN < Cte 2t~ (log(1 + 1))
x [tot 4+ et log(1+t) | (z) Y.

Thus the H® norm of (A.2.78)) is bounded from above by the t-depending factor
in (A2.8T)). By (£223]), we get that (L26]) largely holds. If we make act Ly
on (EZ18)) and estimate the L? norm, we get a bound in

_1
Cte 2log(1+ ) [t + e*t Hog(1 +1)].

Thus (@2.22)) implies ({2.7)).
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It just remains to treat (£.2.79). Notice that (£2.79)) is of the same form as
(A267)) with @y replaced by u'}; app, 1 , 80 that may be written under a similar

form as (A.2.70), namely

(4.2.82) 2 Op(?)u' PP + Op(bh)u/ 3PP

where b] (resp. b)) satisfies the first two lines (resp. the last line) in (AI0.2.20)
with w = 1. We have checked after ([LZT0) that the second term in that
formula is a remainder. Since as seen above, u/%*P" satisfies (B139)- (B4,
which are better estimates than those verified by U4, it follows that the last
term in (LZ82)) is also a remainder. Let us prove that, because of the better
bounds satisfied by u'% 4P Versus @iy, the first term in (Z8Z) is a remainder

as well. By the estlmates of b; in (A10.2.20]) and (A11.1.30])
||Op( ) rapp,1 s < Ct- 1||u/app, g < Ct;lthi

according to (B139) written for «/%*™". By @Z2), we conclude that (£26)

holds. To estimate ||L+Op(b])u'® .1 |12, we are reduced, by the fact that
/app,1

bl is rapidly decaying in z, to boundlng tHOp(b{) llr2. According to
(A11.2.32) and the bounds (A10.2.20]) of bl, we thus get an estimate in
7
(2 ([l e + Ly PP 12) < CH7ME[(EVE) + (VD) €]

by BLZAI). As in @27) 0 < 3, (£Z20) shows that (Z2.7) holds.
This ends the study of term (A.2.79) and thus the proof of Corollary [£2.3]

O



CHAPTER 5

NORMAL FORMS

The goal of this chapter will be to simplify equation ([L.2.62]) that has been
obtained for .

5.1. Expression of the equation as a system

. ~ ~ = a a —app a,
Let us fix some notation. From @y, 4— = —ag, uf?, P’ = —uPP, /PP,
PP = —/ "j_pp, we introduce the vector valued functions
-~ app rapp
~ Ut app Uy rapp Ut
(5.1.1) U= |- , U = WP | u = W'?PP |

In order to write ([L2.62]) as a system on @, let us define, when I = +

2
(5.1.2) Vi(tz,6) = . @90, (1,2, 6)

j=—2

where ;| satisfies (£.2.63]), (£.2Z.64). Denoting VY (t,z,€) = b (t,z, &), we
define the matrix of symbols

(5.1.3) M'(t,x,§) =

Vy(t,w,&) b (t,2,8)

—b'!(t,x,{) _b/i(t7x7§) .

Since Op(Vy)w = Op(b'Y)w, if we denote by Op(M’) the quantization of M’
+ +

defined entry by entry, and define Op(M') by Op(M')a = Op(M')a, the form
of M’ shows that

, Op(¥,)  Op(V.)
(5.1.4) Op(M') = {—Op(;—/_) —Op('})

or equivalently, if Ny = [? (1)},

(5.1.5) Op(M")Ny + NoOp(M') = 0.
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If we define for j = —2,...,2
b, . (t,2,8) b, _(t,2,§)
M/ t, ﬂj, — 7‘7,+ b 7, b
j( 5) —b,\ij7,(t,£ﬂ,£) _b,\ij,Jr(taxag)
we have
2
M(t,2,6) = Y €9V Mj(t,2,€)
(5.1.6) j=—2
Op(M})No + NoOp(M_;) = 0.

We shall set also, if m(x,&1,...,&,) is a multilinear symbol

(5.1.7) m’(z,61,...,6) = m(x, —&1, ..., &)

so that Op(m) = Op(m"), if we set again

Op(m)(wy, ..., wy,) = Op(m)(wy,...,Wy).

If I = (ig,...,in) € {—+} and u; = (usy,...,u;,), we denote [ =
(—i1y ..oy —ip)

(5.1.8) up = (Umigs ooy Umiy) = —(Uig, - -, Uiy,) = =TT

according to our definition u— = —uy. Then if my is in Sy o(M, |I]), we shall
get that

(5.1.9)

Op(m)(ur) = Op(m)(ur) = (=1)"10p(mp)(u;) = (=1)"1Op(m} ) (u;).

Let us use this notation to express nonlinear quantities constructed from
(£2562)). We define first the quadratic terms, that will come from the right

hand side of (£2.62]), namely

(5.1.10) Mp(a, Py = " l
I=(I',1")
|1']=0, 1" |=2

~ ,1 ~

n Z lOP(mé,I)(uI’, u'pP 1)] 1 Z {Op(mé,l)(ul’)}

_ N , Y
i~y 0P D w P G, (O
['|=[1"]=1 ['|=2,1"|=0

Op(m'o,z)(U’?Bp’l)]

— ,1
Op(m'g 1) (W' 5")

and the cubic and quartic expressions, given for j = 3,4 by

S =,y Op(mr) (g, uph®)
5.1.11 M, (@, utPP) = 1= VT
(5.1.11) S = 05 gy Oy ) g, ™)
|T|=j
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We also set

(5.1.12) R(t,z) =

R-I— (t7 .%')}
R+ (t’ x)

where R, is the last term in (£2.62)).
The system obtained taking equation (£Z62]) and the conjugated equation

may be written as follows, denoting V the operator Op(M’) given by (5.1.4)
_ [p(Dz) 0 ],
and Py = { s 7p(Dz)}.

Dy — Py — V)u = Ms(@, u®P) + M (i, u*PP
(5.1.13) (De = Py = V)it = Ma(@ ) + Ma(@, )
+ M (1, u/*PPL) 4 R.

In order to apply the results of Appendix [A12] below, we need to re-express
operator V on the Fourier transform side.

Lemma 5.1.1. — For j = —2,...,2, there are two by two matrices

Qut.61) = [ st

1<k <2

whose entries satisfy estimates

1080545 0.0| < Civt Il = Ial) ™™ ()™
102050105 1.0] < O [t ™ + (VD¢ 5] {lel = Il ™ ()
for any o, B, N if j = —1,1, and

1080} a0 < Ot (€] = [nl) =N () ™!
0800145 0,0 < Ot [t + (VDM e = ) ()
Jor any o, B, N if j = —2,0,2, such that, if we define the operator Kg, by

(5.1.14)

(5.1.15)

(5.1.16) Ko, f( /Q] (t, €, m)f(n) dn

for f a C? valued function, the operator V acting on odd functions may be
written as

(5.1.17) v=>" e“j@KQj.

Moreover, one has YNy = —NoV .
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Proof. — 1t [ = Hﬂ, we have according to the definition (B.I4]) of V =
Op(M’) and (EIH)

2
(5.1.18) Op(M)f = 3 T Op(M))f
j=—2
e | Op(; ) f+ +Op(b; _)f-
(5.1.19) Op(M;)f = {—Op(b,\;;)ﬂr - Op(ll’/\ij,ﬁf—

The Fourier transform of the first line of (5.1.19]) may be written
(5.1.20) /537+(t,£ —n,0)f4(n)dn + /6’~,_<t,5 —n,m)f-(n)dn

where lA);, 4+ is the Fourier transform relatively to the first variable. Since b |

satisfies (ZI1.7), if we set
q~j,(1,1) (t7 3 77) = /6_17',+(t7 §—n, 77)7 q~j,(1,2) (ta 3 77) = B_Ij,f(tvé. -1 77)

we see that §; x.e)(t, =&, —n) = @j,k,0)(t, &, m). If we make act (B.L.20) on odd
functions f;, f—, we may rewrite this expression as the sum for (k,¢) = (1,1)

or (1,2) of
1 A
5 [ (G006 = @0 b6 —m)] Fel dn

(with f4 if (k,¢) = (1,1) and f_ if (k,¢) = (1,2)). In other words, we may
assume that §; (1,1)(¢,€,7) is odd in n. Since that function is even in (§,7), it
has also to be odd in . By (Z263), (E264), = — b;(t,z,71) is in S(R), and

the function is C*° in 7. It follows that the Fourier transform in x of these
functions satisfies

(02070, 8 1(t,€ = n.m)| < CapNT (t (€l = )™V ()~

for any «, 5, N, £ = 1,2, where 7}€(t,e) is the time dependent pre-factor in
the ¢-th equation in ([L2Z63]) (resp. (£264])). After the preceding reductions,
it follows that g; (1 o) satisfies for all o, 3, N € N, £ = 1,2

1~ ~N, \—1

102070, G5, ) (1, €| < Cag T (t (€] = )™ ()"
Since we have seen that this function is odd in £ and odd in 7, we may write it
as éj%qj,(k,g)(t,f,n), where g 1 ¢) satisfies (B.IT4)), (.II5). It follows that
we have written the first component of the Fourier transform W of (.II8) as

/3
the first component of 23:_2 e’ TSKQ]. f(&). Since the reasoning is the same
for the second component, we get (5.1.17]).

The last statement of the lemma follows from (5.I.5]). O



5.2. NORMAL FORMS 89

We may now eliminate the operator V in the left hand side of (5.1.13]), using
the results of Appendix [AT2]

Proposition 5.1.2. — Fixz m in |0, %[ close to %, and set as in the example
following Definition[A12.11), « = min(1 —2m, 3¢0') > 0. There is ey > 0 such
that, for any V of the form (EI117), defined in terms of matrices Q; whose
coefficients satisfy (0.1.14), (BLIH), with € €]0, €[, there are operators B(t),
C(t), defined for t € [1,T] (T < e *¢), bounded on H*(R), satisfying the
properties of Propositions[A12. 1.1 and[A12.1.3 of Appendiz[A13, such that, if
@ solves (LLI3) and satisfies estimates ([{.2.2), then C(t)a solves

(Dy — Py)C(t)ii = C(£)Ms (@i, u™P) + C'(t) My(ii, u™P)
+C ()M (@, u'*PPY) + C ()R

(5.1.21)

with R satisfying for any t in [1, T
(5.1.22) IR, )|ms < et?te(t,e)

(5.1.23) LR, e <t 3 (VD) e(t, )

where e satisfies (4.2-8). Moreover, C(t)u is odd if i is odd and NoC(t)a =
—C(t)a.

Proof. — By (AI2.17), (Dy—Py—V)B(t) = B(t)(Dy— ) and by (AI2.1.12),
@ = B(t)C(t)u. Replacing @ by this value in the left hand side of (BII3)),
composing at the left with C(t) and using again (AT2.1.12]), we obtain (5.1.2T]).
Since V(t) preserves odd functions and satisfies V(t)Ng = —NoV(t), the last
statement of the proposition follows from (AT2.1.27]) and the fact that Noa =

—a. This concludes the proof, as estimates (5.1.22]), (5.1.23]) are just rewriting
of (A2.6]), (E2.1). O

5.2. Normal forms

Our next objective will be to eliminate by normal forms most of the contri-
butions in the right hand side of (B.I.21]). We shall construct first the relevant
operators in order to do so.

Let us fix some notation. Let n be in N*. Consider C? valued test functions
vj, defined on [1,T] x R for some 7', of the form

. — Uj,_;_(t,.%')
(5.2.1) (t,x) = v;(t,z) = vy (1)
with v; 4+ odd in x and satisfying v; - = —v; 1. If n > 3, we shall consider

n-linear maps

(522) (vl,...,vn)—>./\;lj(vl,...,vn)
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sending C%-valued functions to C2-valued and having the following structure

(using notation (A9.1.9]))
~ S 11j=n OP' (721) (V1615 - - - 5 Vnii)
5.2.3 My (v, ... 0,) = VN o
( ) n( 1 n) (_1)n Z\I\zn Opt(m}/)(vl,_il, o 7Un,—in)
where I = (i1,...,in) € {—,+}", My is in S1 5(My ITj—, (&;)~!,n) for some

B > 0 small, v € N, where m}is defined by (5.17), and where the form of
the second line of (B.2.3]) respectively to the first one just reflects the fact that

M, (v1, ..., v,) will have a structure with respect to conjugation similar to the
one in (B.II0), (LI (see (B.I9)). Moreover, we assume that m; satisfies
(5.2.4) m(y, z, &1, .., &) = (1) Ii(—y, —x, —&1, ..., &)

so that the associated operator preserves odd functions (see (Z.1.7)).

Proposition 5.2.1. — Let n > 3. One may find symbols my in
Sap(M§ 17 (£j>_1<x>_oo,n) for any I with |I| = n such that, if one
sets

s S 111=n OP' (1) (V1315 - -+ Unii,)
5.2.5 My (v, ... 0,) = " VN ’
( ) (o1 ) (—=1)™ 31120 OP* m}/)(vl,—ip--wvn,—in)

one may write

Ry (v1,...,vp) d:Gf(Dt — Po)./\z/ln(vl,...,vn) — M(vl,...,vn)

(5.2.6) no,
—ZMn(Ula---7(Dt - Po)vj,... ,Un)
J=1

under the following form.:

Ry (v1,...,0p)
(5.2.7) Ry (vi,...,0n) = Ry (v1.....00)
with R, = R, 4, and R, satisfies the following: One may write
R, +(vi,...,v,) as a sum
(5.2.8) Ry +(vi,...,0p) = Z OP' (71) (V1,iys - -+ VUniiyy)
[I|=n

with symbols rr in Sy s(M{ 17— (£j>_1,n) for some v € N. Moreover,
LiR, (v1,...,v,) may be written as a sum of terms of the following form:

n
(529) Z Z Opt(rl,j)(vl,ila e ,LZ'].UJ"Z']., e ,Unﬂ'n)

[]=nj=1
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with r1; in Saa(My TT1=y ()" n),

(5.2.10) Z Opt(m)(vl,ip s Uniy)
[I|l=n

for symbols r in Sy s(Mg T17= (5]')71, n), and

(5.2.11) t Z OP' (71) (V1,015 - -+ Uniyy)
[I|l=n

for symbols 17 in Sy 5(Mg T} (&)71,n). Moreover, iy satisfies
(5212) m[(_y’ -, _515 SRR _én) = (_1)n71m1(y, Z, 51’ s aén)

if my does so in (LZ23).

We shall prove the proposition expressing (5.2.6]) in terms of the semiclassi-
cal quantization of symbols introduced in (A9.L6) in Appendix[A9l If h =

IRl

we introduce for any function vj, j =1,...,n, the function v; defined by
(5.2.13) vi(t,x) = 1v(tx)—@v(tw)
[ I\ - \/Z_] "t — Vitli\Y

according to (A9.L7). By (A9.1.8]), each term on the first line of (5.2.3) may

be written

~ n ~ Xz
(5.2.14)  OP' (M) (vrys- - vni ) (6, 2) = hEOPL (R @152, (8 )

and similarly for the first line of (5.2.5]). The first line in the right hand side
of (5.2.6) may be written as the sum in I of

(5.2.15) (D¢ — p(Dy))OD' (110r) (V1iy s -+ + s Vnip ) — OP (M) (V1dys -+ + s Vniny)

n
- Z Opt(m[)(ULil, ey (Dt — Z‘jp(Dx))?}ij, N ,U,mn).
j=1

It follows from (5.214]) that the first term in (B.ZI5]) may be written as

he [Dt — Opy, (955 +p(§) - Zghﬂ (Oph(ml)(ﬁl,ip - aQn,z‘n)) (E %)
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The other terms in (5.2.15]) admit analogous expressions, so that (5.2.15]) may
be rewritten as h%E£,+(ﬂl,i17 ce Uy, Zn)(t ”C) with

(5216) E£7+(Q17i17 s 7Qn,in)(t7 ‘T)

= [Dt - Oph (.%f + p(g) - Zgh)] (Oph(mf)(yl,h? s 7Qn,in))
- Oph(mf)(yl,ip s 7Qn,in)

— > Opy, (1) [Ql,h? cees [Dt - Oph($§ +ip(§) — ig)]yi,ija e &mn}-
=

We shall study (5.2.16) both when [ is characteristic and I is non character-
istic, according to the terminology introduced in Definition [AT3.1.1], that we
recall in the statements of the following two lemmas.

Lemma 5.2.2. — Let I = (i1,...,i,) be characteristic, i.e. iy + -+ + i, =

1. Take iy = 0 in (E216). Then if L+ = +O0pu(z £ p'(€)), the term

EiE{L,JF(QLiI, ce U, ) may be written as a sum of the following expressions:
Oph(rf7j)(yl,i17 cee 7£ijyj,ij7 U 7Qn,in)

(5.2.17) Opn(rr) @iy - Uni,)

1
Eoph(r/l)(yl,ip s 7Qn,in)

with r1j,r1 in Sap(My TTj=y (&)~ n) and vy in Sy 5(M§ TTj—y (&)~ n) for

some V.

Proof. — We just have to apply Proposition [A13.2.1] of Appendix[AI3l O

‘We shall consider next the case of non-characteristic indices.

Lemma 5.2.8. — Let I = (i1,...,in) be non-characteristic, i.e. iy+- - -+i, #
L. Then one may find a symbol 1y in Sy 5(M§ TT7—4 (&))" Hx) ™, n), for some
v, such that E{L,Jr(gl,il, oy Upg) given by (22T10) may be written as a sum
of terms

Oph(T )( Ligr 2 Un zn)
(5-2-18) hoph(T[)( Ligr 2 Un zn)

Oph(’r )( 1,419 y Up zn)

with symbols r} in Sy g(Mg TTj—y (&)~ n), r1 in Sup(My [Tj—y (&) ()™, n),
rpoin Sy s(Mg 17— )~ 'n).  Moreover, LiR  (V1gys- s Un,) may be

'y Enig

written under the form [5.217) and 1y satisfies (5.2.13) if my does so.
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Proof. — We apply Proposition [AT3.3.1] and define 7y to be the symbol ay
of that statement, that satisfies (AI3.1.6). According to (AI3.3.1) (with m;
replaced by 7y in its right hand side), (522.16]) may be written as the sum of
(A13.3.3) and of the last two lines in (A13.3.2]). This gives (5.2.18).

To get the last statement of the lemma, we use that E{L, . is also given by
(AT13:32). We have thus to show that the action of £ = 3Opy,(z +p'(€)) on
the three terms in (AI13.3.2]) may be rewritten under the form (5.2.I7). For
+0p;, (p'(€)) this follows from the composition result of Proposition [A9.2.1]
For the product of § by (AI3.3.2), this is a consequence of the fact that in
these formulas my ; and 71 are in classes Sy g(Mg [}, <§j>71<x>71, n). In the
case of r7, the fact that the symbol belongs to S} 5(M{ T]}— (&)1, n) means
that it is rapidly decaying in M(&)~*|y|, so may be multiplied by z (and even
by x/h), up to a loss on the exponent v. This concludes the proof since the
definition (AI3.18)) of a; (with m; replaced by ) shows that it satisfies
(B2Z12) if my does (taking the cut-off v even). O

Proof of Proposition [5.2Z1: We just have to translate the above two lemmas
going back to functions vy, ..., v, from v,...,v, through (52I3)). The first
component R, y of (5.26]) is then h%E{L,Jr(QUI, cey Uy, ) With EﬁﬂL given by

(52.16]). In the characteristic case, (L.2ZI6) with 7y = 0 and (B.2.14]) show
that (5.2.8)) holds, and Lemma [5.2.2]implies that L R,, ; is of the form (5.29]).

In the non-characteristic case, these properties follow from Lemma (.23l O

Proposition B.2.1] will allow us to treat by normal form the contributions
M3, My in the right hand side of (5.I21I). We need also a result that will
allow us to treat Mj.

We consider a bilinear map (v, v2) — Mb(vy,v2) of the form

~ —o Op(my ;) (v14y,v2.5)
5.2.19 N (v 09) = | 211=2 OP(0, 1) (V11 V2,35
( ) Q(Ul U2) 2‘1‘22 Op(m/&])(vl,—il,’vl_m)

where my ; is in SLO (H?:l (&) Mo (9), 2) and satisfies (ZL7). Our goal is to

prove:

Proposition 5.2.4. — One may find an operator (vq,vy) — M'z(vl, vg), that
may be written

DD (i in)e {412 Qinio (V15 V2,45)
2 D (i in)e {432 Qinin (V1315 V2,45)

(5.2.20) My (v1,v9) =
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with operators Qi i,(V1iy,V24,) of the form (A13.4.11), preserving the space
of odd functions, such that, if we set

(5.2.21)
Ro(v1,v2) = (Dy — Po)Mj(v1,v2) — M (o1, vs) - Mb((Dy — Py)vy, v2)
~M; (vi, (D¢ — Po)vs)

and if vi,ve are odd functions, then Ry = [gzj with Ry _ = Ry and Ry 4

being a sum

1 1
(5222) Roy(vr) =172 Y 3 ST KN (L, L)

(i1,i2)€{—,+}2 £1=0£2=0
with Kﬁlfw in the class IC'l 1(1,41,12) of Definition[A13.4.1]
12

Proof. — We just have to apply Corollary [A13.4.4] to the first component of
equality (0.2.2])) changing the definition of the notation Kﬁffh in the right

hand side of (2.2.22)). O

‘We shall use the results established so far in that section in order to rewrite

equation (5.I.21)). Recall first that by (AT2.1.6), (AI2.1.7), (AT2.1.12)), where
V is the operator (5.1.17), we have

(5.2.23) (Dy — Py))C(t) =C(t)(Dy — Py — V)

when both sides of these equalities act on odd functions.
Recall the form of operators M in (G.III): these operators may be written
as

(5.2.24) M u uapp ZMK = app app) j =234
14 j—L

where

(5.2.25)

S o= (i1 ,..vic) Op(mpJn)(’ULil, .. 7Uj,ij)
’U') — I'"= (ZZ+17 711)
Y > = (41,050¢) (—1) Op(ml/ 1//)(”1 721,---,1)]',7@5)

Ill:(i€+1 77ZJ)

M?(Ul,. ..

and the symbols /s ;# are in S 0(]_[‘[‘ (&) T My(e)”, |I|), 3<|I=5<4
according to PI‘OpOSlthH 2Tl According to Corollary [ATT.T.7] each of these
symbols may be replaced by a symbol in S B(Hm (§j>_1M0(§)”, \I\), for
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B > 0 small, up to adding to (5.2.24]) some remainder satisfying (AT1.1.33))
for an arbitrary r. In other words, we may rewrite (5.2.24]) under the form

(5.2.26)  M;(@, uP) ZMK @, utPP L utPP) o R(, utPP)

where ./\/lg is of the form (G.Z25]) with symbols 7 # in

]|

Sw(H (&)™ Mo(&)”,111),

with 8 > 0 and where Rj satisfies
(5.2.27) 1Ry (@, ™) | s < CE2[ [l s + ([0 s )
and setting L = {L()* LO_ },

~ - _ - 1—1
(5.2.28) [[LR; (@, u*)| 2 < Ot > [[ll s + [[u® | =]

x [Nallzs + 1Pl s 4 |1 Lal g2 + | Lu'™PP] 2 + || La"PP oo ],

where in (5.2.28]), we decomposed the factor u?PP that eventually replaces v,
in (AILL33) as u®PP = /PP 4 ¢/"2PPand used the second (resp. third) of
these estimates if v, is substituted by u/2PP (resp. u/2PP).

In the same way, operators MY in (B.I.I0) may be written as

5.2.29) My (@, u/*PP) = MG(u/2PP L o/2PP Ly 1 AL, /PP - M3 (4, @
2 2 2

where M4 is given by the (¢ 4+ 1)—th contribution in (B.II0). Applying again
Corollary [ATT.1.7, we may assume that

> I=(ir,ie) OP(MG 1 pn) (V1iy5 V2,05)

5.2.30 ML vy, vg) = I"=(igr1,iy)
( ) 2 (o1, %2) 22 I'=(ir,- ) Op(m/g,p,p/)(vl,_z‘l,Uz,—ig)
I'"= (ZZ+17 Y )

up to replacing (5.2.29]) by
gty M) = MBI M)+ M)
+Ro (@, u'*PPL)
where R satisfies

1Ra (i, w*PP )| s < Ct2 ||| s + IIU'E”DP’lHHs]2
(5.2.32) || LRo(ai, w/*")[| 2 < Ct[|[ii]| o + [[0/*P"| s ]

x [l zzs + [l |75 + | Ll g2 + | Lu"™ | 2]
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and where the symbols mg, 1, in (5.2.30) are now in S 4 (H?:l (&) My (€), 2)
for some 5 > 0.

Let us apply to each ./\/lg in the right hand side of (5.2.26]) Proposition [(5.2.1]
setting Mj = M§ in order to define by (.Z3]) an operator /\Q/lj that we denote
just by M§7 0</¢<j4,j=3,4. Inthesame way, apply to each M'§, £ =0,1,2
Proposition (.24l in order to define operators M’g, ¢ =0,1,2. Denote

M (@, u®PP) ZME @, u*PP uP), j =3,4
A,_/ %,_/
(5.2.33) ‘ ~
/\}1/2 a, u/app7 ZM'K @ /2pp;1 _”’u/appyl)_
é 2/

Let us prove

Corollary 5.2.5. — Let @ satisfying the assumptions of Proposition [5.1.2,
so that equation (5.1.21]) holds. Then, with the above notation

(52.34) (D= R)|C( (u—ZM (@, u™P)) — My(@, u*PP1)| =R
7j=3

where R is the sum of contributions of the following form:

(5.2.35) COVEOMS(@,. .. a,u™P,... u™P), j=34, 0< (<]
—_———— ——— —
¢ G0
(5.2.36) (C(t) = Td)M'5(a, ..., i, w/*P 1t /221y 0 < (<2
——
)4 2—/4

— C(O)M (@, .. i, (Dy = PO, .. i, u™, ..., u®P)
4
— C(O)ME (T, .. ity u™P, ..., u?PP, (Dy — Po)u™®, ... uPP)

——
l

(5.2.37)

forj=3,4,0</0<3,

— COMS(T, ..., (Dy — Po)a, ..., a4, u/@PPL . /2PPh)
J4
_ C(t)_/\/)l’g(a, ﬂ u/app7 . (-Dt Po)u/app,l’ o ’ulapp71)

(5.2.38)
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for 0 <€ <2,
of remainders of type
(5.2.39) Ct)R;(a,...,a,u™P, ... u*PP), j=34, 0</1<yj,
—_—— — ——
)4 j—L
where R; is of the form ([ZZ7) and
(5.2.40) Ro(ii, ... @, u*PL . /*PP) 0 <1< 2,
—_————
¢ 24

where Ry = {ng} with Ry~ = Ro .y, and Ray given by (LZ22), and of

contributions

(5.2.41) C(t)[R(t, ) + Rs + Ra] + Ra

where R is given by (5.1.12) and satisfies (21.22), (2.1.23) and with Ry (resp.
Rs, resp. Ry) satisfying (2.2.32) (resp. (2Z27), resp. (5.2.23)).

Proof. — We write, using (5.2.23)), for j = 3,4
(5.2.42) (Dy = Po)C(t) M (@1, u™P) = —C(6)V () M; (@, u™PP)
o + C(t)(Dy — Po) M (@, u)

We plug in the right hand side of this equality (.Z6) with M (resp. /\Q/ln)
replaced by ./\/lf (resp. ./\/lf) according to the notation defined before (5.2.33]).
In the same way, we express (Dy — Po)Mb(a,w/*P1) from (EZ2I) with M)

~

(resp. ./\2/1'2) replaced by M4 (resp. M4Y). Making the difference between

(EI2I) (where we substitute (B.226), (5.2.3I))) and these expressions, we
obtain the contributions (5.2.35)) to (5.2.41)). This concludes the proof. O






CHAPTER 6

BOOTSTRAP: L? ESTIMATES

The proof of the main theorem relies on a bootstrap argument. In this
chapter, we shall prove several estimates that will be used in order to close a
bootstrap for Sobolev estimates of the solution @ of (5.2.34))

6.1. Estimates for cubic and quartic terms

We consider C valued functions u'5™”, v”"P, defined on some interval [1, T,

with T < e 4*¢ for some given ¢ > 0, and that satisfy on that interval, for a
given large r in N and some constant C'(A4, A’) bounds (3.L39)-B.L4I) and
(B.I43)-B.145) that we recall below:

[ FP (¢, )| < C(A, )
(6.1.1) [/ PP (2, ) [wree < C(A, A)é?

| L PP ()l < C(A, ANE[(EVE) + (V)

7
L9
86§]

and
te? \ 2
2
[u"PP () < C(A,A%( = )
(6.1.2) NG
|w" PP (t, ) [[wree < C(A, A" log(1 + ¢)
| Lu" 3PP (2, ) |lwree < C(A, A')log(1 + t)log(1 + €7t).
Moreover, we shall assume that the solution @ = [Zf} (with @a— = —ay) of

. . . . . . / 1
(5:2.34) satisfies a priori estimates (.22)) i.e. having fixed ¢ > 0, ¢ < 6 < 5
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with 6’ close to %, and § > 0 small, for some 1 < p < s, we have
@+t ) s < Det?’

,
(6..3) s 6w < DIV

| Ly (t, )2 < DEF(EVE).

We recall also that we have defined from u* the function «%P*" in (BILZS),
that we decomposled in (BI55) as o j_pp’l + u” j_pp’l and we have seen after
(BI54) that «'3"" satisfies the same estimates as «/3"?, so that we shall have

u/app,l t,' e < C A, A/ EQt%
+
(6.1.4) [/ 2P (t, ) |[wrree < C(A, A')e?

1w )l < C(A, AV [(@VE) + (V) ]

We may assume that r in (611, (GI4) is as large as we want since the
smoothness of the approximate solution u?PP is independent of s: these func-
tions are actually C™, since their x dependence comes only from stationary
solution to our initial problem.

Our goal in that section is to deduce from (6.1.1]) to (6.1.4]) bounds for the
cubic and quartic terms in the left hand side of (5.234]) and in (5.2.35) and

G.2.37).

Proposition 6.1.1. — Let ./\;lj(zl,uapp), j = 3,4 be given by the first line
in (5.2.33). There is a function (t,€) — e(t,€), depending on the constants

A A, D in (617)-(61.3), satisfying lime o4 SUp << —a+c €(t,€) = 0, such
that the following bounds hold:

(6.15)  [CONM; (@, u*™) e < Cet’ [(VD™ 7 + 7] < ete(t,e)

~

(6.1.6) ILC ()M, (@, wPP) || 12 < t1(e2VD) e(t, €)

for any t € [1,e74F¢], any o > 0.

Proof. — We prove first (6.15). By (A12.1.17), C(t) is bounded on H*, uni-
formly in ¢ staying in the wanted interval. By (5.233]) we have thus to bound

(6.1.7) IME@, .., u™P, . uP) s, 0 <0< j,j =3,4
—_—— —— —
¢ G0
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where each MY has form by the right hand side of . By
J
(AI1.1.30), (6.1.7)) is bounded from above by
j—0—1 |~
(6:1.8)  C[[[allre 158y e 10 [F5tme -+ [0 s [P [yt & [l

with the convention that the first (resp. second) term in the bracket should be
app
replaced by zero if £ = 0 (resp. £ = 7). As uf’’ = /PP +u/ PP, 42PP = {:a}p },
it follows from (G.I1.T]), (G.I.2]) that
app ~ , te? 2
[|[uPP || yyreo.ce < C(A, A')e*(log(1 +t))?

for t < e~*. Using also (6.1.3]), we bound (6.L8)) by

(6.1.10) Cet?| ((log(1 + )2 + (%)H]

Since j > 3, we have obtained a bound by the right hand side of (61.5).
Let us prove (6.1.6). By (AI21.13), (AT21.19), (AT2.1.20), it suffices to
bound by the right hand side of (G.I.6]) the quantities

|EM G ™) 2, M (™) a2 e
where m is close to % The estimate of the second term is a consequence

of (ELH). To study the first one, we recall that L = [L0+ LO_} with Ly =
x £ tp/ (D), so that we have to estimate

(6.1.11) E M (@, wP) | 2, (|2 My (T, u™P)]| 2.
By (6.I.I0)), the first term is estimated by (as j > 3)
(6.1.12) 15 (VD) e(t, €)

with

(6.1.9)

e(t, &) = [ log (1 + D) (VD + etV ™).

Ift<e™ 0 <0< % is close enough to %, so that 20" — 6 > 0, and if § is small
enough, one gets that e satisfies the condition in the statement. This concludes
the proof of (G186 for the first term in (G.IITI). To study the second one,
we have to bound by ti(EQ\/f)ee the norm ||x/\;l§(ﬂ, ce Uy uPPP U uPPPY| 2,
£=0,...,7. Consider first the case ¢ > 0, so that at least one of the arguments

is equal to 4. By the form (5.Z35]) of Mg, we may apply (AT1.1.34), putting
the L? norm on that argument equal to @, i.e. we obtain a bound in

(6.1.13) C [lalliyno + u™P Ryon.eo] [t 22 + |l 2]
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The contribution of the first term in the last bracket has already been estimates

by (6.I12) in the study of the first term (6LII]). The second term gives rise,
according to (6.I9]), (613)), to a quantity bounded by

2 5

1o 01 (€VE) 2 2]

Cti(eVi)| o e llog(1+1)) ]

which is also of the form (GI12)). It just remains to study the term
Hx/\/lf(uapp,...,uapp)HLz. We decompose one of the arguments u*PP, say
the last one, as u®PP = /?PP 4 ¢//3PP We estimate then the L? norm of
e AL, PP, uPP) (vosp. 2NN (uY, ... uPPP, u"9P)) wsing (ATLIE)
with n = j (resp. (AIL.1.35]) with n = j). We obtain a bound in

(6.1.14)  C[|uP |y m0 [¢][ /%P | 12 + | L] 2]

O 2 PP g [t e + [ " .

Using (6.1.9), (6.1.1), (G12) we obtain a bound in

(6.115) Cellog(1+ 1) [T + 1 (Vi + (62\/5)565)}
+ Ce(log(1 + t))2e[e2t(log(1 +1))% 4 log(1 + t) log(1 + 6275)]
which is largely of form (6.L.12). This concludes the proof. O
We shall study next term (5.2.35]).

Proposition 6.1.2. — With notation ({{.2.8) for e(t,€), one has the follow-
ing bounds for 0 < ¢ <j, j=3,4

(6.1.16) [CEVEME(@, ..., a,u™P, . )| s <t ete(t €)
)4
(6.1.17)
|LCOVOM (... P, ) < 7 (15 (EVD) et o).
N——
l

Proof. — Recall that M j is given by (B:Z33)) in terms of operators /\>l§ defined
in (5:Z5]). Moreover, recall that V(¢) in (5.I13) is by definition the operator
Op(M") given by (5.1.4), in function of symbols b/, satisfying (£.2.63]), (£.2.64)).

1 -
This means that in particular t2b/, are elements of S,’iﬂ(@)*l, 1) (for any k, 8

as these symbols depend only on one frequency variable). Moreover, the sym-
bols 7y in (B:25) belong to Sy g(M§ [T, (&)1, ). It follows from the com-
position result of Corollary[A9.2.6that the components of V(t)./\;lg(ﬁ, cee, UPPP)
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may be written under the form
1
(6.1.18) te 20pt(m/) (g, . .., g, uPP, . uSPP)

for some symbol m’ in S} 5(M{ Hi:l (&)1, 4) (for some new v), and any
choice of the signs +. We use (AI1.1.30) together with the boundedness of
C(t) on H®, to estimate the left hand side of (G.II6]) by

1 B i—1 5
(6.1.19) Cte  [ullwoe + l[allwoe | [[[u*P || ms + || s ]

Using estimates (6.1.9]), (6.1.3]) and j > 3, we bound this largely by the right

hand side of (G.1.16).
Let us prove (6.I17). By (AT2.1.18), (AT2.1.19), (AT2.1.20) it is enough to

estimate
et VM (@, .., uP) 2, [LVEME(E, . .., uwPP)|| 2

by the right hand side of (GII7). The first term satisfies the wanted bound
as a consequence of (G.I.19]), since the exponent % — m is close to zero. By
(6.II8), the study of the second one is reduced to

_1
(6.1.20) te 2||ILLOP (M) (it . . ., it ufPP, . uiPP)| 12

for m’ in SZL,B(M(I)/szl <§g>_1,j). As Ly = z £ tp/(§), and symbol

m/(y,z,&1,...,&;) is decaying like <M0(§)_"‘y>7N for any N, we are re-
duced to bounding by the right hand side of (G.I.I7) the quantity

_1
(6.1.21) tte 2||Op (m/) (it . . . Gt uPP, . uiPP)| L2

for a new m’. If there is at least one argument equal to @4 in (GI2TI]), we use
estimate (A11.2.32]), making play the special role devoted to v; there to such
an t4 argument. We obtain a bound of (G.I.21]) in

-1 i—1r, _ 5
6122) O [alwe + w0l [l + 1Ll 2],
By (619), (6.I.3]), this is bounded by

6/
—1r(e2V1) 2. 4 0
2|\ VY 2 2 7 2
(6.1.23) Ct? | e (log(1 +£))2] [t (V)]
since j > 3. Again this is largely bounded by the right hand side of (6.I.17)).
Consider next the case when all arguments in (G.I2I]) are equal to u®PP.
Decompose one of these arguments, say the last one, as u®PP = u/2PP 4 ¢//aPP,
By linearity, we get a contribution in Op’(m/)(u®, ..., 3P ' 3P) for which
(6.I2I) may be estimated by (6.1.22) with @ replaced by «?PP in the last
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factor. As by (6.1 the L? bounds of u/®PP, Lu/2PP are better than the corre-
sponding ones for @, La in (613]), we get that (61.23]) holds again. We are
thus left with

_1
tte ?[|Op" (m) (u"EP, ... u" )| 2

We use then (AI1.2.33)) to estimate this by

_1 ,
(6.1.24)  Cte 2 [[u"*PP |2 o llu”2PP || p2 [l PP lwro.o0 + || Lt PP |yyre0. .
By (6.1.2), we thus get a bound in

-3 2 o [t )? 2

te 2€*(log(1+t))“e =) log(1 + t)log(1 + te®).
Distinguishing the cases te? < 1, te? > 1, one checks that this is smaller than

1
t_%(GQ\/E)Qe(t, €), so than the right hand side of (G.II7). This concludes the
proof. O

6.2. Estimates for quadratic terms

We shall study in this section the quadratic term in (5.2.34]) and (5.2.30]).

Proposition 6.2.1. — Let My be given by the second line in [(5.2.33). One
has the following bounds

(6.2.1) | M (@, u?PP N || s < et’e(t, €)
(6.2.2) LA (i, ™) 12 < £5(EVE) et €)

for any t € [1,e4¢], where e(t,€) satisfies [F-2-5).

To prove the proposition, we shall study the three terms in the definition

of M},

Lemma 6.2.2. — One has the following estimates:
(6.2.3) M@, )| < Cet® (17 540(2VR))
(6.2.4) | LM (@, )| 2 < 3 (VE) elt, )

for any t in [1,e= 1], any o > 0, if s is large enough relatively to %

Proof. — By definition, M'2 is obtained applying Proposition 5.2.4] to M’2
given by the first term in the right hand side of the second line in (5.233]). It
has structure (.2Z20). We thus have to study

(625) ||Q;17i2(ail’ﬂi2)”Hs
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(6'2'6) ||LiQé1,i2(ai1’ai2)||L2
to obtain respectively (6.23) and ([G.24), where @, ;, are operators of the

form (AT3.4.17]), preserving the space of odd functions. To bound (6.2.5]), we
thus have to study

(6.2.7) R (L L) e

where 0 < /1,05 < 1.
If /1 = f5 = 0, we apply inequality (AI3.5.9]) of Corollary [AT3.5.2] with
= 1. We obtain a bound of (6.2.7)) in

(6.2.8) Ct % || iy || %

If 1 = 0,f3 =1 (or the symmetric case), we apply (A13.5.21]), which gives for

(627) an estimate in

(6.2.9) Ct 1 i ||

If ¢4 = {5 =1, we use (AI3.5.20)) in order to bound (6.27) by
34, _ _ _

(62.10) Ot il go + s e Nt

where o > 0 is as small as we want (if s is large enough). Plugging in these
estimates (6.1.3]), we obtain a bound in

(6.2.11) Cet= 14041 (21/)

which gives (6.2.3)).
Consider next ([6.2.6) and decompose Ly = z + tp/(D;). The action of

tp' (D) on Q“,Z2 (13, T;,) has L? norm bounded from above, according to
(AI3.411)), by

(6212) ti%HKZl"ZQ‘ (I/l@“’Lmum)H[ﬂ

H,iy,i2

When ¢ = ¢35 = 0 (resp. ({1,¢2) = (1,0) or (0,1)), we apply (AI3.5.9) with
s =0 (resp. (AI3.5.13), (A13.5.14)) to bound this by
3T~ _ _
Ct a8 |lag || s + || Ly tic || 2] i || 1o

for any o > 0, so by (6.2.I1]), which is better that what we want.

On the other hand, if ¢; = o = 1 in ([G212), we apply (AI3.513) or
(A13.5.14) with f or f; replaced by L. We obtain for (6.212)) an estimate
in

344 - . 2
(6.2.13) Ct™ it || Lyiiyll g2 + ||y [|ms]
Using (6.1.3]), we obtain a better bound than (6.2.4)).
We are left with studying

(6.2.14) U e K2 (L8, L2, | 2

H,iy,i2 11 Ugy s
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We noticed at the end of the proof of Proposition [AT3.5.7] that an operator
K may be written as an operator K; of the same type as K, up to the
loss of a factor t“ (here t%) It follows that (6.2.14]) will be bounded by 2
times (6.2.12), which is better than the estimate already obtained for the other
contribution to (6.2.6]). This concludes the proof. O

Proof of Proposition [G.21]: We remark first that the conclusion of
Lemma holds for the three terms in the right hand side of the sec-
ond formula (5.2.33) that defines M}. We have seen it for the last one. It
holds for the other two terms as, by the end of the statement in Proposi-
tion 3121 u’ipp’l satisfies the same estimates (G.LI) as w*PP. Since these
bounds are better than the inequalities (G.13) satisfied by @ (for ¢ < ¢=%),
the proof of Lemma thus applies as well to M'§, M’} in (52Z33).

Consequently, ([6.2.1), (€.2.2]) hold. ]

We want next to study quadratic terms in the right hand side of (5234
i.e. terms of the form (.2Z30)).

Proposition 6.2.3. — Let MY be given by (5110) and denote by e(t,€) a
function satisfying ([4.2.8). We have bounds

(6.2.15) 1(C(t) — Td) MY (@, u'*PP ) || s <t et’e(t, €)

(6.2.16) IL(C(t) — Id) M (@, w*P1Y|| 2 < ¢ 143 (2V2) e(t, e).

Proof. — We write the proof for the component of M} that is quadratic in .
This implies the general case, as u/#PP! satisfies better estimates than those
holding true for .

Recall that by (.II0), the components of Mj are of the form Op(my ;)(r)

with mg ; in Si,O(H§:1 <§j>71M0,2). If we apply estimate (AT1.2.39) with
¢’ =¢ =1, n=2, we obtain
1M (@, @)llre < Ot~ (|ILa] g2 + @l s ) 1] e
Plugging there (6.1.3]), we get a bound in
(6.2.17) e’y (VD).
Since [|C(t) — Id| £ 2y = O(eLtmel‘Li) by (AI2.1.17), we obtain an estimate

in
’ 0
Cetszl[ELt%ferzS T (2\/1) }
Since m may be taken as close to % as we want (see the example following
Definition [AT2.1.7] where m is introduced), and since ¢’, 0 may also be taken

as small as wanted (in function of the fixed parameters c,, '), for t < e~4+¢,
the factor between brackets is of the form e(¢,€) in (G.2.15]).
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To prove (6.2.16]), we write by (AT2.1.18])
(6.2.18) L(C(t) — Id)Mb, = (C(t) — Id) LMY, + Cy(t) M),
Since || M (@, @)|| 2 is estimated by (6.2.17), and since ||C} (t)ll z(z2) is bounded
by (AI2.1.20) with m close to 3, we see that the L? norm of the last term in

(6218 is smaller than the right hand side of (6216 (for t < e=*4).
On the other hand, by definition of L, || LMY (1, @)]| 2 is bounded from above

by ¢]|Op(mf ;) (@r) || 2, with mf, ; in 87 ([T7=1 ()", 2). Using (AIL2.37), we
estimate this by

Ct | Lyl + s ) < C7 1 (F(2vA)).

Since ||C(t) — Id| g2y = O(ebt_m+5l+%) with m close to & by (AIZII9), we
see that the L2 norm of the first term in the right hand side of (G.2I8) is
bounded from above by

Ct—lt% (62\/%)9 [(EQﬁ)et%—mﬁ-é’—I—aeL]

and again, if % —m, ¢, o have been taken small enough, the bracket is of the
form e(t, €), whence a bound by the right hand side of (G.2.16]). This concludes
the proof. O

6.3. Higher order terms

In this section, we shall bound expressions of the form (B.237), (5238
that appear as contributions of higher order of homogeneity if one replaces
(D — Py)u by its expression coming from ([B.II3]). We study first the first line

in (0.2.37).

Proposition 6.3.1. — Denote
(6.3.1)
F(t) = C()M(a,..., (D — Po)i, ..., i, u™P, ... u*PP) 1 <0< j,j =3,4.

Then under a priori assumptions (6.11), (6.1.3), one has the following bounds
(6.3.2) | E () || s <t Yet’e(t,€)

(6.3.3) ILE@)|l2 <t 5 (VD) et €)

with e satisfying ({-2-8).

To prove the proposition, we first re-express F'(t) replacing in the right hand
side (Dy — Py)ta by its value.
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Lemma 6.3.2. — The components of
Mﬁ(ﬁ’7(Dt - PO)’EL, ’ﬁ’uapp7... ’uapp)

may be written as sums of terms of the following form:

(6.3.4) te 2 Opt () (@, uBP), = |1 +11"] = 3
where m' is in S;B(Méj ngl (&)71,]');

(6.3.5) Op'(m) (i, upr), j=|I'|+[I"] > 5
where m is in Sy g(M Hzﬂ <fé>_17j);

(6.3.6) Op' (m) (R (@, u), i, ufiP ), j = |I'| + |T"]

where j' > 3, j > 2, m is in Syg(M{ H%ii (&)71,]' + 1) and R satisfies
(22.27) and [(52.23),
(6.3.7) Op' (/) (tup, /B> W), = [I'| + 1" + 1" > 4
where m' is in S} 5(My HZ:1 &)t 9),
(6.3.8) Op' (m) (Ra (i, u'™PP1), i, ufhP), j = [I'| + |I”]
with j > 2, m is in Sy s(MY HZ% &)t +1), Ry satisfying (5.232),
(6.3.9) Op'(m)(R, i, ufi?), j = ||+ 1" > 2
where R satisfies estimates ({-2.0), ({-27) and where m is in the class
Sup(MYTHL (€0 d+1).
Proof. — Recall that by (G.LI3])
(Dy — Py)ii = V(t)ii + Ms (i, u™P) + My(ii, u*P)
+ M (@, u/*PP) 4 R,
Recall that ./\;lg is an operator of the form (B.Z05]), so that its components

(6.3.10)

computed at (@, ..., a,u*PP ... u*PP) may be written
t ~ ~
(6.3.11) Op" (M) (Tiy s - - iy, gy -5 U )

with ¢; = £+ and m element of Sy (M} [T}, (&)1, ) for some B > 0. We

have to compute (63.IT)) when one of its @ arguments, say the first one, is

replaced by (D; — Py)a, so by the right hand side of (E310). If we replace

(D¢ — Py)a by V(t)u@ and use that V(t) is constructed from operators Op(b/,.)
1

in (5.1.4) that satisfy (Z263), (£264) i.e. are such that t2b, = ¢/ is in
;75((§>_1, 1), (for any &, 3), we get a contribution

1
“3 Nt INe ~ . app app
te 2Op (m)(Op(cil)uil,ui2,...,uie,uiHl,...,uij )



6.3. HHGHER ORDER TERMS 109

By the composition result of Corollary [A9.2.6] we get a term of the form
(6.3.4).

Let us study next (6.3.11]) with the first argument replaced by M3 (@, u®PP)+
My(@, u*PP) coming from ([6.3.10]). According to definition (LTI of M; and
to (5.2.26]), we shall get contributions
(6.3.12) Op! (m) (Op (i) i, ufEP) sy, - sy U3 5P

1]

with |I| = 3 or 4 and 7 in Sy g(My(£)” 121 &)~ |1]), with 8 > 0 and

(6.3.13) Op! (m) (Ryr (@6, u™P), itsy ..., ul™P)

Y Zj

for Ry = { JJ’*} satisfying (£.2.27)), (5228) with j* = 3 or 4. By Corol-
i, =

lary (A9.2.2)), (6:3.12)) may be written as a term homogeneous of degree larger

or equal to 5 that has the structure (63.5]). Moreover, (6.3.13]) provides terms

of the form (6.3.6]).

We have to study then (6.3.11]) where the first argument is replaced by the

M (G, u'2PP ) term in (63.10). By (5231) and (5.2.30]), we get contributions

of the form

- Ay~ -
(6.3.14)  Op"(m) [Op(mi pr ) (@rr, W/ PP, g iy il

D

with [I] + [I"| =2, j > 3, and
(6.3.15) Op'(m) [7%27i(ﬂ5 W) iy, uapp],

9 Zj
Again by Corollary [A9.2.6] (6.3.14]) brings a contribution of the form (6.3.7])
and (6.3.15) an expression of type (6.3.8]).

Finally, we have to replace one argument of (6.3.11]) by the last term R in
(6310). This brings ([6.3.9). This concludes the proof of the lemma. O

Proof of Proposition [6.3.1:  Let us prove ([6.3.2)), (633). We have to esti-
mate all contributions from (6.3.4)) to (6.3.9). As already seen, (A12.1.17) to
(A12.1.20) allow us to ignore the action of operator C(t) on the definition
(631) of F(t), so that we need to study only the Sobolev norm of ([6.3.4) to
(639), and the L? norm of the action of L on these two quantities.

e Term ((6.3.4]): This term is of the form (6.I.I8]) and has already been
estimated by the wanted quantities.

e Term (6.3.5): The Sobolev norm of this term may be bounded from

above, according to (AT1.1.30]), by
- dr,
Clllallweose + [[u*®|lweoee] " [[|ll s + P15
Using (6.1.1)), (6.1.3), we bound this by
(6.3.16) o2V etd
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which is better than the right hand side of (6.3.2]). If we make act Ly
on (63.5) and compute the L? norm, we get on the one hand the product
of (6.316) by t, which is smaller than the right hand side of ([6.3.3) and

|2Op’(m) (i, up?)|| 2. This is a quantity of the same form as the second

term in (G.I.IT]), except that j > 5. We thus obtain a bound by (6.1.13]), when

at least one of the arguments in (6.3.5]) is equal to @. By (6.LI)-(EI13) and
j > 5, this is controlled by the right hand side of ([6:3.3)). If all the arguments

are equal to u*PP, we get instead a bound by (6.I.14) with j > 5, so by (G.1.15])
multiplied by [[u®PP[|%,,5.0c < Ct~! when t < ¢ **¢ by (611, (612). Since

(6.I.I5]) was controlled by (6.1.12]), we get again a bound of the form (6.3.3]).
e Term (6.3.6]): By (AIL1.30), the H® norm of (6.3.6) is bounded by
. 2
(6.3.17)  CIIRy (@, u™)|prs [[|@llweoe + [u®|lyweoe]
1Ry (@, uPP) oo [[[llweo.se + [|u™P [[yreoo |
x [l + [Pl 17+

since j > 2 in (6.3.8). Using Sobolev injection, we may bound ||R ;|| eo-

from ||R| ps. By (B:Z2T) and (EILI)-(G13), we largely get an estimate of

the form (6:3.2]).
If we make act Ly on (6.3.6]), and use that

zOp'(m)(v1,...,v,) — Op'(m)(zvy, ... v,)

is of the form Op’(m1)(v1,...,v,) for a new symbol m; of the same form as
m, we reduce the estimate of the L? norm of the action of L+ on (6.3.8) to
bounding

t| Op’(m) (ﬁj/,i(fh uP), i, U?Bp) 2

HOpt(m) (L’Ié’j',ﬂ:(a’ uapp), ur, U?Bp) HL2 :
By (AT1.1.31]), we get an estimate in

(63.18) (tRy (@, u™)] 2 + | LRy (@, u*P)]|2)

2
x [allweoe + [P [yeo] .

By (5:2.27), (5:2.28)), (6.T1)-(6.1.3]), this is largely estimated by the right hand
side of (6.3.3)).
e Term (6.3.7): This term is of the form (G.I.I8]), except that there is no
1

te 2 factor, that we may have an argument u/®PP>! instead of uPP, and that
the number of arguments is larger or equal to 4. By (6.1.19), the H® norm of
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(63.7) is bounded from above by

3
C [P o000 + [[uPP [ypooce + [iill o]
< [P s + (0] a2 + [|*PP | zs]

Using (6.LI)-(614) we get a better estimate than (63.2). If we make act
Ly on (63.7) and compute the L? norm, we obtain a quantity of the form

_1
(61.20]), without the pre-factor ¢t *. We obtain thus an upper bound given by

_1
or (GI.24)) without the ¢ * factor, but with j > 4 and an argument
u/#PP>1 replacing eventually an w*PP. By (G.LI)-(6.14),

i T i
/PP [lyoo.ce 4 [[wP [lwoo e + [[a@llweose] [ l1all 2 + 1La] 2]

is smaller than the right hand side of (6.3:2]). On the other hand, the contri-
bution of the form (G.I.24]) is bounded from above by

CHu/,app”%/Vpo,ooHu/,app”LQ [Hu//appHWpo’oo + HLu//app”WpO,oo]
< Ce(log(1+1))°

by GLZ). Ast < ¢ *¢ we estimate this by %ee(t,e), so by the right hand
side of ([6:3.3]).

e Term (6.3.8]): This is a term of form (63.6). The H® norm may be
bounded by (6.3.17]), with 7€j/ replaced by Rs. It follows from (5.2.32)), Sobolev
injection and (G.I.T))-(6.I.4]) that we largely get a bound of the form (6:3.2)).
If we make act Ly and estimate the L? norm, we get a bound of the form

©3IR), with R; replaced by Ro. Again, by (E232), GLI)-GIL), we
obtain the conclusion.

e Term (6.3.9): This is a term of the form (G3.0), with R replaced by R.
Again, we may apply (63.I7) to bound the H® norm. According to (£2.0]),
we obtain a bound by the right hand side of (6:3.2]). To study the L? norm
of the action of Ly on (6.39), we use that we have again a bound of the
form (G.3.I8) with R replaced by R. As the last factor in (6:3.I8) is O(t™})

by (6LI)-(613), we conclude that we get an upper bound by (633 using
(Z4), (A2T). This concludes the proof of Proposition [6.3.1] O

Our next task is to study the second line in (5.2.37]).
Proposition 6.3.3. — Denote now
(6.3.19) F(t) = C(t)/ﬂf(&, oL U utPP L (Dy — Po)utPP, L uPP).

Then under assumptions (G.1.1))-(6.1.4)
(6.3.20) |F ()| s <t tet’e(t, €)
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(6.3.21) ILE®) e < ¢4 (VD) e(t, o).

Proof. — Recall that (D; — p(D,))u’” is given by BI37). Together with

the definition (LZI4) of F§, Fy, w1th the fact that by B13), BI10), BILI),
1

a?PP is O(te ?), and with estimates ([B.I.38]), this implies that

(6.3.22) (Dy — p(D2))uif? = Z(t,x) + a*P(t) Y Op(m] )(ui™)
|11=1

where m/ ; is in 5{70(@)71, 1) and Z(t,x) satisfies for any a, N
(6.3.23) 097 (t,x)| < ContHa) ™.

Notice that we may consider as well m/ ; as an element of Si,ﬁ(<5>_1’ 1) for
B > 0, since for symbols depending only on one frequency variable, this does

not make any difference. We plug (6.3.22) inside (6.3.19). Using the form
(52.H) of Mﬁ and the composition result of Corollary [A9.2.6] we write (G.3.19)),

where we forget factor C(t) that does not affect the estimates, as a sum of
terms (up to permutations of the arguments)

_1
(6.3.24) te 20p'(m/) (G, . .., uP)

(6.3.25) op'(m)(Z, iy, ..., uP)

where the number of arguments (i, ..., u5’?) in ([63.24) (resp. (6.3.25) is
j (vesp. j — 1) with j > 3, and m’ belongs to S} 5(My T, &) 9), m to
Sag(My H%Zl (&)™, j) for some v. Expression ([6.3:24)) is of the form (6.3.4)),
so satisfies the wanted bounds (6.3.20)), (6-3:21]) by the first point in the proof
of Proposition 631l The H® norm of (6.3.25)) is bounded by (ATL.1.30) by

C (Nl s + 4] s ) ([@llweoe + 4P [[weoie ) | Z]lweo o
2
+C(Jlallweoe + [[u*PP ywooce ) |1 2|

so by the right hand side of ([6.3:20)), by (6.L.1)-(E13]) and (6.3.23)).

Let us bound next the L? norm of the action of L1 on (6.3.25). We decom-
pose each factor ui*? = v/5PP + w”5PP. Consider first the case of the resulting
expression where at least one of the last 7 — 1 arguments in ([63.25]) is equal

to @4 or u'5PP) say the last one. We have to estimate

tIOp' (m)(Z, i, - . ., P, w)| 2
[20p (m)(Z, i, . . ., ulPP, w) | 2

with w = @+ or /4", Up to commuting 2 to Op’(m) in order to put it agains
Z, it is enough to bound the first expression. We use (AI1.2.34]) with the

(6.3.26)
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special index j equal to the last one. Recalling the t-! factor in (6.3.23)), we
get a bound in

_ ~ j—2
6.3.27)  Ct; M ([aflwro + [[u®P oo )’

x (llall2 + 1Lal g2 + [[u/*Pl| 2 + || Law/®PP]| 2 )

which by (@.II)-(6.13]) is smaller than the right hand side of (63.21) (as
j—2 > 1). On the other hand, if we consider (6.3.26) with all arguments

(G, ..., uiP w) replaced by u”%P) we use (ATLZ35) and get instead of

6.3.27), by (6.1.2)
Ot [P it oe (| L™ PP won.oe + PP |yweo.co ) [[u"*PP | 2
< Ct telog(1 + t)log(1 + te?).
This is much better than (6.3.21]). This concludes the proof. O
Let us move now to the study of (5.2Z38)).
Proposition 6.3.4. — Denote

(6.3.28)
F(t) = C(t)MY((Dy — Po)u/*P1 /PP 4 C(6) MY (/PP L, (Dy — Po)u/*Pt)

+ C(t)/\;l%((Dt —_ Po)a’u/appJ) + C(t)./\%% (ﬂ, (Dy — Po)ulappJ)
+ C()M3((D; — Po)a, @) + C(t) M3 (0, (Dy — Po)a).

Then
(6.3.29) |F )| s <t tet’e(t, €)
(6.3.30) ILLF(@)]2 <t 3 (VD) et €).

Before starting the proof, we recall some estimates for (Dy — Py).

Lemma 6.3.5. — Under a priori assumptions (6.31)-([6.3.3) we have the
following estimates:

(6.3.31) I(Dy — Py)il| s < Cet®2
(6332) L(Dt — Po)ﬂ = fi4+afo
with

(6.3.33) Ifillze < Ct3 13 (VD))

(6.3.34) fall 2 < CtHEVD™ et
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Proof. — Recall that (D; — Pp)u is given by (63.10) and that V(¢) may
1

be expressed, according to (5.1.4]), from operators t. 2Op’(c/.) with ¢/, in
;75((@71, 1). By boundedness of these operators on H* and (6.1.3]), we get

for [|[V(t)a]| s & bound by the right hand side of (6:3.31).
The action of L on V(¢)@ will have L? norm bounded from above by

_1 _1
te * 20D’ (ch)ll 2 + tte [ OP' (co )il 2.

By (AI1.2.32]) with n = 1 and (6.13]), we get a bound by the right hand
side of ([6:3.33]).

Consider next the M;(@,u*P) terms, j = 3,4, in the right hand side
of (6310). By (52.20), these terms are given by the contributions 7~2j,
which by (.227) are largely bounded in H® by the right hand side of
©331), and by (BE228) contribute to f1 in (6332) if we apply L on
them. On the other hand, the main terms in (5.2.26) are of the form
Opt(mp,p/)(ﬂp,u?gp). By GA]..]_J_.;))Q), (K)..J_.JJ)-(M), they satisfy (BBBID
Let us study LyOp'(mp v)(Gp,ufh?). We apply Proposition [A13.2.1] and
Corollary [A13.2.2] (translated in the non semiclassical framework). This
allows us to re-express this quantity from

(6.3.35) Op' (i) (L1, vz, - -, vj)
(6.3.36) Op'(F)(v1, - .-, v5)
(6.3.37) tOp' (7)(v1, .. ., v))
(6.3.38) zOp'(7)(v1, ..., v;)

where vy = @ie or vy = u/*PP 4 u"#PP where i, 7 are in Sy (MY [[h—; (€0, J)
and # is in S} 5(MY [T)—y (€)1 4)-

We estimate the L? norm of (6.3.35) using (ATL.1.31)) with the special index
equal to the first one, when v; is replaced either by @i+ or v/**. We largely get

a bound by ([6.3.33)) as j > 3 using (6.LI)-(6.L3). If vy is replaced by u”P,
we still use (ATT.1.3T]), but make play the special role to the second argument.

We obtain a bound in
(6.3.39) | Lyu" 3PP lwreoco [[[u3FP llweowce + [ldillwreo.cs | [[[u3PP 2 + [t ]| 2]

which is largely controlled by (6.3.33) by (6.1.1)-(6.1.3)).

The L? norm of (6.3.36]) (or of the coefficient of z in (6:3.38)) is bounded
from above by the right hand side of (6.3.33]) (or (6.3.34])) again by (AI1.1.31]),
(EI1)-(E13]) and the fact that j7 > 3.

Consider ([6.3.37). If at least one v, is replaced by @+ or u/9P, we use

(A11.2.32), with the special index equal to this ¢. By (G.11I))-(6.1.3]) we largely
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get an estimate (6.3.33)). If all vy are equal to u”"P, we use instead (ATL.2.33)),
from which ([6:3.33)) largely follows.

To finish the proof of the lemma, we still have to study the last two
terms in the right hand side of (6:3.10]). Contribution M’(@, u/*PP) has struc-
ture (B.231)). The remainders Ry largely satisfy bounds (63.31)), (6.333]).
The other terms are, by (5.Z30), of the form Op’(m/)(vy,v2) with m/ in

1 3(Mo(§) T (€571, 2) and vy, vy equal to @4 or W/2PP' . By (AIL1.30) and
(613), ([6I4), the Sobolev estimate (6331 holds. On the other hand, by

(A11.2.37) (and the rapid decay in z of symbols in S} 5(Mo(€) H?:l (§j>_1, 2)),
we have

IL+0p" () (01, v2)ll 2 < O [ Lt g2 + | Lo/ 2
- 1 2
N s+ /P e

if so is large enough. Using (6.13), (6.1.4) and taking o < 1, we estimate this
by the right hand side of (6.3.33]).

Finally, the last term R in (6.3.10]) satisfies (£.2.6)), (£2.7)), so also (6.3.31))

and ([63.33) for the action of L on it. This concludes the proof of the lemma.
O

Proof of Proposition We shall prove successively (6.3.29]) and (6.3.30)).
Step 1: Proof of (6:3.29)

Since C(t) is bounded on H®, we may ignore it. We thus need to study

| M (vy, v2)|lg; where (up to symmetries)

3. v = — Py)a or — Py)u'*PP | vy = @ or u'?PP,
(6.3.40) 1 = (D; — Py)ii or (Dy — Py)u'*PL, vy = @ or u/2PP!
Recall that ./\;1/2 is given by (.220) in term of operators @, i, of the form

(A13.4.11]). We have thus to bound

_3
(6.3.41) | K (Lo, L2 v, | e

H,iy iz 1

with operators K};} ’;;QQ in the class IC’l 1(1,41,i2) introduced in Defini-
sl '3
tion [AT3.4.1]

e Consider first the case vy = (D; — Py)u/®P'. We apply Corollary [AT3.5.4]
when ¢; or /5 is non zero and (AI3.5.9)) if /1 = ¢35 = 0. We obtain for ¢ > 0
small and so large enough a bound of (6.3.41]) by
(6.3.42) Ot~ [t7||L(Dy — Ro)u'™P| 2 (||| = + [Ju/*PP| 17+

+ 17 ([|Lal| 2 + ([ L2 12 ) [ (D — Po)u'*PP | e

+ [[(De = Po)u"*PP s (|1l s + [[/*P>| )]
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By end of the statement of Proposition [3.1.2] u’ipp’l satisfies estimates of

the form (BI46), BI47) and also BI39)-B.L4I). Moreover, @ satisfies
(613]). Plugging these estimates in (6.3.42]), we get a better upper bound

than (6.3.29).
e Consider next the case v1 = (D; — Fy)t, ¢ = 1 in (6341]). Decompose

ly,by
Kpjii = K<+ K>

where K. (resp. K~) is defined by the same formula (AT3.4.7)) as K};},’fl 2@, but
with the function k cut-off for [&1] < 2(&) (resp. |€2] < 2(&1)). We need to
bound

_3 . ~
(6.3.43) £ 2 || K< (Liy (De = i1p(Di) )iy, Li2v2,3 )| e

3 . -
(6.3.44) t72|| K< (Li, (Dy — i1p(Dy)) s, Lf§v27i2)|]Hs

where £ = 0 or 1 and vy = @ or u/*PP!. Consider first expression (6.3.43)).
We decompose the first argument in K. under the form g1 + go, where, for
x € C§°(R), equal to one close to zero,

(6.3.45) g1=01-x)(t"D,) [Lil(Dt - ilp(Dx))@z‘l]

(6.3.46) 92 = X(t P Da)[fri, + 2 f2,1,]

where we used decomposition ([6.3.32]). Using the definition of L;, and (6.3:31]),
we may rewrite g1 as a sum g; = tg} + zg] with according to (6.3.31), for any
(o) <s

(6.3.47) gt llrro0 + gt oo < =P Derd =3,

Applying (AI3.5.0)-(A13.5.3) (with the roles of fi, fo interchanged), we see
that ([63:43]) with the first argument of K. replaced by g; has Sobolev norm

bounded from above by
CtPE0 et 3 [|al| e + |l .

If sf3 is large enough, we get an estimate by the right hand side of (6.3:29]).
On the other hand, if we replace the first argument of K. in (6.3.43]) by g2,
we reduce ourselves to

§ - _ ~
(6.3.48) t72 || K< (X(t P Dg) frir Li2v2) | s

3 o ~
(6.3.49) t72 || Ko (2X(t " Da) fain, Li202) || s

for new functions fi, fo satisfying the same estimates (6.3.33), (6.3.34) as
f1, f2 and x in C§°(R). Decomposing L;, = x+istp’(D,) and using (AI3.5.1)),
(A13.5.2]) with the roles of fi, fo interchanged, we bound (6.3.48]) by

- =
t= Xt Da) fris oo vl 7.
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By (63.33) and (©1.3), (6.1.4]), this is smaller than
703 [13 (V1) | ef?

so than the right hand side of (B3.29) if ¢ < ¢ *t¢ and B is small enough.
To study (6.3.49]), we decompose again L;, as above and use (A13.5.2) and

(AT3.53)), to obtain a bound in
l - _ ~
t 3%t D) foll oo oz 7=

By (6:3.34) for f, and (61.3), (6.1.4), we obtain a bound by the right hand
side of (6.3.29).

Let us study next (6.3.44). If /5 = 1, we use (AI3.5.15]) (with f; and fo
interchanged) and if fo = 0 we use (AI13.5.2T]). We bound thus (6.3.44]) by

3 ~ ~ ~
Ct=3|(Dy — Po)al| o [1770 (1 Lal| 2 + | LY 2) + il o + /™2 | o]

If we use (6.3.31), (6.1.3), (6.1.4]), we bound this by the right hand side of
(6329), using again t < e~47¢, and taking 3 small enough.
e To conclude Step 1, we still have to consider (6.341]) with v; = (Dy— Fy)@
and ¢; = 0 i.e. to bound
_3 . _
t 2 HKO’K2 (Dt — le(DI)>uil,Lf;’l)zm)HHS.

Hiy iz
Expressing L;, and using (A13.5.17) and (AI3.5.9), we obtain abound in

3 ~ ~
£ (Dy = PoYall s [lallsrs + |u/*P| 7]

Using (6331)), (6.1.3]), ([6I1.4]), we obtain a bound of the form (6.3:29]). This
concludes the proof of Step 1.

Step 2: Proof of (6.3.30)
Again, properties (A12.1.18]), (A12.1.19)), (A12.1.20) of operator C(t) allow

us to ignore it in the proof of the estimates. We shall have thus to bound
|ILM,(v1,v2)||r2 where M5 has structure (B.2Z20) and vy, ve are given by
E340). If we express Ly = x +tp/(D,), we are reduced to studying

—Llipb1,0 ¢ ’
(6.3.50) 2| K2 (Lo, Li2vg, )| 12
6.3.51 3l K2 (L, L2y,
(6.3.51) |z H,il,ig( i1 V11> i2U2,22)HL2-

H,iq,i2

By definition [AT3.4.1] of the class K' , (i), eK22 . may be written as
5

t3 Kﬁ:ﬁb for another operator in the class ICIL 1 (7). It is thus enough to

bound (6:3.50]).
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e We consider first the case vy = (D;—Py)u/*PP:!, By (A13.5.13), (A13.5.10),
we bound (6.3.50]) by

Ot 1 [1(De — Po)u*PPY| g« + t7||L(Dy — Po)u/*P1| 2]

X (1L ®PP Y| 2+ | Lall 2 + 0™ | 2 + || 2]

for any o > 0 (if so is large enough). Since by Proposition BI.2], u/2PP-!

satisfies (B.1.46)), (BL47), we deduce from (6.1.3]), (6.1.4]) an estimate better

than (6.330]).
e Consider next the case v1 = (Dy — Py)a, ¢ = 1 in ([63.50). We replace

L(D;— Py)i by the right hand side of (6.3.32)). By (AI3.5.10]), (A13.5.14)), the
f1 contribution to (6350 is bounded from above by

3
RN ull e [t7 (L™ 2 + 1Ll 2) + ™ iz + .
Using (6.333), (61.3), ([614), we get an estimate in
0 0
Ct e (V)] [V 17 + et 7).

If o is small enough, and since ¢t < e ~#+¢, we get a bound of the form (6.3.30).
On the other hand, if we replace (Dy — Py)u by z fo, (6.3.50) is reduced to

Sy ‘
(6.3.52) t2 | K, (@ 00 LiZv2,,) | 2
A O, integration by parts in (AI13.4.1]) using (A13.4.3]), shows that ([6.3.52) is
reduced to

01,0 ¢
HKI},if,z‘Q (f2,i15 Li; V2,05 || 22

for a new operator in the same class. Using (AI13.5.10), (AI13.5.14]), we get a

bound in
_1 ~ ~
Ct 7| fol g2 [ (1 L™ | 2 + | Lii 2 )7 + [Ju/*PP | s + |[ii 2]

Using (6.3.34), (6.1.3]), (61.4]), we obtain a bound of the form (6.3.30).
e Consider finally the case vi = (Dy — Py)u, ¢1 = 0 in (G350). By

(AT3.510), we get a bound of (6.3.50) by

3 ~ ~ ~
Ct™4||(Dy — Po)i]| s [|| L] 2 + | L/ o + |Jdil| 2 + [|u/®PP | 2]

If we plug there ([6.331)) and (613]), (6I.4), we get an estimate of the form
(6330). This concludes the proof. O

This concludes the study of terms of the form (5238]). It remains to study

(EZ39), (5240) and (G2:4T]).
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Proposition 6.3.6. — (i) Denote
(6.3.53)  F(t) = CH)R;(i, ..., 6u, ... u), j=34 0<(<j
——
l
with R; of the form (L.27), (Z28). Then there is a function e satisfying
(4-2-8) such that

(6.3.54) | F ()| s <t tet’e(t, €)

(6.3.55) ILLF(@)]2 <t 3 (VD) et €).
(i) Denote
F(t) = C(t)Ro(a, ..., 0,u/*PPL . /3PP 1)
——
¢

with 0 < £ < 2 and Ry = {gzﬂ given by (5.222). Then (6-3.54)), (6.3.53)
hold.

(iii) Let F(t) = C(t)[R(t,-) + Ra(t, ) + Ra(t,-)] + Ra(t, ) with R, R; as in
(5-241). Then ({6.3.59) and (6:3.53) hold.

Proof. — (i) By (£.2.8) and (AI1.1.30) (and the boundedness of C(t) on H?),
we bound ||F(t)|zs by

—1
Clllallweooe + [u™llweoce " [[[] s + ||z ]

As j =3, 6.11), (613) imply (E.3.54).

To prove (6.355]), we use once again that by (AI2.1.18]), (AI2.1.19),
(A12.120), we may ignore the factor C(t), and have to estimate LR; in L2
This expression is a sum of quantities of the form (G:2.9),

j m: m} )
so of the form (63.35]), (6.3.36), (6.3.37) with v, = G4 or vy = v/5PP + u"4PP.
When vy in ([63.35)) is replaced by iy or /5P, we use (m to estlmate
the L? norm of these terms by

i—1
Clllllweoe + [[uPP|lwroce | [||Liil| 12 + || Lu/*P || 2]

so by the right hand side of ([6.355) by (GII)-(G.I3]), since j > 3. If v; =
u?PP | we have a bound by (6.3.39) so by

(6.3.56) %ti (V) [(3\/2)%*9'*9755 log(1 + t) log(1 + teQ)}

which is bounded by the right hand side of (G.3.55]) for 6 > 0 small, 6,6’ close
to 5 if t < e4te

Expression (6.3.36)) is controlled as (6.3.35]). For (6.3.37), we use (AT1.2.32))

if at least one of the v;’s is equal to @y or w9, which brings the wanted

estimate (6.3.55) by (G.II)-(EL3). If all arguments v; are equal to w4,
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we use (ATL.2.33]), that brings again an estimate of the form (6.3.56]). This
concludes the proof of (i).
(ii) Again, we may forget operator C(t). We have to study

_ 01,0 ¢ Vi

(6.3.57) t 2HKL1,i12,i2 (Lilleh ) Li§v2,i2)”Hs
_ 01,6 ¢ ¢

(6-3-58) 13 QHLiKLl,nQ,iQ(Lz‘llvl,iuLiQQU?,iz)HLQ

. Ly,le . / . ~ rapp,1 Qs :
with K77 % in IC%J(z), and vy, ve equal to @ or u . Since estimates (6.1.4))

are better than (6.13]), we may argue just in the case v; = vy = 4. Then

357) is just (EZ7) multiplied by 72, Tt is then estimated by (62.3),
629), (G2I0) multiplied by ¢ 2 and thus by (G2ZII) multiplied by ¢ 2, so
by et‘s*lt"(e?\/i)e. For t < e~4%¢, this is of the form of the right hand side of
(63359) if o is small enough. Let us bound next (6.358]). Using the expression

Ly =2z +tp/(D,), we have to estimate

-1 01,4 VA V4

(6.3.59) 13 HKLl,zfig(Lz‘lleiuLé”lz‘z)”m
— 0,0 ¢ L

(6.3.60) 2 e Ky, (Lt vy, Li2va,) |l 2

By (A13.5.10), (A13.5.13), (A13.5.14), we bound (6.3.59) by
_5 - - 2
ot [I1Lal 2t + allus]>
Using (6.1.3]), we obtain
ot (VD) 1)1 (v
which is smaller than the right hand side of (6.3.55]) for t < ¢4+ if o is small
enough.
Finally, to study (6.3.60), we notice, as after (6.214]), that this expression
may be bounded by 73 times (IB;’)EQI), so has the wanted bounds.
(iii) The contributions C(t)Rs3, C(t)R4, Ra are estimated by (0232,

BE227), (Z28), so largely by the right hand side of (6354), (G353,
using (G.IT)-(GI3). The fact that C(t)R satisfies these estimates follows

from inequalities (L2.6]), (L27) satisfied by R (or (5122), (5L23)). This

concludes the proof. O

We conclude this chapter summarizing the estimates we have obtained.

Proposition 6.3.7. — Let ¢ > 0 (small) be given, 0 < ¢/ < 6 < 3 with

0" close to 3. Let T € [L,e **°] and assume that we are given on [1,T] x

R functions iy, w*PP u"%P /%' that satisfy estimates (G11)-(6.1.3), for
some small § > 0, some constants C(A, A"), D, any € in an interval 0, €p],
and such that @ solves ([5.2.37)). Then there are Dy > 0, €, €]0, o] such that
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if D > Dqy and € €)0, ¢}, for any t € [1,T], the L? estimates in (6.1.3) may
be improved to

D
(6.3.61) g (t, )| as < Eet‘s

D
(6.3.62) |E4s (1) < S (VD).
Proof. — By Corollary 6.2.5] we know that
(6.3.63) (Di — Py) =R
if we define

4

(6.3.64) = Ct)[a— > M;(a,u*P)| — Mb(i,u*P1).

j=3
By Proposition 6111 Proposition B2.1]1 and the boundedness properties
(A12.1.17) to (AT2.1.20) of C(t), we have

(6.3.65) |6 — C(t)a| s < et’e(t,€)

(6.3.66) IL(a — C)a)| 2 < t1 (VD) elt, )
where e satisfies (£.2.8]).
The right hand side R of ([3.63) is the sum of terms (5.238) to (R.ZA1).

These terms have been estimated in Proposition [6.1.2] Proposition [(.2.3]

Proposition [6.3.1] Proposition [6.3.3] Proposition [6.3.4] Proposition [6.3.6]
which imply that

IR, ) < etde(t,e)
ILR(t, )2 < 145 (VD) el €).
By the fact that L commutes to (D; — Fp), it follows from the energy inequality

applied to (6.3.63) that

(6.3.67)

(6.3.68) it Vs < (L, )llms + et’e(t, )

(6.3.69) Lt g2 < LA,z + 4 (VD) et )

and then, by (6.3.60), (6.3.66) and (A12.1.12)), (AI2.1.17)-(A12.1.20)) that
(6:3.70) 0t Y- < CllaL, e + et®elt, )

(6.3.71)  ||La(t,-)||2 < C[lILa(L, )2 + a1, )| 2] + 5 (VD) et 6)

for some constant C, some new factors e(t, €). Recall that @ has been defined
from w4 in ([@2I]), and that since this function is O(e) at time ¢ = 1 in the

space {f € H®, xf € L?} by (LZI0), (IZ])), we may take D so large that the
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first term in the right hand side of (G3.70), (G3.71) is smaller than Ze. If €
is small enough, we thus get (63.61)), (6:3.62]) using (L2.8)). O




CHAPTER 7

L>* ESTIMATES AND END OF BOOTSTRAP

The goal of this chapter is to bootstrap the W# > estimate in (6.13]) and
to conclude the proof of the main theorem.

7.1. L*° estimates

One cannot deduce an L™ estimate of the form of the second inequality in
(613) from the Sobolev estimates satisfied by @, L4 @ through Klainerman-
Sobolev inequalities: the fact that || L4 | 72 admits only a O(t%) bound would
be too rough in order to do so. Instead, we deduce from the equation satisfied
by @ an ODE, that will allow us to get the wanted L° bound.

We shall reduce ourselves to the semiclassical framework, defining from the

solution @ = [Zﬂ of (5:234) a function @ = [%ﬂ by

(7.1.1) iy = %@i(t, %) = (0:)(t, z)

using notation (A9.1.7). We set h = t~! and decompose for a given p > 0,

(7.1.2) (hDy) s = W\ + B\
with according to notation (AI1.3.13))

. z£p'(§) .
(7.1.3) )= OpZV(V(T))OpXV(@Vmi

where v € C§°(R) has small enough support and is equal to 1 close to zero. We
denote by ai,A’ aft,AC the functions corresponding to Qi,/\a@i,/\c by a change
of variables of the form (7.I.1J).

The contribution @i Ac has nice L bounds by Klainerman-Sobolev esti-
mates:
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Proposition 7.1.1. — For any o > 0, any s with so large enough, one has
the estimate

~ _3 ~ ~
(7.1.4) 1 el < CE 4[| Latiallgo + sl
Proof. — Translating that on @i Ac» this means

- 1_ ~ -
1 pell < Cha™ (|| Ladis 2 + 1l |-
This is just statement (AT1.3.9) in Proposition [ATT1.3.4] O

We study from now on @ ,. We first prove some bounds for expressions

(£Z10)-(#£2T6]), whose sum is equal to (Dy — p(Dy))ty. If W(t,x) is some
function and W is defined from W by (ZLI), ie. W(t,:) = ©W (¢, "), we
denote by W/ the function defined by (ZI.3) with sign + and @, replaced by
W, and we shall call WK the function WK = @Eﬁ.

Lemma 7.1.2. — Let

3 3
) = L a0 = a-0), () = L) — (1),

where a_ = —ay, a®® = —a?, and where ay,a?? satisfy by (32.3), (32.0),
(F27), (323), (323)

_1 _3
(7.1.5) [afPP(t)] < Cte 2, |ag(t) — aPP(8)] < Ot 2
for t in the interval [1,T), T < e *¢, where these functions are defined.
Assume moreover that on that interval, the functions ty,uS™?, " satisfy

Then the quantities (£.2.10) to ({.2.16) satisfy the following estimates, with
a constant C' depending on the constants A, A', D in (6 11)-(61.3):

(7.1.6) | EZID) e < Ct 3 (EVE)
(7.17) |@ZID) o < Ct 3 (EVE)
(7.1.8) |@ZID) o < CE3(EVD)
(7.1.9) @EZIR) |~ < Ct 377 (VD)
(7.1.10) |@ZI) o < Ct 3 (EVD)
(7.1.11) |@ZIR) e < Ct 3 (VD)

(7.1.12) |@ZI6) e < O 37 (EVE)
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where o > 0 may be taken as small as one wants if so is large enough (s being
the index of Sobolev estimates (6.1.1)-(6.1.3)) relatively to p, and where in
(ZI19) one uses the notation W} defined before the statement of the lemma.
1
Proof. — e Inequality (L8] follows from (ZZ25]) and the fact that t. > <.
e We have seen in the proof of Proposition E.2.1] that (£2.I1]) is a sum of
terms of the form (L2.27) or (£.2.:28]), with conditions (£2.29]) or ([A2.30) i.e.

may be written from

(7.1.13) Op(m)(v1,...,vp)

where m is in 5‘1,0(]_[?:1 <§j>_1M{)’,n), with n > 3 and v; equal to @4 or
PP+ or 4P or R (with R satisfying (E1.25), (EI1.26))). In particular, by
Sobolev estimates, one has

€2 o 4o\ 4
(7.1.14) |R(L, )| weee < C(%) et’.

If we apply (AT1.1.37]), we obtain for the W# > norm of (Z.LI3]) a bound in

~ 2
s wese + a2 [weoe + [[u" P oo + | Rl weoo]
X (87 [l lwoeo + [0/ [[wooe + [[u” P lwoce + || Rllwe]
T @ s+ PPl + Pl s+ 1R ] ]

By @ILI)-(6I3) and (£1.25), (CII4), this is smaller than the right hand
side of (ZI7) (if we use that (62\/E)30/_0t0 < O for t < e 4F¢).

e The expression ([£.2.12)) to estimate has been seen to be of the form (Z.2.38))
or ([A239)), with either ([A2.40) or (A241]). Terms corresponding to (Z2.40)
are of the form (ZI.I3]) and, as we have just seen, satisfy the wanted bound.
We have just to consider expressions ([ALZ38)) or (AZ39) under AZAI) i.e.
quantities of the form

(7.1.15) Op(m')(v1, v2)

where m/ is in Si,o(H?=1 <§j>_1M6’,2), and v1,ve taken among a4, u/PP,

o] R. If both vy, vy are different from u”%*P ) we use (ATL.2.38)) with r = 2,
n=2,£=0. We get a bound in

(7.1.16) ¢ || = + Nl | s + | R e
_ 2
L2 2+ | Lyl + | L4 Rl 2]
(estimating the WP norm from the H?® one). It follows from @I25I),

@I28) that |L.R|| < Ct1(vD)’). Using also L), BI3) we esti-
mate (ZII6) by the right hand side of (ZL8), when t < ¢4+¢ if ¢ is small
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enough. Consider next the case when vy or vy is equal to «”5"P. If for instance

v1 = u"§PP and v = @4 or W'5P or R, we apply (AI1.2.3]) with n =2, £ = 1.
The first term in the right hand side of this expression is largely estimated by
(TILY) if r is taken large enough. The second one is smaller than

Ot [P s + | L v
X [ SEP s+ i e + 1Rl
+ 1Lt/ 2 + 1Dy iy | 22 + 124 Rl 2.

By (GII)-(I13) and EI25), (L1260, this is largely bounded by the right

hand side of (ZLS)).
If vy and vy are both equal to u”PP| we use (ATL2.38) with £ =n = 2. We

obtain a bound in ¢t =277 (log(1 +1))?(log(1 +t€?))? for the second contribution
to the right hand side of (ATL.2.38]). If o is small enough, this is better than

(TI8) since 6 < 1.
e It follows from (AI1.3.4) (with a large enough r) translated in the non
semiclassical framework, that for any function W

1
(7.1.17) [WEllLee < CIEaT W2 + 2 W|gs]
To estimate (.I.9]), we decompose expression (LZI3)) as the sum of (Z247)

to (A250). Consider first the nonlinear quantity (£2.49]), that may be written
1

as (252). By (AIL3.10) and the fact that a(t) = O(te ?), its contribution
to (ZL9) is bounded from above by

_1
(7.1.18) %t ? [HOp(m')(vl, oo up)|lwese + 7| Op(m) (v1, . . ,’Un)||Hs:|

for any r, if o > 0 and so is large enough, m’ being in 5’{70 (H?:l (§j>_1M(’]’, n),
2 < n < 4, vj being equal to ax or v/ or v”PP. Since (TLIY)) involves
expressions of the form (ZII3) or (ZIIH]), we already know that the first
term is estimated by the right hand side of (Z.I.9). The second term is easily
bounded, as r is arbitrary.
We have thus just to consider the linear expressions ([@2.47), (L2437,
1 3

@EZE). As a(t) = O(te 2), a(t) —a®P(t) = O(te ?) by (TLH), the expressions

to study are of the form

(7.1.19)

(7.1.20)
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where m/ is in SLO(@)*I, 1). We replace in (C.II7) W by (Z1.19) or (ZI1.20).
It follows from (A11.2.32)), (A11.1.30)) with n = 1 that the contribution of
(TII9) to the right hand side of (ZLI7) is bounded from above by

B —ir -
73 2 |t gs + | Rll s + | Latie] 2 + | Lo R 2]

Combined with (6.1.1]), (6.1.3]) and (£.I1.25]), (£.1.26]), this gives an estimate in
t_%+(’(e2\/f)0 as wanted.

To study the contribution of (ZL20) to the right hand side of (ZI.IT), we
just apply the Sobolev boundedness of Op(m’) to get

_3 1
te 2t PP | gs + ([P s )
Combining with (I1), (6.I1.2), we get again the wanted bound. This con-

cludes the study of (Z.1.9]).
e Expression (£Z14) is made of terms of the form (£2Z12]) or (£2ZIT]) mul-

tiplied by the decaying factor a(t). It is thus estimated by better quantities

than the right hand side of (T.I.7), (Z.LS]).

e To estimate (AZIH]), we notice first that terms in that expression corre-
sponding to |I| > 2 have already been treated in the proof of (ZI.7), (TI8).
It remains thus to study the linear terms, that are of the form

a(t)?Op(m/Yug, j > 2
with m/ in 5{70((@71, 1). By expression (£2.20)) of uy, we shall get terms of
the form (#Z49) with a(t) replaced by a(t)?. These terms have already been
considered in the study of (ZILT), (ZLY) (see (CLIJ)), (CI.IH)). We obtain

also linear terms in
(7.1.21) | | |
a(t)?Op(m/)ax, a(t)?’Op(m/)u' PP, a(t) Op(m')u"5PP, a(t)’Op(m’)R

with j > 2. To study those terms in (ZL21]) of the form a(t)’Op(m/)w with
w = a4 or v'{P or R, we use (ATL.2.38]) with n = 1, £ = 0. We obtain an

estimate of the W norm in
Ct [0/ | s + il s + || R || s
[ Lytig g2 + [ Ly PPl r2 + | Lo R 2]

Combined with (6.1.1]), (6.1.2]), (4.1.25), (41.26]) this largely implies a bound
by the right hand side of (ZZLII]). Finally, the W norm of the terms in

(CI21) involving u”%PP is estimated using (AT1.2.38) when n =1,/ = 1. One
obtains

Ct7 714 [l 9P e + PP [y + [ L3P fyroc

which by ([EI12]) is also largely estimated by (ZIL.IT).



128 CHAPTER 7. L*° ESTIMATES AND END OF BOOTSTRAP

e Finally, (ZII2)) follows from the fact that (L2.I6) satisfies bounds
(BI38), that largely imply (ZI1.12]). O

We may deduce from the above lemma a L> bound for (D; — p(Dy) ).
Proposition 7.1.3. — Denote fi = (Dy — p(Dy))ty and define [ by

(7.1.22) filt ) = %g (t.2) = 0ut, (t.2)
using notation (A91.7). According to (A11.3.13), define
(7.1.23) A= OpXV(’V(L\;%@))OpXV(@V)L-

Then, under a priori assumption (G13) on .y, for any o > 0, any s such
that so is large enough, one has

(7.1.24) 122 ()l < CRo (V).

Proof. — Recall that f = (D;—p(D,))a is given by the sum of expressions
([A210) to (EZI6). Call fi o contribution (ALZI3) and fi; the sum of all

other contributions. Define iij/\’ j = 1,2 from i+j as in (ZI23]). Then
(CI1.9) shows that f7 , , satisfies (ZI.24]). To obtain the same estimates for
—i L x> We apply (AIL3.10) in order to bound the different contributions to

iﬁ—,l,A in L from (T.16)-(ZLY]) and (ZII0)-(ZII2), using moreover (6.3.31))
in order to estimate the H® norm in (AIL.3.10) (taking the power N in the
pre-factor h¥ large enough). This concludes the proof. O

We shall now write an ODE satisfied by function (Z.1.3]).

Proposition 7.1.4. — Assume a priori assumptions (6.1.1)-(61.3). There
is a real valued function 0, supported in ] — 1,1[ such that @i A defined by

(Z1.3) satisfies
(7.1.25) (Ds = On(@)V1 = 2%) = Ope (Ve

where o > 0 is as small as one wants (if s in estimate (G1.3) is large enough
relatively to 1/0).

Proof. — Denote as in the preceding proposition fi = (Dy — p(Dy))t4, so
that

(Dy —p(DJ;))((DxVﬁ_,_) = (Dy)" f+-
If f . is given by (ZI22) and @, by (ZIT), this is equivalent to

(7.126)  (Dy = OpY (2 + /14 €2) ) OpY ((6)")iz, = Op} ((©))f .
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We make act Op)" (’y(%\/%g))) on (ZI.26). By (AIL3.16) and the definition
(CL3) of @ ,, we obtain

(7.1.27) (D= OpY (2 + 1+ (€)@ y = 17, + Bi+ Rs
with
@129 = h0p (1 (T (P ol (g

(7.1.29) Ry = h30p)¥ (r)Op)Y (€))L,

where |8%y_1(2)| < Calz) "' and r satisfies

-1

(7.1.30) 02102 (hon)r(x, €, h)| < Ch "5 <L\/p%/(§)>

By Lemma 4.2 in [59], R; may be replaced by

(7.1.31) BEop (7_1(Lfﬁ'<5))<x ) X ()i

modulo a quantity estimated in L*° by
5_ - _
(7.1.32) ChS~ L4 z2 + ] o]

for some o > 0, o going to zero with §. By a priori assumption (GIL3))
(translated on @) this is estimated by the right hand side of (ZLZ3). By
estimate (4.25) of Lemma 4.3 of [59], the L> norm of (.T.3T]) is also controlled
by (ZL32)), so by the right hand side of (Z.I.25]).

Let us check that Ro given by (Z.I.29]) is also bounded by the same quantity.
This follows from semiclassical Sobolev injection together with the a priori
Sobolev estimate in (6.13). Moreover, by (I.24]), the i‘; , contribution in
(TI27) is also bounded by the right hand side of (ZIT.25]).

It remains to write the left hand side of (ZI27]) as the left hand side of
(TI25), up to some new contributions to the right hand side of the latter.
This follows from Proposition [AT1.3.6], where the right hand side of the second
inequality (ATL3.15]) is again estimated using (6.I3]). This concludes the
proof. O

7.2. Bootstrap of L*>° estimates

We have shown in Proposition [6.3.7 that under a priori assumptions (6.1.T])-
(614, we could improve the Sobolev estimates in (6.1.3]) to (63.61)), (G.3:62]).
Our first goal here will be to improve also the L estimate.
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Proposition 7.2.1. — Assume that (6.1.1)-(61.3) hold true on an interval
[1,T]. Let ¢ > 0 be given. Then if D in [61.3) has been taken large enough,
there is g €]0,1] such that, for all € €]0,¢q], all 1 <t < T < e~4%¢, one has
the bound
0/

D (e2\/1)
7.2.1 il o < =XV
(7.2.) fielnee < 52
Proof. — We have to bound (D.)’uy in L. By (Z.LI) and the notation
introduced after (ZI3)) for ﬁi’ A &f’h Ac» it suffices to show

N D 1 o’
(7.2.2) @ All= < Tt 2 (2v/%)

- D 1 o’
(7.2.3) @ gl < Tt 2 (V7).

By (CI4) and a priori estimate (6.L3), one may bound (TZ3) by
Ct_%+"(e2\/f)9. Since 0" < 6 and t < ¢ 4 we bound this by the quantity
Ct 3 (eQﬂ)ele(t, €) where e satisfies (£2.8)), if o has been taken small enough
relatively to c¢(6 — 6').

We are left with estimating (Z22). It is equivalent to show that [|@/] , |1~ <

%(62\/%)0 if € is small enough. Computing 8t|gi7A(t,x)|2 from (ZI.25) and
integrating in time, we get

t
@\ (t2)] < |20 ,(1,2)] + c/ o2 ) .
’ ’ 1

If D has been taken large enough so that H@i’A(l, Mz < Le, we get the

8
wanted estimate, using again that t < e 4+¢ and that ¢ may be taken small

relatively to ¢(6 — 6”). This concludes the proof. O

Propositions [6.3.7] and [T.2.1] allowed us to bootstrap estimates (G.I3]). To
be able to finish the proof of the main theorem, we shall have to bootstrap as
well the inequalities satisfied by g. We prove first some technical lemmas.

Proposition 7.2.2. — Let Z be a function in S(R). Assume that U4 satisfies
estimate (6.1.3). For any neighborhood W of {—1,1} in R, there is g > 0
(depending only on W and on the constants in (G1.3)) such that for any A
in R — W, there are functions o1 (M 1), ¥ (\t) defined for t € [1,e %1€,
€ €]0, €9], satisfying the estimates

(7.2.4) (A B] < 3 (V)

(7.2.5) e )] < VD
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and solving the equation

Moreover, denoting (Z,a) for the vector [ggf”, one has the bound
(7.2.7) (z,a)] <t 1(2VE).
Proof. — We shall use the following notation: we set f = o(g) when we may

write |f| < |gle(t,€) for some e(t,€) satisfying (L28]). In particular, for any
given N, taking e small enough, we may bound |f| by %\ qgl.

We prove the proposition in the case of sign +. Let us show first that in
the right hand side of (T.2.6]), we may replace (Z,uy) by (Z(C(t)@)+), up to
a contribution to 1. Since ((Id - C’(t))ﬂ)+ is odd, and Z is in S, we may

use (BI79) to write

(2, ((1d - C(t)a) ) = ~

D=1 [ 2 (- o)), ) du
(7.2.8) X

Lo )
5 [ (2 (aa- o) m)nds

for new functions in S(R), Z!, Z2. By (6.13]) and L? boundedness of C(t), the

last term is O(et?~!) = o((eQ\/f)e t~1). It may thus be integrated to 1, (), ).

In the first term in the right hand side of (T.2.8]) we write using (AI2.1.18))
L(Id—C(t))a = (Id — C(t))Li + Cy1(t)a.

By (A12.1.19), (A12.1.20) and 6.L13]), we get

(7.2.9)

IL(Id = C(t))il 2 < C(EVD) [t 30 (28" 4 e ygmio=f],

As 0.0 are fixed with 6’ < 0 < % and 0’ close to %, and as 5’,% — m may be
taken as small as we want, the bracket above is o(1) when t < ¢ **¢ and ¢
goes to zero. Thus (Z9) plugged in the first term in the right hand side of

. . 0’ .
(T2.8) shows that this term is o(t ™' (¢2v/1)" ), so satisfies (TZH). We are thus
reduced to studying equation

(7.2.10) (Dr = N+ (M t) =(Z, (C(t)a)+) + 4 (A t).
Recall the function @ defined in (6.3.64). We may write
(Z,(C)a)y) = (Z,ty) + ()

4
(7.2.11) () = (2, (M@, h) )+ 37 (2, (CO)M (@ uP)) ),
j=3
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By (615), we may bound the last sum by
Ct*1(62\/¥)9 [t5(€2\/5)9 €+€5729't1—%+5+o}.

Ast < e **¢ this is smaller than the right hand side of (Z.Z.5) (for d,0 small).
Let us show that the first term in the right hand side of the expression
of 1 satisfies also (ZZH). It suffices to show that || M) (@, u/@PP1)|2 =

o(t*1(62\/f)6 ). Recall that M} (@,u/*PP1) is given by (5.Z33) in terms of
expressions M4’ that have structure (5.220) i.e. that may be written from
expressions

(7.2.12) CERE (LY 4 LR o)

where 0 < £1,0y <1, K% isin K: (1,4, %) and fi, f2 equal to @ or u/2pp,1
2

(see (AI3.4.I1)). If we apply (AI3.5.10), (AI3.5.13), (AI3.5.14), we obtain a
bound for the L? norm of (TZI2) in

_3_1 ~ 1 - 1 2
Ot 2 1% [|[ L |l g2 + | Lt/ g2 + (| o + [0/ | o]
so according to (6.1.3]), (€I14) by
o3+ 2V i (V)

which is better than (ZZ3]). In the right hand side of (Z.2.I0]), up to incorpo-
rating ¢ to ¢4, we thus may replace (Z, (C(t)a)4) by (Z,a), i.e. we reduced

equation (ZZI0) to
(7.2.13) (D = N (A1) = (Z, ) + s

for a new . Since 4 is odd and Z in S(R), we may write using (3.1.79)
again

1
(Zoi) =1 [ (2 (Laia) () d
(7.2.14) T
= /1 (22, iy (p-)) p dps

for new functions in S(R), Z!, Z%2. By (6.3.68)), the last term is O(et‘s_l) =

0((62\/5)9115*1). It may thus be incorporated to 14 (A, t). We decompose the
first integral in the right hand side of (T.Z14]) as I + I, with

ta= [ (2 (VA= I D) k) )
- [ (- BB ) %

(7.2.15)
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where x € C§°(R) is real valued, equal to one close to zero. By Cauchy-
Schwarz,

(7.2.16) |12|</Hx B(n - 1+D2)){Z1<;>”L2

Since A € W, Hx<\/_ V1+E€2) )HL2 a) = Ot~ 4), so that the L? norm
inside the above integral is bounded by

ct 1|z (—
()

By ([63:69)), it follows that the contribution of Iy to the first term in (Z.2.14))

satisfies (Z.23), so may be incorporated to t¢,. We have thus written by

(C23), (C214)
(7.2.17) (Z, i) = %11 +9)

du .
— | Lqtip [| 2
i

= O(uCt™7).

Lt

where w}r satisfies the same estimates as 14 (with an arbitrary small multi-
plicative constant in the right hand side) and

(7.2.18) I = /_11 (2", (=0 (VI(A = 1+ D2)) (Lyies) ) () ) dps

We thus reduced (ZZI3) to

(7.2.19) (Dr = N+ (A1) = %—71 + (A1)

for a new . We define
11 1-x)(VEA—/1+D2))

- pr(\t) =< /1 <Zla ( o L+u+>(ﬂ')> dp
5 |l 1 09) (2 [2]] L)

where x1(z) = X& 271. Arguing as in (T2.I6]) and using (6.3.69), we obtain
that @1 (A, t) satisfies (T2Z4). If we compute (Dy — N)py(A t), we get the
following terms:

(7.2.21) %‘%(M)
(7.2.22) y
1 \_ 11 De
%/1 ( X)( 1ti DXT))(Dt —p(D ))L+ﬂ+>(u)>du

(7.2.23) %Il(t)
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(7.2.24) _ i (2", (X' (VIO = 1+ D)) Lty ) () ) dp.

3
2tz /-1
According to (7.ZI9]), we shall have proved (T.Z0]) (in the case of sign +) if
we show that (C22T)), (C2.22), (C224) satisfy estimates (Z2ZH)), with a small

constant in front of the right hand side of this inequality. For (2.21]), this

follows from (T.2.20) and (C.2Z4]). We may rewrite (7.2.22]) as
L i .\ dp
\7 /1 <X1(\/E()\ a \/@)) {Zl [;H » (De — \/@)L+U+> ?

Arguing as in (ZZTI0]), we estimate that by

3 .
Ct™a||(Dy — \/1+ D) Lytig || 2.
Since L4 commutes to (D; — /1 4+ D2), it follows from (6.3.63)), (6.3.67)) that

this is bounded by

3 (VD) et ) = o(t (VD))
which implies an estimate of the form (ZZ5]). Finally, (Z.Z24]) is bounded by

3 1
et [ I (VO = T D) (2w Iz L |2

<Ct s (62\/¥)0
according to (63.69). This is again better than needed.
Finally, estimate (Z.2.7)) follows from (T.2Z8) (that is bounded by (Z.2.3])),
(T21I1), the fact that 1y is o(t*1(62\/i)6 ), (C214)) were we plug (6.3.68]),
(6369). This concludes the proof. O

Our next task will be to show that a priori assumptions (6.1.1))- (6 13) imply
that the inequalities (B:2.]), (3:22)) that we assume in section in order to
get estimates for the solution of the ODE (B.2.3]), hold.

Lemma 7.2.3. — Assume that estimates [6.1.1)-(6.1.3) hold. Then inequal-
ity (321 is true, with a constant B' depending only on the constants A, A', D

in (6.1.1)-(61.3).

Proof. — e Consider first the contribution ®9 in the left hand side of ([B:2.1).
Recall that @, is given by ([222]), (L224]) so may be written as a sum of

terms

(7.2.25) // ey (1, €1, &9) g (€1) 014 (E2) dEydEada

with
m'(z,£1,&) = k(@)Y (2)b(x, & )bz, &)p(&) ' p(&2) ™"
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By estimates (A8.1.8]) satisfied by b, and the fact that Y is in S(R), we have
that m’ belongs to S{],O(H?:l <§j>_1, 2) and @, is thus a sum of expressions
J Op(m/)(us,us)dz. On the other hand, recall that uy is related to @4 by

(4£2.26]), with a remainder R satisfying (£.1.25)), (£1.26]). By Corollary[A9.2.6]

we get that (C.2.25]) may be written as a sum of expressions

(7.2.26) / Op(i) (v, vn) d

where n > 2 and v; is equal to w'5* or w”§"P, or @4 or R, with a symbol 7’

in 5’{70 (H?:1 (&) My, 2) for some v.

Consider first the case when at least one of the arguments v;, say the last
one, is not equal to u”%PP. Since m/ is rapidly decaying an (Mo (€)= ty|) ",
we may estimate (ZZZZ286]) from the L? norm of the integrand. If n = 2, we use

(AT1.2.37) when v, is different from v”5"? and (ATL.2:36) if v; = uv”5*P. We
obtain for (.Z26]) a bound in

(7.2.27)
Ct 2 || Lytig] o + | L4/l 2 + | L4-Rll 2 + Il || o + [0/ || s
+ Rl s + |1 Lu" PP lwoowoo + [P [[woo.oc ]
< [ILytigllge + 1Ly |2 + Lo Rl 2 + i las + [0S s + | R s ]

We plug there ([CIT)-(GI3) and @II25]), (AI26). We obtain a bound in
t’%J“’(eQ\/%)%. As > 0" and t < e ¢, we see that if o is small enough, this
is smaller than the right hand side of (3:2.1]).

If n > 3 in (CZ20), and again at least one v;, say the last one, is different

from u"4PP | we use Corollary[ATT.2.8] By (AT1.2.32), we estimate then (T.2.26))
by

_ - n—1
Ot || [weoee + [u”FP lweooe + || [lweoce + || Ry [lywreoc ]

X (ILaiellze + 1 Loa' PPl 2 + L4 Rl g2 + @l 2 + 022 + |1 R] 2]

Using (6.I.1)-(6.1.3) and (AI.25) (together with Sobolev injection), (L.I.26]),
we get a bound in t*2(62\/f)20 (62\/E)6ti, which is better than what we want.

It remains to study (T.2.26]) when all arguments v; are equal to u”5"". Again
by the rapid decay in z of the symbol 72/, it is enough to control the L>° norm
of the integrand (up to changing the definition of m'). We may use then

(AI1.2:38) with n = ¢ > 2. We obtain a bound in
_ _1 2
(7.2.28) t 2+U[Hu”ipp\|wpo,oo + | Ly u"SPP | weore + 172 Hu"iPpHHs] .

Using (6.1.2]) and the fact that 6’ < %, o < 1, one controls that by =3 (€2 \/E)Ze
for t < e~*+¢. This concludes the proof of (BZT]) for contribution ®,.
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347
213

e We study next the term t. Ij(ug,u—) in G2ZI), for 1 < j < 3.
Recall that I'; is given by (LZ22)-(LZ25). It has thus again the structure
([T226]) with n = j, as it follows from the expression (£2.26]) of u4 in terms
of uP? @4, R and the composition results of Appendix [A9 If j > 2, our
preceding reasoning implies the wanted bound. We thus just have to consider

(7.2.29) ¢l / Op(m')(v) dv
with 7/ in 5{70(@)71, 1) and v = /PP "% Gy, R. When v is not equal to
u"%PP ) we use (ATL.2.32)) in order to bound (7.229) by
Ot L/ PP 2 + | Lo | 2 + 1L Rl 2 + |02 2+ 1| 2 + | R 2]
which by (@II)-@13), @I23), @I26) is bounded from above by
t;lt_l(eg\/f)gti. One checks that this quantity is O(f% (62\/2_5)29 ) using
0 <6<i
If v in (Z229) is equal to u"5"P, we bound (Z.2Z29) by

Ot Op(i)v|

(for a new symbol /). We use (AI1.2.38]) to get a bound in

1
(7.2.30) 7 [[u PP fweoee + (| Lo lwo.ce + 2|0 PP s .

’ 1
Using (6.1.2]), one bounds the bracket by ¢” ti(EQ\/E) 2 for any 0/ > 0. Ast <

e~4*¢ one concludes that if o, ¢’ are small enough, (TZ30) is O(t_% (62\/%)26,).
This concludes the proof of the lemma. O

Let us show next that a priori assumptions (6.L1)-(GI13]) imply as well

estimates (3.2.2]).

Lemma 7.2.4. — Assume that estimates (6.1.1)-(613) hold true. Then
inequality (F2.2) holds true with a constant B' depending only on A, A’, D in

Proof. — Recall that ®q[us,u_] is given by (LZ22) i.e. taking (LZ23)) into

account, by

(7.2.31) ?m Y (@)r(2)b(x, Da)p(Da) ™ (s — u_)).

Expressing uy using ([220)), we get that, if we define

4= ?p(Dz)lb(fﬂ, Dy)*[5(2)Y (x)?]

the term inside the modulus in the left hand side of (8.2.2]) may be written as
the sum of an expression (Z, R) with R satisfying [ZI1.25]) and of expressions
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of the form (T.2.26]) with n > 2. We have seen that these last quantities may

be bounded by (T.Z27)) or (7.2.28]), and thus by the right hand side of (3.2.2]).

On the other hand, by (£1.29) (Z, R) is also O(f% (62\/2_5)26,). This concludes
the proof. O

Corollary 7.2.5. — Assume that estimates (6.1.1)-(6.1.3) hold true. Then
Assumption (H}) of section holds.

Proof. — We have seen that by Lemmas [[LZ3] and [.2:4], inequalities (B:2.1))
and (3Z2) hold. It remains to check that for any A € R — {—1,1}, there are
functions ¢4 (A, t), 11 (A, t) as at the end of the statement of condition (HY).
But this is exactly the statement of Proposition O

7.3. End of bootstrap argument

We give here the proof of Theorem [LTIl We shall have to gather all
estimates we proved in the preceding chapters. We first restate the main
estimates in Theorem [LT.T1

Proposition 7.3.1. — There is py in N and for any p > po, any ¢ €]0,1],

any 0" €]0, %[, close to %, any large enough N € N, there are ¢g > 0, C' > 0 such
that if 0 < € < €, the solution ¢ of equation (I.111]) with odd initial conditions

with bounds (IL1I0) satisfies for t € [1,e4T¢] the following estimates (using

notation (I17), (1.1.8))
| Pacp(t, lwre < Ct3(VD)

(7.3.1) (@)~ Pucip(t, ) wee < C (V)"
()N Dy Pacip(t, o 1w < Ct 5 (VD)

/3 /3
and a(t) may be written as a(t) = e’t73g+(t) — e_’tTBg_ (t) with

192 (1)] < Ce(1+ te?) ™2

(7.3.2) ) )
0,94 ()] < Cet™2(1 + te®) 2.
Proof. — Recall that we have defined in ([L24]), (T2.5)
(7.3.3) W= b, Da)" Pacp, Pacp = b(ar, Do)
We have introduced in (LZI0])

(7.3.4) uy = (D + p(Dy))w.
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We shall prove the following inequalities, where the last two ones are just the

restatement of (7.3.2)):

lug (8, Mo < CE3(EVE)

(7.3.5) )
s (8, )l < Cet

9= (1)] < Ce(1 + te?) 2

109 ()] < Cet™3 (1 + te?)73.

We shall deduce these estimates from bounds on %, that we establish by
bootstrap of (G.L3]). Actually, let us show that if (6.1.3]) holds on some interval
[1,T] with T < ¢~**¢ with a constant D, then it still holds with D replaced
by %, as soon as D has been taken fixed enough , and € smaller than some
€0 (depending on D). Proposition shows that this statement holds for
the Sobolev and L? estimate as soon as bounds (G.L1)), (6.1.2), (G.L4) hold
true (with constants A, A" that may depend on D). By Proposition [.2.1], the
WP estimate of 4y may also be bootstrapped.

Let us next show that we may bootstrap as well estimate (32.8]) on g.
According to Proposition B2l we may do so as soon as Assumption (H})
holds true. By Corollary [[LZ5] this follows under a priori conditions (6.1.T])
to (GI3]). Property (6.13]) is the bootstrap assumption. On the other hand,
E11), 6.I2), (6.14) hold, for convenient constants C'(A, A") by Proposi-
tion B2 as soon as (BI3)-(BIL7) hold. The first of these inequalities is the
bootstrap assumption ([B.2.8]) on g. The other ones are (T.2.4)-(7.2.7), that,
according to Proposition [[.2.2] hold under the bootstrap assumption (G.13]).

Let us now deduce (Z3.5) from estimates (6.L1))-(.1.3]) and B.I13]), that
hold on [1,e~#*¢] for € small, according to our bootstrap assumption. Recall

that uy is given by ({Z.26]) (or (AI1.24) by

(7.3.7) uy = PP+ PP+ ay + Z Op(mp)(ap,up®) + R
2<|1<4
I=(I',1")
where R satisfies (.1.25]). This (and Sobolev injection) shows that R satisfies
better bounds than those given by (Z.3.3]). By (6.II)-(6.13]), the first three
terms in (L37)) satisfy also the wanted bounds. Finally, the terms in the
sum are also estimated by these bounds using (€.1.1)-(6.1.3]) and (AI11.1.30)),
(ILL3).
Let us check next (7.3.6]). Recall that a(t) = @(ajL(t) — a_(t)), where
a_ = —ay and ay is given by (BZ3H). We set then, using notation (320,

B.2.7),
V3 —it~3 app

(7.38) g1 (t) = ST [PP(0) + S(0)

(7.3.6)
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and g_(t) = —g4(t). It follows from the expressmns of a®®”, S and (B2.0)-

B2I0) that g4 (t) = O(te ) Brg+(t) = O(te 27575)
It remains to prove (3.])). By (L2Z3), (CZI0),

(7.3.9) Pacip = b(ar, Dy ) — %b(m,Dz)p(Dx)_l[qu —u).

By Proposition [ATL.T5l the operator b(z, D, )p(D,) (D)~ is bounded on
W' if o > 0. Tt follows that the first estimate (Z3.1)) follows from (Z3.3) if
we modify the value of p in the left hand side of (Z3.1]).

To obtain the weighted estimates in (C31]), let us write from (Z3.9) and

(L2.10)

(7.3.10) () Pacip = 5 {) Vb, D)p(D2) (s — )
(7.3.11) ()2 D, P — %(:grwb(gg, Do) (s 41 ).

In the right hand side of (Z.310]), we replace u4 by its expression (Z.3.17). We
have to bound the following quantities

1) ~*b(x, Da)p(Da) /P lwwo

(12 ), D, )p(D) s o

(7.3.13) [{2) " b(x, Da)p(Dy) " $PP | wroce

(7.3.14) 2<;<4 1(2)"*No(x, Dp)p(Dy) rOp(my) (ar, u3hP) || we.ce
1=(1',1")

(7.3.15) 1(z) ™" b(x, Da)p(Da) ™" Rl|wo.oe.

If N = 2, the assumptions of Proposition [AT1.2.5] with n = 1 are satisfied. We
may thus apply Corollary [ATT.2.17] with ¢ = 0. Taking into account (G.1.1J),

0/
(613]), we obtain for (Z312)) a bound in t_%+(’(e2\/f)€ + til%. For
(T313]), we apply also Corollary [ATT.2.T1] but with £ = 1. We obtain by
(612) a bound in

1
t7 11 log(1 + t) log(1 + te?) = O(t_%HU(GQ\/Z)Q).

9/
modulo a bound in til%. To estimate (Z.3.14]), we use again Corol-

lary [ATT.2.77] with n = |I| and ¢ equal to the number of arguments equal to

u" PP n—{ equal to the number of arguments equal to @i+ or u'5"P. If N is taken

large enough, we get better estimates than those holding for (7.3.12]), (T.313)).
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Finally, Sobolev injection and (£I25]) provide for (7315 a better upper
bound than the one in (ZZ1). We thus got estimates of ||(z) ™" Pacp(t, -)||yeee
in t_%(GQ\/Z)e since o is as small as we want, ¢ < ¢ 4*¢, and § < i. This
implies the second inequality (7.3.1]).

The proof of the last inequality (73.1)) is similar, starting from (Z311). O



APPENDIX A8

SCATTERING FOR TIME INDEPENDENT
POTENTIAL

A8.1. Statement of main proposition

We consider V' : R — R a potential belonging to S(R). Then the operator
—%A +V = —%% + V' is a self-adjoint operator whose spectrum is made of
an absolutely continuous part, equal to [0, +oo[, and of finitely many negative
eigenvalues (see Deift-Trubowitz [14]). For £ in R, we define the Jost function
fi(z,&) (resp. fa(z,€)) as the unique solution to

d2
(A8.1.1) - @f—i-ﬂ/(m)f:gf
that satisfies fi(z,£) ~ €€ when x goes to +o00 (resp. fa(z,£) ~ e~ when
x goes to —oo). We set

my(z,€) = e fi(x,€)
mQ(xaf) = eingQ(xaf)'

We shall say that the potential V' is generic if

(A8.1.3) TV wyma (1, 0) dar 0.

—00

(A8.1.2)

Notice that the above integral is convergent as mq(z,&) is bounded when x
goes to +0o and has at most polynomial growth as x goes to —oco (see [14]
Lemma 1 and lemma [A8.1.1] below). We say that V is very exceptional if

“+oo “+oo
(A8.1.4) V(z)my(z,0)dr = 0 and V(z)xmy(z,0)dz = 0.
— 0o —0oQ
If one sets V(z) = —% cosh_Z(%), as for the potential of interest in this paper

(see (I.LH)), it is proved in [10] Lemma 2.1 that the transmission coefficient
of this potential satisfies T'(0) = 1 (see [14] or below for the definition of the
transmission coefficient). This implies on the one hand that (A8.1.3]) does not
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hold (as (AR.1.3) is equivalent to T'(0) = 0 — see [14], 60] or (A82.22]) below)
and that moreover [xV (z)mi(x,0)dz = 0 i.e. that (AST.4]) holds, as follows
from (A8.2.16) and (A8.2.21)).

We denote by W the wave operator associated to A = —%A + V., defined
as the strong limit

e . itA _—itAg
(A8.1.5) Wi =s t_l>1+mooe 2
where Ag = —1A. One knows (see Weder [60] and references therein) that
(A816) W+W_T_ - Pac; W1W+ - IdL2

where P, is the orthogonal projector on the absolutely continuous spectrum
and, more generally, that if b is any Borel function on R

(A8.1.7) b(A)Pac = Wib(Ag)W?,  b(Ag) = WIb(A)W,.

Notice that since A and Ag preserve the space of odd functions, so do W, W7.
For odd w, we shall obtain an expression for W w given by the following
proposition.

Proposition A8.1.1. — Assume that V' is an even potential that is either
generic or very exceptional. Let x4+ be smooth functions, supported for +x >
—1, with values in [0,1], with x—(x) = x4+(—2), x+(x) + x-(x) = 1.

There are an odd smooth real valued function 6, and a smooth function
(x,&) — b(x, &) satisfying

)afb(a:,g)) < Cs, VBEN

(A8.1.8)
0200b(,€)| < Cagn (@)™, Ya € N",¥B € N,YN €N,
and
(A8.1.9) b(x, =€) = b(, &), b(—x, —£) = b(, &)
such that if we set ¢(§) = ew(@ﬂgw —i—e*i@(g)ﬂ&o, then for any odd function w
(A8.1.10) W.w = b(z, Dy) 0 ¢(Dy)w
with

b, Dy = 5 [ bl €yi(e) de.

A8.2. Proof of main proposition

We shall give here the proof of Proposition [A8.1.1] relying on the results of
Deift-Trubowitz [14] and Weder [60].
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If V is a real valued even potential, the Jost functions satisfy by uniqueness

fi(=z,&) = fa(z,€) so that (ARI.2]) implies that

(A8.2.1) mi(—z,§) = ma(x,§).

By lemma 1 of [14], m solves the Volterra equation
+oo

(A8.2.2) my (2,€) = 1+ De(a" — )2V (2')yma (2, €) da’
where
T - 2ix€ 1
A8.2. De(a) = [ #¥6da’ = =
(A8.2.3) () /0 s s dx 2

If V is in S(R), (ii) of lemma 1 of [14] shows that
Cma(@,€) —1]| < Capn (@) (€77, Vo> —M, ¥ €R
20 [ma(,§) = 1]| < Capn(z) V(€)1 Vo < M VE €R,

(A8.2.4)

holds for m; (and thus also for ms) when o« = = 0. To get also estimates for
the derivatives, we need to establish the following lemma, whose proof relies
on the same ideas as in [14]:

Lemma A8.2.1. — Denote for any 5, N in N by Qﬁ,(m) a smooth positive
function such that Q]BV(x) = ()™ forz>1 and Q]BV(x) = (z)? for z < —1.
Then for any N,«, 3 in N, there is C' > 0 such that for any & with Im& > 0,
any x

(A8.2.5) 20 [ma (z,€) — ) < CO () ()P,
Proof. — Following the proof of lemma 1 in [14], we write
(A8.2.6) mi(z, &) =1+ +Zoo gn(7,€)
n=1
with
(A8.2.7) gn(x,&) = /z<a:1< o ﬁ —xj-1)2V(xj) dxy ... dxy,

using the convention g = z. Set Q(z) = Q}(x) and
Ke(y,y') = Dely — y)y) 2V (1)Qy)-

Then we may rewrite g, as

(€)= Oa) | [T KeCos a0 don.. e,
<21 < ST
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or equivalently

(A8.2.8)
n
(€)= 0a) | [[KeCo gt upbon ooy
y1>07 7yn>0 :
X Qz+yr+ -+ yn) Hdyr ... dyn.
By (A8.2.3)), we have

10 De(w)| < Cae) (o).
Fix some integer m. The definition of K¢ implies that for a + 8 < m

(A8.2.9)

SO Ke(z 4y ++ Yy )|
<CE Uz Hyr+Fy) Nty by TP
X W (@t g+ +y) ),

where W is some smooth rapidly decaying function. When y; > 0,...,y; > 0,
we may bound

W)@y y) ey 4y <00
Consequently, (A8.2.8]) implies that

(A8.2.10) |92 gu(x,€)|

< c@(m)“%@‘"/ [LW Gt on ot )
y12>0,.. yn>0

Define G(x) = [} ooy z) dz, so that the last integral above may be written

n—1

(-1 / [[C@+m++y)
y1>07 sYn 120

1
X G(x +yi 4+ ynfl) dyl s dynfl = _G(x)n

n!
As |G(z)] < CNQQ () for any N, it follows from (AS.2.10) that, for any N,
N Cn+1 Y
(A8.2.11) 020F gn (,€)| < == () "R (a).

If we sum for n > 3+ 1, we get a bound by the right hand side of (A82.5]).
We are thus left with studying

(A8.2.12) Z 920P e gn (2, €).
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Notice that (AR2.17]) summed for n = 1,...,3 gives, when |¢] < 1, the esti-
mate (AR2.0) for (AB2.12]) as well. Assume from now on that |£] > 1 and let

us prove by induction on n = 1,..., that lﬁg‘ﬁggn(x,§)\ is bounded by the
right hand side of (A8.2.5]). We may write from (A8.2.7])

gn(x’g) = Dﬁ(xl —$)2V($1)gn,1($1,§) dxq

r<x1

=, De(y1)2V (y1 + ) gn—1(y1 + 2, &) dyy

with go = 1. We use in (A8.2.13) the last expression (A8.2.3]) for D¢. We have
then to consider two kind of terms. The first one is

(A8.2.13)

e2iy1§

/ 2V(y1 + 2)gn—1(y1 + z,€) dyr
n>0 §

1
= —wZV(x)gn_l(x,@ - /yl>0 2T
Repeating the integrations by parts, we end up with contributions that, ac-
cording to the induction hypothesis (and the fact that go = 1), satisfy esti-
mates of the form (A8.2.5]) (with Qﬁ,(m) replaced by (z)™), and an integral
term of the form

eZiylf
n [2V(y1 +2)gn-1(p1 + 2, f)] dyy .

ey v
(A8.2.14) / . éMH@yl 2V (1 + 2)gn1(y1 + 7,€)] dyn
yi1=2

for M as large as we want. If M = 3, we see that (A8.2.14]) satisfies (A8.2.5)).
The second type of terms coming from (A8.2.13]) to consider is

1

z 2V (y1 + @) gn—1(y1 + 2, §) dy1

& Jyi>0
which trivially satisfies (A8.2.5]) by the induction hypothesis applied to g,,—1.
This concludes the proof. O

In order to obtain the representation (A8.1.1I0) for Wiw, when w is odd,
we recall first the definition of the transmission and reflection coefficients.

The wronskian of (f1(z,&), fi(x,=£)) (resp. (fa(z,£), fo(x,—E))) is nonzero
for any ¢ in R* (see [14], page 144), so that, for real £ # 0, we may find unique

coefficients T7(£), T2(§) non zero, Ry (), R2(§) such that

 Ri(€) 1 _
(A8.2.15) o )
fl(x7§) = TZ(S) f?(waé-)—i_%f?(wa _5)
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By Theorem I in [14], these functions extend as smooth functions on R, and
they satisfy the following properties
def

T1(8) = T2(§) = T(§)
T(€)Ra(€) + Ri(§T(€) )

T+ R =1, j=1,2

T(€) = T(=¢€), R;(&) = R;j(=¢).

If the potential V is even, we have seen that fi(—z,&) = fa(z,&), so that,
plugging this equality in the first relation (A8.2.15]), comparing to the second
one, and using that 77 = T5, we conclude that

(A8.2.17) R1(§) = Ra(8).

We denote by R(&) this common value. The integral representations of the
scattering coefficients (see [14] page 145)

(A8.2.16)

— = — [ 22V (x)my (, &) dx
(A8.2.18) ng) 2i¢ /
together with (A82.5]) and the fact that V' € S(R), show that for any N, 8
(A8.2.19) L RE) =0()™), F(T(© -1)=0((¢) ).

We need the following lemma:

Lemma A8.2.2. — The functions T, R satisfy
(A8.2.20) T(0) =1+ R(0)

in the following two cases:

e The generic case [V (x)mq(x,0)dx # 0.

e The very exceptional case [V (x)mq(z,0)dx =0 and [V (z)xmq(z,0)dx =
0.

Proof. — Summing the two equalities (AR.2.18]) and making an expansion at

¢ = 0 using (AR2.5)), we get
RO+1=T@ 1~ & [ V@m@o e+ [ Ev@meod

=T(¢) {1 + 2/+OO 2V (x)my(z,0)dx + 0(5)} , £€—0

—00

so that

+oo
(A8.2.21) R(0) + 1 — T(0) = 27(0) / 2V (@)mi (2, 0) da.

—00
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In the generic case, by (A8.2.18)

o 1
V@m0 de £ 0E)| L €0

—00

(A8.2.22) T(¢) = i€

so that T(0) = 0. This shows that (AR.2.2]]) vanishes in the two considered

cases. Ol

Proof of Proposition[A81.1: We have to prove that W acting on odd func-
tions is given by (A8.1.10]). Recall (see for instance Weder [60] formula (2.20),
Schechter [54]) that W w is given by

(A8.2.23) Wiw = Fid

where F} is the adjoint of the distorted Fourier transform, given by
N 1

(A8.2.24) L GLS

where

(A8.2.25) Vi(2,8) = Le=oT () f1(2, ) + LecoT (=€) fo(z, —E).

Let x4+ be the functions defined in the statement of Proposition [AST.1] and
write

Vi (2, 8) = x+ (1)1 (2,8) + X (7) P4 (2, §).

Replace in x4t (resp. x_t4) ¥4 by (A82.28]) where we express fo from
f1 (vesp. fi1 for f3) using the first (resp. second) formula (A8.2.15]). We get,

using notation (AR.L.2)
(A8.2.26) 1y (z,€) =

X+ () [ (T(€)ma (@, ) Leso + mi (2, €)Te<o) + e ™ R(—E)ma (2, —€)Leco]
- (@) |67 (ma(, =€) Leso+ T (=E)ma(w, =) Leco )+ R(E)ma(w, §)Leso).

Using (A8.2.1]), we deduce from (AR.2.23)), (A82.24) and (A82.26]) that

(A8.2.27) Wiw = % / ey (x, &)W (&) dé + % / e~ ey, E)w(€) dE
with
(A8.2.28)
e1(z,€) = x4 (x)ma (2, ) [T(E)1es0 + Leo)
+ X (2)ma (=2, =€) [Tes0 + T(=)le<0]
e2(2,§) = x4+ (@) R(—=&ma(z, —§)Leco + X (@) R(§)m1 (=, &) Leso.
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If w is odd, we may rewrite (A8.2.27) as

Wow = o [ e=a(e,€)a(e) de
with
(A8.2.29) a(w,£) = e1(w,&) — ez(, =€)
= x+(z)ma(z,§) [(T(§) — R(§))Le>0 + 115<0]
+ x—(@)ma(—z, =€) [Les0 + (T(—€) — R(—€))Leo).
By (BB2.I6), [T (&) — R(¢)[* = 1 and by (AB220), T(0) — R(0) = 1. We

may thus find a unique smooth real valued function 6(¢), satisfying 6(0) = 0,
such that T(£) — R(¢) = ). Moreover, using (AS.2.16)), one gets that 6 is
odd, and by (ABZ19) it satisfies 9°0(¢) = O((¢) "1 7). We define

(A8.2.30) (&) = e 100 + e 1,
so that in (A8.2.29)
(T(€) = R(€))Les0 + Leco = e"Ce(€)
Leso + (T(=8) = R(=§))1eco = e_ig(g)c(f)
and a(z,&) = b(x,€)c(§) where b is a smooth function satisfying (A8.1.8]) given
by
b(,€) = x4 (w)ma (@, €)e™®) + x_ ()i (—z, —€)e ™).
We thus got Wiw = b(x, D;) o ¢(D,)w for odd w. Moreover, the definition of
f1, mq shows that fi(x, &) = fi(xz,—&),m1(z,§) = mq(x, —&), so that it follows
from the expression of b that equalities (A8.1.9]) hold.

a

Remarks: e The proof of the last result shows that b satisfies better esti-
mates than those written in (A8.1.8]): Actually, in the right hand side of these
inequalities, one could insert a factor (£ >_B . We wrote the estimates without
this factor because we shall have in any case to consider also more general
classes of symbols, for which only (A8.1.8) holds.

e The difference between generic or very exceptional potentials versus ex-
ceptional ones appears, as is well known, when considering the action of the
Fourier multiplier ¢(¢) on L™ based spaces. Since 820(¢) = O((€) ™' ™?) when
€] — 400, ¢(§) — 1 coincides with a symbol of order —1 outside a neigh-
borhood of zero. Consequently, if xo € C5°(R) is equal to one close to zero,
(1 = x0)(Dz)e(D,) is bounded on L. On the other hand, xo(§)c(§) is Lips-
chitz at zero if the potential is generic or very exceptional, since 6(0) = 0, so
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that xo(Dy)c(D,) is also bounded on L. In the exceptional potential case,
¢(€) has a jump at £ = 0, and L* bounds for ¢(D,) do not hold.






APPENDIX A9

(SEMICLASSICAL) PSEUDO-DIFFERENTIAL
OPERATORS

A9.1. Classes of symbols and their quantization

We shall use classes of semiclassical multilinear pseudo-differential opera-
tors, analogous to those introduced in [17]. We shall use also the non semi-
classical counterparts of these operators that are deduced from the former
by conjugation through dilations. We refer to Dimassi-Sjostrand [18] for a
reference text on semiclassical calculus. Recall first:

Definition A9.1.1. — An order function on R x RP is a function M from
R x R?P to Ry, (z,&1,...,&) = M(x,&1,...,&p), such that there is Ny in N,
C >0 and for any (z,&1,...,&), (2,€],...,&,) in R x RP

(A9.1.1) M(:c’,gj,...,gp) < Clx—1a) H OM(:U &1,....&p).

An example of an order function that we use several times is

-

(A9.1.2) Myer&) = % <£i>2<£j>2)%(i (€)?) *.

1<i<j<p i=1
Actually, this function is smooth and is equivalent to 1 4+ maxa(|&1],. .., [p]),
where maxs (|1, . .. ,|&p|) is the second largest among [1],.. ., |&p].

We shall introduce several classes of semiclassical symbols, depending on a
semiclassical parameter h €]0,1]:

Definition A9.1.2. — Let p be in N*, M be an order function on R x RP,
My the function defined in (A9.1.3). Let (B,k) be in [0,+o0o[xN. We denote
by Sk 3(M,p) the space of smooth functions

(y7x7§17---7§p7h) _>a(y7x7§17'--7§p7h)

(49.1.3) R x R x RPx]0,1] - C
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satisfying for any ap € N, a € NP, k € N, N € N, af, € N* the bounds
(A9.1.4)

02002 (hon) aly, x,€, )| < CM (, ) Mo(€)™ 1D (14 BhP My (€)) "

and
(A9.15) |05 02008 (hon) a(y, 2,€ h)| < CM (x, €) Mo(g) (@oFled

% (1+ 810 Mo(€) ™™ (1 4+ Mo(e) " yl) ™

where & stands for (&1,...,&p).
We denote by S;ﬁ(M, p) the subspace of Sy g(M,p) of those symbols that

satisfy (A9.1.3) including for afy = 0.
We shall set S'Q{%(M,p) for the space of functions satisfying (A9.1.3) in-

cluding for ag = 0, but with the last factor (1 + Mo(é)_"‘|y|)7N replaced by
(1 + Mo(é)_"‘|y|)7N/, for a fized power N’ instead of for all N.

Remarks: e If p = 1, then My(&) = 1 and symbols of the class S, g(M, 1)
that do not depend on y are just usual symbols of pseudo-differential operators
as defined in [18] for instance. For symbols depending on y, we impose that
if we take at least one 0,-derivative, we get a rapid decay in |y| in the case of
the class Sy g(M,1). For elements of S| 5(M, 1), this rapid decay has to hold
including without taking any 9, derlvatlve Notice also that when p = 1, the
classes we define do not depend on the parameters &, 3.

e The parameter  in the definition of the classes of symbols measures the
power of My (&) that we lose when taking 0, or J¢ derivatives. As these losses
involve only “small frequencies”, they will be affordable.

e When S > 0, we have an extra gain in <hBM0(£)>_N for any N, that
allows to trade off the loss My (&) for h=5%. If 3 is small, this reduces these
losses to those ones used usually in definitions of semiclassical symbols as in
[18]. Moreover, an element of Sy o(M,p) may be always reduced to an element
of S, 5(M,p) multiplying it by x(h”My(€)) for some x in C§°(R).

We shall quantize symbols in Sy, g(M,p) as p-linear operators acting a p-
tuple of functions by

(A9.1.6) Opp(a)(uy, .- up)

p/e 21+, (E7x7h§1,...,h§p)H@ (&) dé; ... d&,

J=1

1 / ISP (a—al)S (T u
= e =1 imal =, x,&1,...,& H dxd£
(27Th)p (h )jl
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We shall call (A9.1.6) the semiclassical quantization of a. We shall also use
a classical quantization, depending on the parameter ¢ = % > 1, related to
(A9.1.6) through conjugation by dilations: If ¢ > 1, and v is a test function
on R, define the L? isometry ©; by

1 sz
(A9.1.7) Ouu(z) = %y(?).
We shall set for a an element of Sy, 3(M, p)
(A9.1.8) Op'(a)(vi,...,vp) = h%Gt o Oph(a)<@t_1v1, e ,@t_wp)
with h = t~1. Explicitly, we get from (A9.1.6])

(A9.1.9) Op'(a)(vi,...,vp)

i p
= (27r)p /ezx(£1+---+£p)a($, %a ST ,gp) ]1_]; @j(fj) d&q ... dgp,

Remark that if a(y, z,¢) is independent of z, then Op'(a) is independent of ¢,
and if p = 1, Op(a) is just the usual pseudo-differential operator of symbol
a(y,€). In this case, we shall just write Op(a) for Op’(a).

A9.2. Symbolic calculus

We prove first a proposition generalizing Proposition 1.5 of [17].
Proposition A9.2.1. — Let n’,n" be in N*, n=n'+n" — 1. Let
M/('Iagla v aEn’)aM”(x’gn” cee aEn)

be two order functions on R x R and R x R™ respectively. In particular,
they satisfy (A9.1.1]) and we shall denote by N{ an integer such that

(A9.2.1) M2 - 6n) < Cla— YN M (2,60, E).

Let (k,B) € Nx[0,1], a in S, g(M',n'), b in S, g(M",n"). Assume either
(k,8) =(0,0) or 0 < Bk <1 or that symbol b is independent of x. Define
(A9.2.2)

M(z,&1,...,&,) = M'(w,fl, o1, 6w o+ §n)M”(x,§n/, ooy én).
Then there is v in N, that depends only on N} in (A9.21), and symbols
(A9.2.3) c1 € Sug(MMg",n),c € S, s(MMg"™,n)
such that one may write

(A9.2.4)  Opp(a)[v,..., v —1,0pp(b)(vpy ..., vn)] = Opp(c)[vr, ..., vp]
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where
(A9.2.5)
c(y, &1, &) = aly, z,81, - 1, 6 - &)W, 2, &y, En)
+hei(y, @, &1y 6n) + (Y, 2,61, ).

Moreover, if b is independent of y, ¢| in (A9.2.0) vanishes and if b is in-
dependent of x, ¢ vanishes. In addition, if a is in S| 5(M',n") or b is in
v s(M",n"), then ¢ and cy are in S} 5(MME",n).

Let us prove first a lemma:

Lemma A9.2.2. — Let &' = (&1,...,&w-1), & = (&v,..., &), €= (£,&").
Then

(49.2.6) Mo(€, & + -+ +En) < CMo(€), Mo(€") < CMo(¢).
Moreover, if ¢ is a real number and |(|/My(&) is small enough,
(A9.2.7) max (Mo (&, & + -+ & — €), Mo(§")) > cMp(€)

for some ¢ > 0.

Proof. — Estimate (A9.2.6)) follows from the fact that My (&1, ..., &) is equiv-
alent to 1 + maxa(|&1], ..., [&nl)-

To prove (A9.2.7)), we may assume |&,| > [§n—1] > -+ > [&] and |§] >
|&a] > -+ > |&v_1|. Moreover, if n = n/, (A9.27) is trivial, so that we may
assume n' < n.

Case 1: Assume |&,| > |&1|. I || ~ |€n—1], then both My(¢”) and My(§)
are of the magnitude of (§,_1), so (A9.2.7) is trivial.

Let us assume that |§,_1| < [&,].

e If in addition [&,| ~ |&1], then My(€) ~ (&) ~ (&1) and

<§n/ + - +§n - C> ~ <§n>7
so that
Mo(§,,§n/ +oo 6 — C) ~ MO(élaén) ~ <£n> ~ <§1>

and (A9.2.7) holds.

o If |§1] < [&ul, then Mo(€) ~ max((&1), (§n—1)) and Mo(€") ~ (€n-1), so
that Mo(&', & 4+ -+ & — () ~ Mp(&',&,) ~ (&1) and (A9.2.7) holds again.

Case 2: Assume [&1] > |€,]. Then My(&) ~ max((&2), (&n)).

o If |¢,| > |&2| and |€,] ~ |€,—1], then Mo(£") ~ (&), so that (A9.2.7) holds.

o If ‘gn‘ > ’52‘ and ‘gn‘ > ‘gn—1‘7 then ‘gn/ + e +§n - C‘ ~ lfn’a so that
MO(§I7§n/ + o+ & — () ~ (&n) and (]m) holds.

o If ‘gg‘ > ’é.n’, then MQ(SI,fn/ 4+ & — C) ~ <§2>, so that (m holds
as well. This concludes the proof. U
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Proof of Proposition [A9.2.1: Going back to the definition (A9.1.6]) of quan-
tization, we may write the composition (A9.2.4]) as the right hand side of this
expression, with a symbol ¢ given by the oscillatory integral

(A9.2.8)

cly,x,&) = % / e*izca(y,x,fl,fn/ +o+ & = Oby — 2,7 — hz,£") dzdC.

We decompose

(A9.2.9)
(Z(y, Z, éla én’_{_ : +§n_<) = (Z(y, Z, éla gn"{' : +§n)_<d(ya Z, éla 5n’+ . +§na C)
with

~ ! & ! 0 ! &
(A9.2.10) a(y, =,¢',¢,¢) :/o (a—g)(%%ﬁ,f—AC) da.
It follows from (A9.2.6]) that
(A9.2.11) Mo (&, & + -+ + & — XC) < C(Mp(€) + (())-

Using (A9.14)) and the definition of order functions, we get that a satisfies

< C(Mo(€) + {Q)) I+ N0 AT (2, €/, €y - + £0)

xAXHﬂWMﬂ%M+~+@—MDNM

for any o, ag, v, k, N. If one takes at least one J,-derivative, the same estimate
holds, with an extra factor

-N
(A9.2.13) (1 + (Mo(8) + (C))’“Iyl)

using (AQ.15) and (A92.17). If we plug (A9.2.9) in (A9.2.8]), we get the
first term in the right hand side of (A9.2.5)) and, by integration by parts, the
following two contributions

L . B e ha e
(A9.2.14) 27T/e a(y,xz, &, &y + +§n,C)ay(y z,x — hz,£") dzdC,

(A9.2.15) — % /e_izgd(y, x, & Ep + -+ &, C)%(y — 2,2 —hz,&") dzdC.
Let us show that (A9.2.14]) (resp. (A9.2.15))) provides the contribution ¢ (resp.
hep) in (A92.5]).

Study of (A9.2.14)

If we insert under integral (A9.2.14) a cut-off (1 — x0)(¢) for some C§°
function yo equal to one close to zero and makeale integrations by parts in

z, we gain a factor (=™, up to making act on a—y(y —z,x — hz,£") at most
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Ny O.-derivatives. By (AQ9.1.4)), (A9.15]), each of these 9,-derivatives makes
lose (hMy(€")%) if it falls on the x argument of g_Z’ and does not make lose
anything if it falls on the y argument. Consequently, if 5 = « = 0, or if
b is independent of x, we get no loss, while if k5 > 0, we get a loss that
may be compensated since, in this case, we get by (A9.1.4)), (A9.1.5) a factor
(hB My(&" )>7N in the estimates, with an arbitrary N. Since we assume S < 1,
(hBMO(f”)fN(hMO(f”)ﬂNl = O((hBMO(g”)pr) if N is large enough rela-
tively to Ni. In other words, up to changing the definition of b, we may insert
under (A2.2.14) an extra factor decaying like ()™ as well as its derivatives,
for a given V7.
We perform next Ns integrations by parts using the operator

(A9.2.16) (2((¢) + Mo(€)™) " [1 = ((¢) + Mo(€))~22D).

By (A9.2.11]) and (A9.2.12]), each of these integrations by parts makes gain
a factor <z((§> +MO(§))*“>_1. Using (A9.2.12)), (A9.1.3), the definition
(A9.22) of M and ([A9.2.7]), we bound the modulus of (A9.2.14]) by

— Ny

(492.17) CM(a,€) [ (€)M (=(00) + Mo(©)) ™)

x (hz)™ (14 Mo(&) ™|y — =)

1 -N
< [ (14 B0 M€ 6+ 4 6= 0) A
x (14 Bh° My(¢")) ™ dzd¢

((C) + Mo (&))"

for arbitrary Ni, No, N and given No, Nj (coming from (A9.1.1]), (A9.2.1))),
the factor in (1 + Mo(§) "y — z])_N coming from the last factor in estimate
(A9.15) of g_Z' If Ny — Ny is large enough, and if we integrate for || > cMy(&),
the factor (¢)"™M*M provides a decay in My(¢)™N' for any given N’. On
the other hand, if we integrate for || < ¢My(§), we may use (A9.27) that
shows that the product of the last two factors in (A9.2.17) is smaller than
C(1+ BhPMy(€))~N. We thus get a bound in

(A9.2.18) CM(x,&)(1+ BhPMy(&))™N
% / <C>_N1+NO+N<Z(<C> + Mo(g))_ﬁ>

x (h)™ (14 M)y — =) dedC

— Ny

((¢) + Mo(8))"

< CM{(2,€) (14 BRPMo(€)) ™ Mo (€) PN (1 4+ Mo(€)"Jyl)
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if N1 > Ny > N+Ny+N{j. We thus get an estimate of the form (A9.1.H), with
ag =0, o = 0, and the order function M replaced by M (z,&)My(€) N,

If we make the same computation after taking a 97° and a J¢ derivative
of (A9.2.14)), we replace, according to (A9.2.12), the factor (My(§) + (¢))" in
(A9.2.17) by (My(€) + (¢))=(+eotlal) 5o that we obtain again a bound of the
form (A9.1.5)), with still M replaced by M (z,&)My(£)"" with v =2 + N{.

Study of (A9.2.T5])

The difference with the preceding case is that the J, derivative acting on b
makes lose an extra factor My(£)", and that we do not have in (A9.2.17)) the

factor in (1 + My(&) "y — z|)7N. Instead of (A9.2.18)), we thus get a bound

in

—-N

M (2, &) Mo (&) (1 + BhP My (€))

for some v depending only on NJ. On the other hand, if one takes a 0,
derivative of (A9.2.T5), either it falls on b, which reduces one to an expression

of the form (A9.2.14]), or on a, so that one gains a factor (A9.2.13)) in the
estimates. In both cases, it shows that a bound of form (A9.1.5)) holds. One

studies in the same way the derivatives, and shows that (A9.2.15]) provides the

hey contribution in (A9.2.3]).

If b does not depend on y, than (A9.2.14]) vanishes identically so that there
is no ¢} contribution in (A9.2.16]). If it is independent of x, the term hey given

by (A9.2.15)) vanishes.

Finally, if one assumes that b is in S, 5(M",n"), then estimates of the form

(A9.2.1])), i.e. with the factor (1 + My (&) "y — z|>7N hold also for the study

of term (A9.2.15), so that we get that ¢; in (A9.2.5)) is also in S} (MM, n).
In the same way, if a is in S| 5(M',n’), one gets in (A9.2.12) an extra factor

of the form ([A9.2.13)) in the right hand side, so that (A9.2.15]) is again in
w.5(M,n). This concludes the proof. O

Let us write a special case of Proposition [A9.2.T1

Corollary A9.2.3. — Let p(§) = (§) and let b(y,&1,...,&,) be a function
satisfying estimates

n

08b(y, &) < C [ (&) Mo(&)* 1!

7j=1

105008 b(y, )] < Cn T (€5) " Mo(€) 1ol ()=

J=1

(A9.2.19)



158 APPENDIX A9. (SEMICLASSICAL) PSEUDO-DIFFERENTIAL OPERATORS

for all afy € N*, a« € N*, N € N. Then

Opy, (p(€)) [OPA (D) (v1, - -, vn)] = Opy (P(E)b(y, &) ) (v1, -, vn)

(A9.2.20) /
+O0py(c)(v1;-- -, vn)

where ¢} satisfies

(A9.2.21) 05008, (. €)] < O T (&)™ Mo() 1oy ™
j=1

for all afy, o, N

Proof. — We may not directly apply the proposition, as the order function
it would provide in the right hand side of (A9.2.21]) would not be the right
one. Though, we may apply its proof that shows that the composed operator

(A9.2.20)) is given by (A9.2.14]) with a given by (A9.2.10) i.e.
1 ; 0b
(A9.2.22) — L / /efzch/(& +o o+ —N)=— (W —2,&,...,&,) dzdCd.
21 Jo 0y

Performing integrations by parts in z,{, we may bound the modulus of

(BI22) by
¢ [ 170ty — 5 azac [T &) (e

j=1

which gives (A9.2.2)) performing the same computations for the derivatives.
]

We shall use also the following corollary.

Corollary A9.2.4. — Let b be a symbol in S,, g(M,n) for some order func-
tion M, some n in N*, with (k,[) satisfying the assumptions of Proposi-
tion[A9.2.1. Assume moreover that b(y,x,&1,. .., &) is supported inside |&1]+
coo - [&n—1| < C(&n). There is v > 0 such that for any s > 0, one may write

(A9.2.23) (hD)*Opy, (b(€n)™*) = Opy(c)

with a symbol ¢ in Sy, g(M Mg, n). The result holds also if b (and then c) satisfy
(A9.1.5) with the last exponent N replaced by 2, i.e. if b is in S/iﬁ(M, n), then
c lies in S’iﬁ(MMo”,n).

Proof. — We apply Proposition [AQ.2.T] with a(§) = (£)° € Sk ()", 1)
(for any (k,3)) and for second symbol b(y, z,&1,...,&,) ()" °. Notice that,
because of the support assumption on b, this symbol belongs to the class

S&B(M(x,@ (Z?:l <§j>)7s,n). Then by (A9.2.3)), c in (A9.2.23) belongs to
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Sy 5(M(x,£)My*,n), where v depends only on the exponent N in (A9.2.7)),
which is independent of s, and where M is given, according to (A9.2.2]), by

n

M@, 61, &) = (& + -+ &) M(2,6) (D (&) < OM(x,8).

J=1

The conclusion follows, as the last statement of the corollary comes from the
fact that when taking a 9, derivative of ¢ given by (A9.2.8)), it falls on the b

factor as a(§) = (€)° and makes appear a gain (1 + Mo (&) "y — z])72 if we
assume that (A9.1.5) holds with last exponent equal to 2. O

Let us state a result on the adjoint. Since we shall need it only for linear
operators, we limit ourselves to that case.

Proposition A9.2.5. — Let M(x,§) be an order function on R X R, a an
element of Soo(M,1). Define

1 A
(A9.2.24) a*(y,x,§) = py. / e a(y — z,x — hz, & — ¢) dzdC.
77
Then a* belongs to Sy o(M,1) and (Opy(a))* = Opy,(a*).
Proof. — By a direct computation (Opp(a))* is given by Opj(a*) if a* is

defined by (A9.2.24). Making 0, and 9, integrations by parts, one checks that
a* belongs to the wanted class. U

Remark: It follows from (A9.2.8]), (A9.2.14)), (A9.2.15]), that if a,b in the
statement of Proposition [A9.2.1] satisfy

a(—y, =2, =1, —&w) = (=1 aly, z, &1, - )
b(—y, =2, =1,y =) = (=1)" by, @, &1, )
then symbol ¢ in (A9.2.5)) satisfies

(A9.2.26) c(—y, —z, =&, .., =&) = (1) La(y, z, &1, ..., &)
and a similar statement for ¢, . One has an analogous property for a*.

To conclude this appendix, let us translate Propositions [A9.2.1] and [A9.2.5]
in the framework of the non semiclassical quantization introduced in (A9.1.5]),

@IL).

Corollary A9.2.6. — (i) Let n',n"” be in N*, n=n'+n" —1, M', M" two
order functions on RxR™ and R x R™" respectively. Let (K, B) be in Nx[0,1],
a in Syg(M',n'), b in S, g(M",n"). Assume that either (k,3) = (0,0) or
0 < kB <1 or that b is independent of x. Then if M is defined in (A9.2.2),

(A9.2.25)
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there are v in N, symbols c1 in Sy s(MMg"*,n), ¢, in S, 5(MMg*,n) such
that if

(A9.2.27)
C(yaxaél’ s aén) = a(y,x’gl, o agn’—laén’ +F én)b(yaxagn’a s agn)

+tilcl(yaxa£15 s aén) + Cll(y’x’é-l’ s agn)’
then for any functions vi,...,v,
(A9.2.28)  Op'(a)v1,- .., vw—1,0p (B) (Vs ..., vn)] = ODP'(e)[v1, - - -, Un).

Moreover, if b is independent of x, ¢ vanishes in (A9.2.27). Finally, if a is
in i, 5(M',n) or b is in Sy g(M",n"), then c is in S 5(MM{",n).

(ii) In the same way, if a is in Soo(M,1), then Op'(a)* = Op'(a*), for a
symbol a* in the same class. Moreover, if a satisfies (A9.2.28)), so does a*.

Proof. — Statement (i) is just the translation of Proposition [A9.2.91 State-
ment (ii) follows from Proposition [A9.2.5 O

We get also translating Corollary [A9.2.3}

Corollary A9.2.7. — Under the assumptions and notation of Corol-
lary [A9.2.3, one has

Op(p(€))Op(b)(v1,. -, vn) = Op(p(&1 + -~ + E)b) (v1, - -, vp)
+ Op(c)) (v, .- -, vp)
with ¢y in the class 5’{70 (H?:1 (£j>71M0(§),n> of Definition [Z1.1.
We shall use also

Corollary A9.2.8. — Letn > 2. Let M(&,...,&,) be an order function
on R™ (independent of x) and let a(y,&1,...,&,) be a symbol in Sy o(M,n),
independent of x, for some k in N. Let Z be a function in S(R). Denote

M(&r, ... &no1) = M(£1,...,6,_1,0). There is a symbol a’ in Sto(M,n—1),

independent of x, such that for any test functions vy,...,vp_1
(A9229) Op(a)[vla -y Un—1, Z] = Op(a/)[vl, s 7vn71]'
Moreover, if Z is odd and a(—y, —£1,...,—&) = (=1)" ta(y, &1, ..., &), then

a,(_ya _515 s _gnfl) = (_1)n_2a(ya 515 s 7§TL71)'
Proof. — By (A9.1.9), we have that (A9.2.29]) holds if we define

(A9230) a/(ya 517 cee 7571—1) = % / eiyfna(y7§17 cee 7§n—17 SH)Z(SH) dfn
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I 0/ = (0,0 1) € N4 € = (&1, € 1), we deduce from (AZLI)
with 8 = 0 that

08/ (5,61, €m0 < © [ MIE6)M(E, 6112060 de.

Using (A9.L1) both for M and My, we obtain a bound in M (") My(&')"l®
To check that actually our symbol a’ is in S;,O(M, n—1), i.e. that it is rapidly
decaying in (1 + Mo(&")™*|y])™", we just make in (A9.2.30)) I, -integrations
by parts, and perform the same majoration. One bounds 9, derivatives in the
same way. Finally, the last statement of the corollary follows from (A9.2.30)
and the oddness of Z. O

'l






APPENDIX A10

BOUNDS FOR FORCED LINEAR
KLEIN-GORDON EQUATIONS

The goal of this appendix is to obtain some Sobolev or L estimates of
solutions of half-Klein-Gordon equations with zero initial data and force term
that is time oscillating. We shall first get such estimates under two different
assumptions on the source terms. Then, we shall study bounds for the action
of the operators introduced in Appendix[A9 on such linear solutions. We shall
close this chapter with explicit computations that are used in the main part
of this text to check the Fermi Golden Rule.

A10.1. Linear solutions to half-Klein-Gordon equations

We consider a function (t,x) — M(t,x) that is C! in time, with values in
S(R). If Aisin R, A # 1, we denote by U(¢,x) the solution to
(Dt — p(Dy))U = eMtM(t’ )

(A10.1.1)
Ulg=1 =0

where p(D;) = /1 + D2, and where we study the solution for ¢ in an interval
[1,T]. We write the solution by Duhamel formula as

t . )
(A10.1.2) Ut,x) = i / G E=DR(DHAT N r (1) g,

1
We fix some function y in C*°(R), equal to one close to | — oo, i], supported
in ] — 0o, 3]. Then for ¢ larger than some constant (say ¢ > 16), we may write

(AT0.12) as U = U’ + U” where

+oo | .

U't,z) = i / =P (D) M (r, ) dr
1 Vit

(A10.1.3)

t ) )
U”(t,:ﬂ) _ Z/_ el(t—T)p(Dx)-H)\T(l _ X)(%)M(T, ) dr.
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Our goal is to obtain Sobolev and L* estimates for U’, U” and for the result
of the action on U’,U" of the operator

Dy
(Dz)’

under two sets of assumptions on M, that we describe now. We shall take ¢
in ]0,1] and for ¢t > 1, we recall that we defined in (B.I.1])

(A10.1.4) Ly=xz+tp (D) =x+t

(A10.1.5) te = € 2(te?) = (¢4 +12)3.
For w in [1,+o0], 8’ €]0, %[, close to %, we introduce the following:

Assumption (H1),: For any a, N in N, any ¢ in [1,7], z in R, € in ]0, 1],
one has bounds

00 M (t,2)| < Co Nt (a >‘N

020M (t, 3)] < Cante “ 2™ +1-3(2VE)? " Y2y ™Y

The second type of assumption we shall make on M is more technical. If
A > 1, we denote by +&) the two roots of /1 + &2 = X\ (with &, > 0) and set
Wi for a small open neighborhood of the set {{), —&)}- We introduce:

(A10.1.6)

Assumption (H2): For any «, N, the z-Fourier transform of M (t,z) sat-
isfies bounds

O NI (,€)] < Cont 31 ()N
OOENI(2,€)| < Cant ™38,
Moreover, for £ in W), one may decompose

(A10.1.8) DiM(t,€) = (Dy + X — /1 + E2)D(t,€) + V(¢ €)
where ®, ¥ satisfy the following bounds:

(A10.1.7)

1
O(t, &) < Ct 2zt
(A10.1.9) 2 (0l < e
Wt <t et

and a similar decomposition holds for x M instead of M. Of course, conditions

(AI0LE), (AI0LI) are void if A < 1.

For future reference, let us state some elementary inequalities that hold if
0 < % is close enough to %, eVt<1land w>1:

3 3

\/Z 1 3¢/
(A10.1.10) / et 4 rma(EVT)? | dr
1
< CEQw[Ez\/E—{— 639/—1] < CEQw.
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1

¢ .
(A10.1.11) /\/_Te_w+§ [Te_% +773(2ym)E | dr
t

2 /
< C€2w |:€_t + E%G/(E2\/E)7%+%9

24 \ 2
< [ 2w—1f € 20|
< C'min {e <<62t>> ,€ }

a

Vi .
(A10.1.12) / i Y dr < Ce*t2tz a > —1.
1

t 2 1—-a 2 % 1
(A10.1.13) / rontar <o L) <o SR) Loacn
Vi (€2t) (€2t) 2

b il 8 8,5 30
(A10.1.14) /\/_Te “ta[r2 4 ra(ElVT)Y [VTdr
t

< Ol et %+639/( e’ )%9' < Ol €%t 2
- (€2t) (€2t) - (e2ty ) -

(A10.1.15) /t Ly < VS,
1. T2T, T < .
Vi (€°t)

Let us state two propositions giving the bounds we shall get for U’, U” under
either assumption (H1), or (H2). We denote below

(A10.1.16) [vllweoe = [[{Dz) ]| Lo
for any p > 0.

Proposition A10.1.1. — (i) Assume that (H1), holds for some w > 1.
Then for any r > 0, there is C,. > 0 such that U’ given by (AI10.1.3) satisfies
for any € €]0,1], t € [1,e74]

1
(A10.1.17) U (t, )| e < Crele2@D(2V/1)?]
(A10.1.18) U (¢, ) lwree < Cre®

(A10.1.19) 1L U (¢, ) < Crt1 [ D (V7).

(ii) Under Assumption (H2), there is, for any r > 1, a constant C, > 0 such
that U' satisfies for any € €]0,1], t € [1,e74]

(A10.1.20) U (&, ) ||gr < Cre(€2V/1)?

(A10.1.21) U7 (2, e < Cpet™1
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7
(A10.1.22) L Ut )l < Crttes (2V1)5].
Let us state now the bounds she shall prove for U”.

Proposition A10.1.2. — (i) Under Assumption (H1),, withw > 1, one has
for any r > 0, the following bounds:

A U// C 2w—1 62t 2

10.1.23 )l < Cre™™

(A10.1.23) 07 el < € (1)

(A10.1.24) |U" (¢, ) [wres < Cre* log(1 4 t)

(A10.1.25) L U (t, )| wree < Cplog(l+t)log(l 4 €%t), ifw=1
2t

(A10.1.26)  [|LLU"(t,)|lwree < Cre2@ D log(1 + t)( <;t>>, ifw>1.

(ii) Under Assumption (H2), one has for any r > 0, the following bounds

€2t
1. " r <
(A10.1.27) [0 (¢ Ye < C e(< 2t>)
(A10.1.28) U (t, )| wree < Cre(log(1 +1t))?
(A10.1.29) L U (t,)||wree < Cyplog(1 +t)log(1 4 €t).

Remark: Notice that we obtain Sobolev estimates for L, U’(t,-) in
(A10.1.19), (AI0.1.22), while we bound L, U"(t,-) in W™ spaces in
(AT0.125), (AI0.126), (AI0.I29). Actually, we could not obtain for
the L U" contribution to LU as good Sobolev estimates as those that hold
for L U’, and this is the reason for our splitting U = U’ + U”.

Study of the U’ contribution
We shall prove Proposition (A10.1.1l By (A10.1.3)), (A10.1.4)

(A10.1.30) U'(t,z) / / ilt=m) Ve tArtat]y (\[) M (7€) dédr
+oo
’ [(t—7) \/1+£2+)\T+{L‘£]
L U(t,2) / / (\/i)

(A10.1.31)

x [T%M(T, €) + M (r,€)| dedr.

We shall estimate first the above integrals when either A < 1, so that the
coefficient of 7 in the phase A — /1 + &2 never vanishes, or when A > 1 but
M (1,€) is supported outside a neighborhood of the two roots &, of that
expression.
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Lemma A10.1.3. — Assume that either A < 1 or X\ > 1 and there is a
neighborhood Wy, of {—&x, €x} such that N (-,€) vanishes for & in Wy. Assume
also t < e %,

(i) Under assumption (H1),,, estimates (AI0.1.17) to (A10.1.19) hold true.

(ii) Under assumption (H2), estimates (A10.1.20) to (A10.1.22) hold true.

Proof. — Let us prove first the Sobolev bounds (AI0.TI7), (ATI0.1.19),
(AI0.120), (AI0122). By (AI0.L3Q) U'(t,€) may be written as

. 3 [T . 5
o [ (e
1

t

where N(7,¢) satisfies for any N, any «, according to (AI0.1.6]), (AT0.1.7)
(A10.1.33)

: . .
[O¢ 0N (7, 8)| < Coz,NTe_UH—% [Te_% —1-7'_%(62\/;)249 ]]<5>_N, Jj=0,1

under (H1),, and
(A10.1.34) 02OIN(7,6)] < Cont 27 77517, j=0,1

under (H2). In the same way, by (A10.1.31), ﬁ(t, ¢) may be written under
the form (A10.1.32)), where N satisfies according to (A10.1.6)), (AT0.1.7))

(A10.1.35) LN (1,)] < Cant' ()™, j=0,1
under (H1), and

(A10.1.36) 02BN (,€)] < Cant? ir 1) N, j=0,1
under (H2).

Since N (T, €) is supported outside a neighborhood of the zeros of /1 + &2 —
A, we may perform in (AT0.1.32]) one &, integration by parts. Taking moreover
a L2((£)"d¢) norm, we obtain quantities bounded in the following way:

o If N satisfies (AI0.1.33]), we obtain a control of (AT0.1.32]) in terms of
Ce* and of (AT0.I.10). This gives a €2 estimate, better than the right hand
side (ATQ.T.I7).

e If N satisfies (AI0.1.34]), we obtain an upper bound by the right hand
side of (AT0.1.12)), which is better than (AT0.1.20).

o If N satisfies (AT0.1.35)), the L2((£)"d¢) norm of (AI0.1.32) is bounded
by (AI0.1.12) with a = 0, so by (AI0.1.19).

e If N satisfies (AT0.1.36]), that same norm is bounded by (AT0.1.12), thus
by the right hand side of (A10.1.22]).

We have thus proved Lemma [AT0.1.3] for Sobolev estimates. It remains

to establish (ATQLI8) and (AI0.121). Since M is rapidly decaying in &, it
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is sufficient to estimate the L® norm of U’. Notice that the dé-integral in

(AI0.1.30) may be written as

it| (1-2 ) /1+e2 4+ 2¢|
(A10.1.37) /ez [(1-2) Ve +t4M(7-, ¢)de
and that on the support of x(7/v/t), |7/t| < 1, so that the stationary phase

formula implies that (AI0.1.37)) is smaller in modulus than Ct_%TJ“ﬂT Vi

under conditions (A10.1.6) and Ct_%T_%Te_l]lT<\/i under condition (AI0.1.7)).
1
Integrating in 7, we get bounds in O(¢2) and O(e*t™ 1) respectively as in

(AI10.1.18), (A10.1.21)). This concludes the proof. O

Lemma [AT0.1.3] provides Proposition [ATQ.I.1] when either A\ < 1 or
A > 1 and M in (AI0.1.30), (AI0I3T) is cut-off outside a neighborhood of
V1+E& = X. We have thus to study now the case when A > 1 and M is
supported in a small neighborhood of one of the roots &£, of that equation.
More precisely, we have to study, in order to estimate the contribution to U’,
the expressions

(A10.1.38) U7 (t, ) :/1+°o/e”[(l_%)\/@“%MX(%)M(T@) drd,

where N1 is supported close to £¢£ and satisfies (A10.1.33)) or (A10.1.34)),

and, in order to estimate the contribution to L, U’, an expression of the form

(AT0.1.38) with Ny satisfying (AI0.1.35) or (AI0.I.36). We shall show actu-

ally the more precise result:

Proposition A10.1.4. — For any « in N, we have the following bounds:

(A10.1.39) 00T (t, )| < Ca€®(t73(\a % t&))fl

if N+ satisfies (A10.1.33),

(A10.1.40) 02T (1, 2)| < Cut 3 E Az + 162))
if Ny satisfies (AT01.3]).

(A10.1.41) 02T (1, )| < Cae®t3 (73 (M £ )
if N+ satisfies (A10.1.33),

(A10.1.42) 02T (1, 2)| < Cati (™ F Az £ 86)))

if N1 satisfies (A10.1.36).
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It follows immediately from (AT0.1.39) (resp. (AI0.1.40)) that (AT0.1.17)
and (AI0.I.I8)) (resp. (AI0.1.20) and (AI0.1.2T))) hold true. In the same way,
computing the L? norms of (AIQ.T.41) (resp. (AI0.I.42)) we obtain upper

bounds by (AT0.1.19) (resp. (AI0.1.22])). Consequently, Proposition [AT0.1.1]
will be proved if we establish Proposition [AT0.1.41

Lemma A10.1.5. — One may write the derivatives of Uj’[ given by

(A10.1.38) under the form
~ too |
(A10.1.43) 82U (t,x) = / eV Gy (47, 24 ) Jo (7, b, 24) dT + RE
1
where X4 is supported for T </t and for |z+| < ¢, and where

(A10.1.44) zy = % + %, X+ = 0(1), 0-X+ = O(t—%),

where Yy (T,t, z4+) satisfies
(A10.1.45) 0r0 (T, t, 24 )| ~ |24], O*pL =0

on the support of the integrand, it t is large enough, and where J, satisfies the
bounds
(A10.1.46)

|Ja(T,t, 24)| < Cot 27,7
3/
10 Jo(7, b, 22)| < Cot 27,92 [Te_% +tlne +T_%(62\/F)29]
if Ny satisfies (A10.1.33),
1

Ja(rt, 24)| < Cat =37, 1773

(A10.1.47) \
|0: o (1,1, 22 )| < Cut ™27, 1771

if Nx satisfies (A10.1.34)).
In the same way, 02U, is given by an integral of the form (A10.1.73) with
Jo satisfying
Jo(T,t,21)| S Cot™ 2797
(A10.1.48) o < Ca .
|0-Jo(T,t, 24)| < Cot™ 277

if Ny satisfies (A10.1.35),

(A10.1.49)
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if Ny satisfies (A10.1.36). Finally, the remainder RE in satisfies
IRE| < Cone®t™N (e £t6)7, under (H1),

A10.1.50
( ) IRE| < Coneé®t™N Oz + 16,7, under (H2),

for any N in N.

Proof. — For t bounded, estimates of the form (AIQ.T.50) follow from

(A10.1.33), (AI0.1.35)) and & integration by parts. Assume ¢ > 1. We treat
the case of sign + and set z for z, in (AT0.1.44]). We consider the d¢ integral

in (AT0.1.38]), expressed in terms of z instead of z. The oscillatory phase may
be written as té(t, T, z, &) with

¢ _ £ &y 1 ¢
8_£(t77727§)_( /1+§2 )\) t 1+§2 Tz

Since we assume t > 1, § < ﬁ < 1 in (AIOIEI). If |2| > ¢ > 0, un-
der this condition on ¢, and for |¢ — &,\| < 1, we see from (ATIQ.T.51)) that
?(t 7,2,§) ‘ ~ |z|, so that, performing J¢-integration by parts, we get again

estimates of the form (AT0.1.50).

We may thus assume from now on that ¢ > 1, [z| < 1. For 2 =0, 7 =0,
(AT0.15T) vanishes at & = &, and since the (95 -derivative at this p01nt is
A73 #£ 0, we have for t > 1, |z| < 1, a unique critical point ¢(¢, 7, z) close to
&x. Moreover, it follows from (AT0.T.51)) that

(A10.1.51)

(A10.1.52) %(m, 2) = 0(1) 225 (t,7,2) = O(tlz).

We rewrite the phase ¢ as

(A10.1.53) o(t,1,2,8) = ¢°(t, 1, 2) + %A(f,T, 2,6)2(6 —£(t, T, 2))?
where the critical value ¢(t, T, z) satisfies

(A10.1.54) 0-¢°(t, 7, 2)| = O(t™1), |02¢°(t, 7,2)| = O(t™?)

and where A is strictly positive for § < 1, |2| < 1, |£ — &\| < 1 and satisfies
for any

(A10.1.55) 0-0] A(t,7,2,)| = Ot ™).
We introduce the change of variables ¢ = A(t,7,2,£)(§ — £(¢, 7, 2)) for £ close
to &y and its inverse £ = E(t, 7, 2,(). By (m (m) we have

oc o, ot=E
or ~ ) prgr =0T

(A10.1.56)
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for any . Then the expression of 92U, may be written from (AILL3S))

QT Hoo itpc(t,7,2z T
(A10.1.57) QUL (t,x) = /1 et )X(%)Ja(tﬂ', z)dr
where
. 2 ~
(A10.1.58) Ta(t,7,2) = / T Na(t,7,2,C) dC

where N, is supported close to ¢ = 0 and satisfies when 7 < v/#, by (AI0.1506)),
the following estimates for any v in N:

|82Na(t’ T, 2, <)| S CTé_w

(A10.1.59) N L 3 3.9 3¢ 1,1
0,0 Na(t, 7,2, Q) < Cr P2 [r 72 4+ 72 (EV7)? + 77217

if Ny in (AT0.1.38)) satisfies (AT0.1.33]),

(A10.1.60) |07 Na(t,7,2,0)| < CT7 3774, 10,00 Nalt, 7,2,¢)| < O~ ir, !
if Ny satisfies (A10.1.34),

(A10.1.61) |9} Na(t,,2,Q)| < O™, [8:0] Na(t,7,2,¢)| < Cr™

if Ny satisfies (A10.1.35]) and

(A10.1.62) \azNa(t,T, z,()] < CT%Te_l, \3732Na(t,7,z,g)\ < CT%TE_l

if Ny satisfies (AI0.1.36]). If we apply the stationary phase formula to

(AI0.1.58]), we gain a factor ¢~3, which, according to (A10.1.59)-(A10.1.62)
provides bounds of the form (A10.1.46]) to (AI10.1.49). To get expressions of

the form (AI0.1.43)), we still have to replace the phase t¢° of (AIQ.I57) by
1. By Taylor-Lagrange formula relatively to 7 and (AT0.1.54)

-2
¢°(t, 7, 2) = ¢°(t,0,2) + 7(0-9°)(t, 0, 2) + O(t_Q)

Moreover, by definition of the phase ¢ of (AT0.1.38)),

(8,6°)(1,0,2) = %(A —J1+£(t,0,2)?)

and by (ATI0.1.51]), the critical point £(¢,0, z) satisfies
§h02) & &

€60.2) X &)

V14E(10,2)2 =X = N6z +0(2%), 2 — 0.

so that
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We thus get
¢°(t, 7, 2) = ¢°(£,0, 2) + %(AQQZ +0(2%) +7(t, 7, 2)
(A10.1.63) 72 .
r(t,7,2) = O(tj),arr(tﬂ', z) = O(t_Q)
We define
1/}+(t7 T, Z) = t[¢c(t7 T, Z) - T(t7 7 Z)]
(A10164) itr(t,T,2)

>~(+(t77—7 Z) - X(%)e

Plugging (AT0.1.63)) in (A10.1.57)), we deduce from (AT0.1.64)) that for |2| < 1,
the properties of x4,y in (A10.1.44]), (A10.1.45]) do hold. This concludes the
proof of the lemma. O

Proof of Proposition Since R in (AI0I43) satisfy better esti-
mates than those we want, by (AI0.1.50]), we just consider the integral in the
expansion of 92U .

Under condition (ATI0.133), J, satisfies (AI0.1.46). It follows from
(AI0.I12) that the modulus of the integral in (AT0.L43) is O(¢**). On the
other hand, if we multiply (AI0.1.43) by zi, use (AI0.I.45), integrate by
parts in 7 in (AI10.1.43]) and use (AI10.1.44)), we deduce from (A10.1.10]) and
(ATI0.1.12) a bound in 732 for the resulting expression. Together with the
definition (AI0.1.44) of z4, this brings (AI0.1.39).

To prove (AI0.1.40), we proceed in the same way. Under estimates
(A10.1.34), (AI0.1.47) holds for J,. By (AIQ0.II12), this provides for

(AI0.1.43) an estimate in ¢2t1. On the other hand, if we multiply (AT10.1.43])
by z4+ and integrate by parts, we get using (A10.1.47) and (AI0.1.12)) an

estimate in €2t 5. Together with the first one, this implies (AT0.1.40]).

One obtains (AI0.1.41) (resp. (AI0.1.42)) in the same way from (AI0.1.48)
(resp. (A10.1.49)) and (AI0.1.12). O

Study of the U” contribution

According to (AI0.1.3)), (A10.1.4]) we have
(A10.1. 65)

Ut = / / (t-7) /T +Ar-tat (1- X)(\%)
L.U"(t,z) = & o (t—T)\/@JrArﬂg] (1-7) T
(A10.1.66) : 2m /oo/ X (\/g)

X [T%M(T,f) + ;]\\4(7',5)} dédr.

M (7€) dedr
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We treat first the case when A < 1 or A > 1 and M is supported for ¢ outside
a neighborhood of +£).

Lemma A10.1.6. — Assume A < 1 or A > 1 and M supported outside a
neighborhood of {—&x, &)}
(i) Under assumption (H1),,, estimates (A10.1.23) to (A10.1.20) hold true.
(ii) Under assumption (H2), estimates (A10.1.27) to (A10.1.29) hold true.

Proof. — We write U”(t,é) as
t 7). p——
(A10.1.67) | V) ()N 7, dretV e

with N satisfying (AI0.1.33) under (H1),, and (AI0.1.34) under (H2). In the
same way, L,U" is given by (AI0.I1.67) with N satisfying (AT0.1.35]) when

(H1),, holds and (AT0.1.36]) under (H2).
We perform one 9, integration by parts in (AT0.1.67) and compute the

L%({¢)") norm. When N satisfies (AT0.1.33]), we obtain from (AI0.III) (and
from (AT0.T12) if . falls on (1 — x)(7/+/t)) a bound of the form (AT0.1.23]).

If instead of computing the L2((£)"d¢) norm, we estimate the L' ({¢)"d¢) one,
we get (AT0.1.24)) from (AT0.TIT), (ATQ.I.12).

Under condition (AT0.1.34) we get an estimate of the L?({¢)"d¢) norm of
(AI0.1.67) by

t
C/ 7'6_17'_% dT—}—CEZt_%
Vvt

which is smaller than the right hand side of (A10.1.27)) by (A10.1.13)).
We are left with proving (A10.1.25)), (A10.1.26]), (AI0.1.28) and (A10.1.29)).

Integrating by parts in 7 in (AL0.1.65]) and (AI0.1.66]), we have thus to bound
the integrals

(A10.1.68) / MO N (¢ €) de

(A10.1.69) /_ too / o Le-VIE D] . [N - X)(%)} dédr

where N satisfies (AI0.1.34]) (to get (AI0.1.28])) or (AIQ.L35) (to obtain

(A10.1.25), (A10.1.26) or (AIO.I36) (to get (A10.1.29))). The W™ norm
of (AT0.1.68) is bounded from above by the L' norm of (¢)"N(r,&), that has

immediately the wanted estimates. Let us study (AI0.1.69). Since the inte-
grand is in S(R) relatively to &, stationary phase shows that the d¢-integral

is O((t—7'>_%), with bounds given by the right hand side of (AI0.1.34]),
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(AI0.1.35), (AI0.1.36). Consequently, the contribution of (AI0.I.69) to
(AT0.1.28) will be estimated by

(A10.1.70) C’/ (t— ) % 27*% dr,
+ T€
its contribution to (AI0.1.25), m will be bounded by
1 €2w
(A10.1.71) C / i AL
(14 7e2)w

and its contribution to (AI0.1.29)) will be controlled by

T4 dT.

(A10.1.72) C/ (t—1) % .
+ 7€

One checks that (AI0.1.70) (resp. (m, resp. (AI0.1.72]) is bounded
from above by the right hand side of (AI0.1.28)) (resp. (AI0.1.25]), (AT10.1.26)),
resp. (AT0.1.29])). This concludes the proof of the lemma. O

We have obtained estimates (AI01.23) to (AI0.1.29) when M in (AI0.1.65),

(AT0.1.66)) is supported away from the zeros of A — /1 + £2. We shall next
obtain these bounds for M supported in a small neighborhood of this set.

We prove first these estimates under assumption (H1),, i.e. those of (i) in the
statement of Proposition [AT0.1.21 We have to study again the integral

(A10.1.73) /t . / o le-nVIFE e () X)(%)N(T,g) dédr

where N will satisfy (A10.1.33)) or (A10.1.35)) and is supported close to £¢).

Lemma A10.1.7. — Assume X\ > 1 and N supported in a small enough

neighborhood of {€x, —&x}. Then if N satisfies (A10.1.33) (resp. (A10.1.33)),
estimates (A10.1.23) and (A10.1.2]) (resp. (A10.1.25), (A10.1.26])) hold true.

Proof. — Introduce Q(7,¢) = 6”2_1 and write (AI0.1.73)), after making a

(1
Or-integration by parts, as the sum of the following quantities:

(A10.1.74) / VIFEROQ (1 — 1+ )N (1) de

(A10.1.75)

[ [ o - o[ )

Assume for instance that £ stays in a small neighborhood of £ on the support
of N, and make the change of variables ( = A\ — /1 + £2 in the integrals, with
¢ staying close to zero.

N(r,¢)] dédr.
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Consider first the case when N satisfies (AT0.1.33) and let us prove
(AI0.1.24). We estimate the modulus of (AT0.1.74]) by

/ QO — —ar < O g
9 >~ (0]
<t (11 te2) 1+t~ 8

which is controlled by the right hand side of (AT0.1.24]). In the same way, we
bound the modulus of (AT0.T.75)) by

c/ { 4 [r 32y + —rn TN”V Q(r, O)| dCdr.
Vi cl<

As [ij1 17, Q)] dC = O(log7) = O(logt), we obtain using (AI0.LII) and

(AT0.112) a bound in ¢*log(1 + t) as wanted. Assume next that N sat-

isfies (A10.1.35]), and let us show (AI0.1.25)), (AI0.1.26l). We estimate then

(A10.1.74) by

Ce2wi
T /<<<1 (t,0)] de

that is bounded by (AI0.1.25), m On the other hand, (m
may be controlled by f\t/z logT(HTEQ) dr, that is bounded by (AI0.1.25) if

w =1, (AI0.1.26)) if w > 1.
To finish the proof of the lemma, we still need to get (AI0.1.23]). The H"
norm of (AI0.1.74]), (A10.1.75) is bounded from above respectively by

(A10.1.76) 1908, = V1 +E)N (1, 8)llr2((e)rae)

(A10.1.77) /\;HQ(T,)\— 1+€2)0,[(1-x )(%)N(T,f)]||L2(<€>Td5)d7—‘

We consider again the case when N is supported in a small neighbor-
hood of &, and use ¢ = X\ — /1 + &2 as the variable of integration. Since
1927, O)1j¢<«illz2(ac) = O(V/T), we estimate, in view of (A10.1.33)), (A10.1.76])
and (AI0.I77) by (AI0I23) again using (AI0.114), (AI0.I12). This
concludes the proof. O

Lemma [AT0.1.7] concludes the proof of (i) of Proposition [AT0.1.21 In order
to finish the proof of (ii), we need to show:

Lemma A10.1.8. — Consider (A10.1.69) (resp. (A10.1.66)) when M is

supported close to {—&x,&x} and when assumption (H2) holds i.e. under con-

ditions (A10.1.7) to (A10.1.9). Then, estimates (A10.1.27), (A10.1.28) (resp.
(410.1.29)) hold true.
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Proof. — Notice first that the term zM under the integral (A10.1.66) satis-
fies the same hypothesis as M under integral (AI0.1.65) (see the lines below
(AI0.1.9)). Since the right hand side of (AT0.1.29]) is larger than the one in
(AT0.1.28)), it suffices to show (AT0.1.27)), (AT0.1.28]) for expression (AT0.1.6GHI),
and (A10.1.29)) for (A10.1.66l) where one forgets the 2 M term. We thus have
to study an expression

(A10.1.78) /_t . / glt=rVIFE e X)(%)TJN(T,@ dédr

where, according to (AI0.1.7) to (AI0.1.9)), N is supported in a small neigh-
borhood of {—¢y,&)\} and there are functions ¢,1 such that the following
estimates hold:

N )]+ [6(t,€)] < Ct 2t !

N ()] < Ot

(1, &)l < Ot

DtN(t7§) = (Dt + A — \V 1 + §Z)¢(t,§) + w(t7§),

and where j = 0 in the case of bounds (AI10.1.27]), (A10.1.28]) and j = 1 for
(AT0.1.29)

Let xo be in C§°(R), equal to one close to zero, and write integral (A10.1.78])
as I} + I}, where

i = /too /;[(m)@ﬂmﬁ] XO((A— \/@)\ﬁ)

T

x(1— X)(\/E)TjN(T,f) drdg.

(A10.1.79)

(A10.1.80)

Since A > 1, the d¢ integral is O(f%), and using the estimate of N in

(AT0.1.79)), we get by (AI0.1I3) and (AI0.I.I5)
1
te? \? te?
P<o (5 Il < C—
1810 7)< i

which are better than the right hand side of (AI0.1.28]), (AT0.T.29) respec-
tively. To study I f%, we make a 0, integration by parts and write this term as

a sum of

(A10.1.81) ~ z'\/%/eiW”@Xl (\/Z()\ 1+ 52))tf'N(t,§) de
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where x1(z) = = 02)  of

z

(A10.1.82) iVt L t / itV AT o]
< (A= V1+2)vi)o.[(1- X)(%)TJ]N(T, €) dédr

and of

t )
(a8 —vi[ [ (=T At

< (A= V1+e2)vE)a - X)(%)TJDTN(T, ¢) dedr.

We plug the last equality (AI0LL79) in (AI0.1.83). We get on the one hand
t .
(0181 —vi[ [ (-7 TFE +ar-+a]

(A= VI @V (1 —20( ) () dedr

and, after another integration by parts, the terms

(A10.1.85) iVt / ei(””f)Xl(\/Z(A 1+ 52))tj¢(t,§) de

and

i )
(A10.1.86) _Z-\/g/ /ez[(t_f)\/@HTﬂd
Vi

xa(( = VI+ @V [0 J7) ot €) dedr

Notice that since N and ¢ satisfy the same bound (AI0.1.79]), a bound for
(AT0.1.8T) will also provide a bound for (AT0.1.85). In the same way, an
estimate for (AT0.1.82)) will bring one for (AT0.1.86]). We are just reduced, in
order to get (AT0.1.28]), (AT0.1.29)), to estimate the L> norms of (AT0.1.8T]),
(AT0.1.82) and (AT0.1.84).

We estimate the modulus of (A10.1.81]) by

€2t d¢ 293
C / <cC log(1 + 1)
(te2) Jictee (VIC) —  (te?)

which is better than the right hand side of (AT0.1.28]) (resp. (AT0.1.29]) if
j =0 (resp. j = 1). We bound (AT0.1.82)) by

a0 (Z)

dr.

d¢ t -1 €
oo tiig La™
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If j =0, we get a bound in log(1 + t)e2t_i, better than (AT0.1.28), and if
j =1, we obtain using (AT0.1.12]), a bound in
2t log(1+t)
which is better than (AI0.1.29)) since ¢ < e~
Finally, we estimate (AI0.1.84]) by, using (AI0.1.79),

t 2
log(1 4+ ¢ / i1
g(1+1) s

€
1+ 7€

which is bounded by (AI0.1.28]) if j = 0 and by (A10.1.29) if j = 1. We have

thus established these two estimates. To get the remaining bound (AT0.1.27]),

we just plug inside (AI0.1.65) bound (AT0.L7) of M and use (AI0.L13). This

concludes the proof. O

dr

A10.2. Action of linear and bilinear operators

The goal of this section is to study the action of some operators on a func-
tion of the form (AT0.1.2]), and on its decomposition U = U’ + U” given by
(AT0.1.3]). These operators will be of the form Op(m’), given by the non-
semiclassical quantization (A9.1.9]), for symbols m’(y,£) that do not depend
on x and belong to the class 5;70(1,]'), j = 1,2 defined in Definition 21,11

We study first linear operators.

Proposition A10.2.1. — Let (t,x) — M(t,z) be a function satisfying as-
sumption (H1), i.e. inequalities (A10.1.6). Assume moreover that M is an
odd function of x.

Let m’ be a symbol on the class A%,O(l, 1) of definition[Z11) i.e. a function
m/(y,€) on R x R such that

(A10.2.1) 95008 m! (y,€)] < C(L+ [y~

for any N, o, o, and that m’ satisfies m'(—y, —§) = m/(y, &), so that Op(m')
will preserve odd functions. Then, for U" defined from M by (A10.1.3), we

have
(A10.2.2) Op(m"\U" = eN M, (t, x) + r(t, z)
where My (t,x) is an odd function of x, satisfying for any a, N in N

|09 My (t, )| < Cant(z) ™Y
(A10.2.3) il B 3
020, Mi (t,2)| < Cante "2 (2 +73(EVD)? ) ()™

and where r(t,x) is such that for any a, N,

(A10.2.4) 027 (t, )| < Can [t og(1 +1)] () V.
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Moreover, if L, is the operator , foranya e N, £ =0,1,

[ 120 (507) 4 e s < o
(A10.2.5) !

1
| 12 0pm)(Z5U") (6 )2 e < e,

Proof. — The definition (A9.1.9) of Op(m’) and the expression (AI0.1.3]) of
U” imply that

1 t .
Opm)" =5 [ [ ¢ N s

(A10.2.6) L
(1 — X)(%)M(T, ¢) dédr.

We decompose M (7, &) = M'(r,€) 4+ M"(r,€), where M is supported for ¢ in
a small neighborhood of the two roots ££, of \/1 + &2 = X and M” vanishes
close to that set when A > 1, and M" = 0if A < 1. Moreover M'(7,§), M"(r,§)

are odd in &, because M is odd in z. We define then
B'(z,7,&) = ™m/ (z, €)M (7,

027 (@.7.6) = "m0, )7 (7.
B(w,7,£) = e'*m/(z,)M"(7,€).

By the evenness of m/, we have
(A1028) B,(_xa T, _5) = _B/(x’ T, 5)’ B”(_xa T, _5) = _B”(xa T, 5)
Let us study first the contribution of M” to (AI0.2.6), given by

(A10.2.9) %/;/Jkt—ﬂ@Hﬁ B"(z,7,6)(1 —x)(%) dédr.

We perform one 0. integration by parts, that provides on the one hand
MM, (t, ), where

M) =5 [(A- VT4 E) Bt 6 de

satisfies (A10.2.3)) by (AT10.2.7), (AT0.2.7)) and (ATI0.1.6]), and is odd in z by
(AT0.2.8)), and on the other hand a contribution

(A10.2.10) % / t / RICONEEY N(z, 7€) dédr.

where

- vive)”

N(w,7,€) = =0: | B"(z,7,€)(1 —x)(

Sl
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satisfies by (A10.2.1)), (A10.1.6))
(A10.2.11) [080¢ N(z,7,6)| < Clz) N(e) ™ Nr e
X [7’{1 + Tﬁljlm\/i + 7657*3(62\/;)%9']

By oddness of M in &, N(z,7,0) = 0. Consequently, if we apply the stationary
phase formula to the d¢-integral in (A10.2.10)) at the unique (non degenerate)

1
critical point £ = 0, we gain a decaying factor in (t — T>71 instead of (t — 7)" 2.

Taking (AT10.2.17]) into account, and using (AT0.1.11]), we obtain for (AT0.2.10)

and its 0,-derivatives a bound in

C’N<x>_N /\/E

t 3
t—71)"trw [Tefl + TﬁlﬂTN\/z + 75%773(62\/?)26 ] dr
< COn(z) N2t og(1 + t)

which is bounded by (A10.2.4)).
Let us study next the contribution of M’ to (A10.2.6]). We get

(A10.2.12) /j/é [e-nvire ] B'(z,7,&)(1 — X)(%) dedr.

Write for 1 <7 <¢
(A10.2.13) B'(z,7,€) = B'(x,t,6) + (1 — t)B'(z,7,t,£)
where B’ satisfies by (AI0.L6), (AT0.2.1))

~ 3
|8§8§B'($,T,t,£)| <Ct“ [7’671 + 7'6%7'7%(62\/5)20 ] (z)~N

and is supported for & close to {—&y,&)}. If we substitute in (AT0.2.72)) ex-
pression (7 —t)B’ to B’, and use that, since &y # 0, B’ is supported far away
the critical point £ = 0 of the phase, we may gain a factor (¢ — T>_N for any
N by Og-integration by parts. We thus get a contribution to (A10.2.12) and
to its J,-derivatives bounded by

Cn(z)™N /

This again provides a contribution to (AI0.2.4]). We are left with studying
(A10.2.12)) with B'(z,7,&) replaced by B'(x,t,&) according to (A10.2.13)) i.e.

/115/61‘[(157) 1+52+AT] (1— X)(%)B,(x,t,f) dedr
— ¢ /T(t, Jitre— A)B'(x,t,g) de

3p
t -7y Np [7’671 + 7'6%7'7%(62\/5)20 ] dr.

(A10.2.14)
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with T'(¢,¢) = T1(¢t,¢) + T2(t,¢) and
t—1
_ 1T¢
T1 (t, C) /0 e dr
=1 t—T
_ iTC
T5(t,¢) = /0 e X( i )dT.

Note that if ¢ € S(R)

t—1 +o0
T (¢, ¢)d S(—1)dT + Ot~
- [T oeac= [ e=rdr = [T e=mdr+0(t)
Tr(t, ¢)p(¢) dC = O(™™).

Using that B’ is supported close to £ = ££,, and that &) # 0, we may use in the

last integral in (A10.2.14]) ¢ = /1 + &2 — X as a variable of integration close to
this point. We express thus (A10.2.14)) from integrals of the form (A10.2.15]),
with ¢ expressed from B’. The definition (A10.2.7)) of B’ and (AI0.2.1J),
(m imply that the principal term on the first line (A10.2.15)) brings to
(AI0.2.14) a contribution in e M (t,x) with M; satisfying (AI0.2.3). The
other contributions, as well as their 8,-derivatives, are O(t;<t=N (z)™) for
any N, so satisfy (A10.2.4]).

It remains to prove (AT0.2.5). We express L, U’ from (AT0.1.37]), which
allows us to write Op(m/)[(L4+U’)(p-)] as the sum of two expressions

i [T i t—r) /1 AT T \pw -
(A10.2.16) %/1 /e [ }X(W)Bj (@, 7,8)drds, j=1,2

with
BY (v, 7.) = " m (, j€) e M (7,)
(A10.2.17) A , £ .
By(,7,€) = "m (w,uﬁ)T@M(ﬂf)-
When j = 1, we use the stationary phase formula in £ to make appear a

(t—7'>7% factor. Using also (ATQ.1.6) and (ATI0.2.]), we get for any O,-
derivative of (AT0.2.16)) with 5 = 1 a bound in

ve : N 2 N
(A10.2.18) c/ (t =73 dr(z) N < 02 ()N,
1
When j = 2, we notice that because M is odd in £, BY(x,7,€) vanishes at

second order at & = 0. Consequently, stationary phase formula in (AI10.2.16))
3
makes gain a factor in (¢t — 7)~ 2, so that (A10.2.16) is controlled, using again



182 APPENDIX A10. BOUNDS FOR FORCED LINEAR KLEIN-GORDON EQUATIONS

(AI0.1.12), by
Vit
C / (=) S dr(z) N < e (z) N,
1

Bounds (A10.2.5)) follow from this inequality and (AI0.2.18]). This concludes
the proof of (AI0.2.5]) when k = 1. If £ = 0, the estimate is similar to the one
with B above. O

Let us prove a similar result to Proposition [AT0.2.1] for some bilinear oper-
ators.

Proposition A10.2.2. — Let M and U" be as in the statement of Propo-
sition [AT0Z1. Let m/ be a symbol in S}, o(TT2—, (€)71,2) for some K > 0,
satisfying m'(—y, —&1, —&1) = —m/(y,&1,&2). Then for any function v
(A10.2.19) Op(m/)(U",v) = eMOp(by)v + Op(b)v
where by, be satisfy for any o, a, N the following estimates
0500 bu (13, )| < CH7(y) ()™
(A10.2.20)  |550020by (t,y, )| < Cr et [tZ% +t—%(52\/i)%9'] )Ny
0500 ba(t., )| < Ce*t™ log(1+ 1)) () ™.
Moreover bj(t, —y, —¢§) = b;(t,y,&).
Proof. — By expression (A10.1.3)) of U”, we have

Nepr oy t // @-[l«(gﬁg)ﬂm) 1+5§+,\T}
Op(m) (U ) = o [ [ e

xom(@ &1, €)(1 = X)(%)M(T, £0)0(€) dede, dr
= Op(b)v
if

/ T\
x (6,1 = ) () M (7, &) derdr.
We notice that if we consider £ as a parameter, the function

(v, 1) = m/(y, &1, &) M (7, &)

satisfies estimates of the form (AI0.2.1) for every 7, as the losses in
My(&1,6)" = O((£&1)") appearing when one takes derivatives in the defi-
nition of symbol classes in (A9.1.5) are compensated by the rapid decay of

M(7,£1). We obtain thus an integral of the form (AI0.2.6) (with ¢ replaced

(A10.2.21)
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by &1), depending on an extra parameter . By (the proof of) Proposi-

tion [AT0.2.7] we obtain thus that (AI0.2.2T]) has en expression of the form
(AI022), i.e. eMby + by, with by, (resp. by) satisfying bounds of the form

(AT0.2.3) (resp. (A10.2.4)), which gives (A10.2.20)), using also that m/(z, &1, €)
in (AT0.2Z.2T) is O((€)~!). The evenness of b; in (y,£) comes from the oddness

of m’ and M. This concludes the proof. O

Corollary A10.2.3. — Under the assumptions of Proposition[A10.2.2, one
has the following estimates for any o, N:

(A10.2.22)  |090p(m/)(U",U")| < C{x)~ N [t-2 + et > (log(1 + 1))?].

Proof. — By (A10.2.19)), we may write
Op(m')(U",U") = ¢ Op(b1)U" + Op(b2)U"

with by, by satisfying (A10.2.20). We may apply (A10.2.2]) to each term above,
using that by, by satisfy estimates of the form (AT0.2.7]), with an extra pre-

factor given by the first and last estimates (A10.2.20)). Using the first bound

(A10.2.3]) and (A10.2.4)), we reach the conclusion. O

We have obtained in the preceding results estimates under assumptions of
the form (AI0.I.6) for the function M in (AI0.1.3]), i.e. under assumption
(H1),. We shall need also variants of the preceding results when assumption
(H2) i.e. (AI0.1.7) holds instead. In this case, we shall split the function U
defined in (AI0.1.2)) in a different way than in (AI0.1.3]), cutting at time of

order 7 ~ ct instead of T ~ v/t. More precisely, we set
U=U;+U/

+o00
/ . i(t—7)p(Da)+irr (T )
oz TR = [T T

t )
U{/(t’ l‘) — 7// 62(1577’)])(1)1)4’2)\7’(1 _ X)(%)M(T, ) d'T

Proposition A10.2.4. — Let us assume that M is odd in x, satisfies the
first inequality (A10.1.7) and that m’ satisfies (A10.2.1). We have then the

following estimates for any o, N in N:

_1
(A10.2.24) 1020p(m YUY | < Coan () Nte 2t 1 log(1 + t)

and for £ =0,1
(A10.2.25)

1
/1 20D/ )[(L4 UF) (¢, )] | 2+ 102 Op(m) [(L4.UT) (8 1) o< | dip < Cae?.

Estimate (A10.2.25) holds as soon as (A10.2.1) is true for some large enough
N.
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Proof. — We denote B(x,7,&1) = emflm’(x,él)M(T, &1), that satisfies by the

first inequality (AT0.1.7),
02002 B(z,7.61)| < Cagale) ™V (€) N7 3!
and that vanishes at £ = 0 as M is odd. Then as in (A10.2.6]), (A10.2.9)

o |
(A10.2.26) op(m/)U{/:é / / ez[(t_ﬂ\/@HT]

x (1 — X)(%)B(xﬂ', &) dédr.

Using stationary phase in £ and the fact that B vanishes at & = 0, we get
for some a €]0, 1]

t
020p(m Y (t,2)| < € [ (=) Hn N b ()
at

which is bounded by the right hand side of (AT0.2.24)).
To prove (AI10.2.25)) with ¢ = 1, we express Op(m’)[(L+U')(u-)] under form

(AT0.2.16)), except that the cut-off x(7/4/%) has to be replaced by x(7/t) i.e.
we have to study

1 +oo .
(A10.2.27) i/ /el [y ”ff“T]X(I)BH(x,T, £1) déydr
2w J1 t/ 7

where B;-L, j = 1,2 is given by (AI0.2.17). If j = 1, we get from the first
inequality (AT0.1.7), (AI0.2.1]) and stationary phase in & a bound of 0,-
derivatives of (A10.2.27)) by

at
(A10.2.28) c<x>—N/ T
1

for some a €]0, 1], whence the O(e?) wanted bound for the L? and L*™ norms.
If j = 2, using stationary phase and the fact that Bj vanishes at order 2 at
& =0, we get an estimate in

at
(A10.2.29) c(@—N/ T
1

which is also O(e?). This concludes the proof of (AT0.2.25) when ¢ = 1. If
¢ =0, we may use directly (A10.2.28)) to get the estimate. Notice that to get

(A10.2.25)), we do not need that (A10.2.28]), (A10.2.29) hold for any N, but
just for a large enough N (actually N = 1 suffices), so that (A10.2.1]) has to

be assumed only for some large enough N. O

Let us write a version of Proposition [A10.2.2] under assumption (H2) as
well.
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Proposition A10.2.5. — Let M be as in Proposition and m' in
;70(]_[?:1 <£j>71,2). Then Op(m/)(Uj,v) and Op(m/)(Uy,v) may be written
as Op(b)v for symbols b(t,y,&) satisfying estimates

’ _1
(A10.2.30) |0y°0b(t,y,€)| < Cte 2t log(1+ ) (y) N (€)™,
Proof. — Consider first Op(m/)(U{,v) that may be written using expression
(A10.2.23) of U{ as
1 ,
(A10.2:31) Op(m) (U, v) = 5 [ €b(t,,€)0(6) de

with
. . ' A
b(t,x,g) = 2L/ /ezx&-i-z [(t_’r)\/@-i-)\r}
™ —00

xm (@, €, M (r,€)(1 = ) (3 ) derdr.

Using again stationary phase with respect to £; and the fact that M (1,0) =0

to gain a decaying factor in (t — T>_1, we obtain for the 85 03? derivatives of
b an upper bound in

(A10.2.32) C/ai (t—7) i dr (@) TN O T (a €0, 1))

since, as seen at the beginning of the proof of Proposition [AT0.2.2] (y,&1) —
m/(y,&1,&)M(7,&1) and its derivatives have bounds in

Cly) ™ Nrar e V)T

according to (AI0.1.7). As (AI0.2.32]) is bounded by the right hand side of
(A10.2.30), we get the wanted conclusion for Op(m/)(UY,v).

Consider now the case of Op(m/)(U],v) i.e.

e [ e O 6, O] (€)0(6) dends.

We may rewrite it as
1 4
o [ eblt, ., ©0(e) de
with, for any N,
(A10.2:33) bt ,6) = [ Ktz — 5,2, (D)™ Ul(y) dy

where

KN(t7z7x7§) = %/eizil <§1>_2N+1ml(w7§17§) dg;.
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By assumption on m/, estimates of the form (A9.1.5]) hold (with y in the right
hand side of this inequality replaced by x) whence

10520208 m (, 61, €)| < C(1+ [al(&) ™) N (g) ! (&) ~HHrlletlend
for any N’. We conclude that for any «, 3, N, N”, one has estimates
0500 K (t,2,,6)| < Cla) ™ ()N ()

if N is taken large enough relatively to N',N” «,3. Plugging this in
(A10.2.33)), we conclude that for any N, N «, 3, there is N such that

(A10.2.34)  |020b(t,z,)| < Cla)™ s ()N (DY N U (y)|(6)

Since U] is odd, we may write

1

(D)0 () = i | (DaD2)* 0] () i

1

=i 71[(L+< ) NUD) () — 1y (D2 U7) ()| dps

using the definition (ATI0.1.4]) of L. We get finally
(A10.2.35) |(y)~ " (D,)** Ui (y)]
C N N
< CI ™ LD Ul + 10+ (D) U1

We may apply (AI0.2.25) with U] replaced by (D,)*N U} (since (D,)* M(r, ")
in (AT0.2.23)) satisfies the same assumption as M(7,-)), and the pre-factor
()N () "N+ 2 i the right hand side of (AI0.2.35) satisfies estimates of
the form (AT0.2.3]) with some large fixed N (instead of for any N). By the last
statement in Proposition[AT0.2.4] this is enough to apply (A10.2.25)). Plugging
this in (AI02.34), we get for that expression a bound in e2¢~1(z)™ " (&)1,
which is controlled by the right hand side of (AT0.2.30) since ¢ < e~*. This
concludes the proof. O

A10.3. An explicit computation

In this last section of this chapter, we make an explicit computation that
will be used in relation with Fermi Golden Rule.

Let x be in C§°(R), even, equal to one close to zero. If A > 1 and if £&)
are still the two roots of \/1+ &2 — X\ =0, set

(A10.3.1) XA(E) = x(€ = &) + x(E+ &)
If A< 1, set xy=0.
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Proposition A10.8.1. — Let M be a function satisfying (A10.1.6) with
w =1, that is odd in x. Let U be defined from M by (A10.1.2) ant let Z be
an odd function in S(R). Then

(A10.3.2)

Jot.0z@as= tim i [ [ WVEE 0,026 dcar
re [ 2l v, 2(6)at + 0t

where T satisfies

(A10.3.3) rO < O(7F 172+ e @V,

Remark: It is clear that the limit in the right hand side of (A10.3.2]) exists

and may be computed from (\/1 +&2 - X+ iO)il. We keep it nevertheless

under the form (AT0.3.2) as this will be more convenient for us when using
the proposition.

To prove the proposition, we shall write the left hand side of (AT0.3.2)),
according to (AT0.1.2]), under the form
t , A N
(A10.3.4) i / / =TIV I V(- €Y Z(€) dedr.
1

We decompose
M(7,6) = M'(7,€) + M"(7,€)
(A10.3.5) M'(7,€) = M(7,6)xx(€)
M"(7,€) = M(,€)(1 = x»)(§)-

We notice that M” vanishes at order one at & = 0 by the oddness assumption
on M.

Lemma A10.8.2. — Expression with M replaced by M" may be
written as

(A10.3.6) e [L=0)E yr 6706 e

A—V1+&2
modulo a remainder satisfying (A10.3.3).
Proof. — The expression under study is the sum of (AT10.3.6]) and of

(A103.7) -/ ei(tI’V”@”AM(L&)%Z(E) i
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and

W 1))
(A10.3.8) / / W=V IHEHNT G N (7 )35 2(8) dedr.
Ve
In (A10.3.7), (AI0.3.8]), the integrand vanishes at order 2 at £ = 0 by the
oddness of M and Z. The stationary phase formula in £ allows thus to gain

a factor ¢~ 2 or (t — T>7%. Taking into account (AT0.1.6) with w = 1, we thus
bound (AILAT) by Ce2t 2 and (AI03.8) from
4 1+36"

e e

1+7€?)? (1—}—7’62)%

39/
< C'[t;2 tet2 (€2V/1)? }
(using t < €~4). We thus get quantities controlled as in (AT0.3.3)). O

The lemma implies the proposition when A\ < 1. We shall assume from now
on that A > 1 and study (A10.3.4]) with M replaced by M.

End of the proof of Proposition [AT0.3.1: By Taylor formula, we write for
1<7<t

M'(1,€) = M'(t,€) + (7 = ) H(t, 7.€)
where according to (AI0.1.6) with w = 1, H satisfies for any o

O2H(t,7,6)| < Cort 8 + 773 (2?7,

Integral (A10.3.4) with M replaced by M’ may be written as the sum J; + Jo
where

J = ,L/lt / ei(tfﬂ')\/1+£2+i)\TM/(t’£)Z"(§) dedr
Jy =i /1 t / IV IHERIAT (o O H (7€) Z(€) dedr.

Since H is supported close to ££), so far away from zero, we can make in Jo
any number of integrations by parts in £ in order to gain a decaying factor in
(t — 7)™ for any N, so that

t 3,
1

which is better than the right hand side of (AT0.3.3)). On the other hand, we
may write

(A10.3.9)

5= [ [ VEE w206 acar

— lim e / / r(VIE) i1 6 2(6) dear +

o—0+

(A10.3.10)
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where
. +o0 . v R "
7= it [ [ V) s 2 e
o—0+ t—1

The first term in the right hand side of (AI0.3.10]) provides the first term in
the right hand side of (A10.3.2). Moreover, in the expression of Jj, we can
make as many integrations by parts in £ as we want to get a decaying factor
in ()" for any N. This shows that J| is O(e2t~), so may be incorporated
to r in (A10.3.2]). This concludes the proof.






APPENDIX A11

ACTION OF MULTILINEAR OPERATORS ON
SOBOLEV AND HOLDER SPACES

The goal of this appendix is to establish some inequalities for the action of
the operators defined in Appendix [A9 on Sobolev and Holder spaces. Recall
that we introduced classes of symbols 5',@70(M ,D), YQ’O(M ,p) in Definition 2.1.T]
and their (generalized) semiclassical counterparts Sy s(M,p), Sy 5(M,p) in
]?eﬁnitionlm We shall study first the action of operators associated to the

Sk,0(M,p), S, 3(M,p) classes and then, in the second section of this appendix,
the case of operators associated to classes of decaying symbols S;7O(M , D),

,‘/@75(M5 p)

A11.1. Action of quantization of non space decaying symbols

We introduce the following notation. If v is a function depending on the
semiclassical parameter h €]0, 1], we set

(A11.1.1) [y = [[(hDz) ]| 2
for any s € R. For p in N, we define

(A11.1.2) lollwpe = [(AD,) ] 1.

Proposition A11.1.1. — Let n be in N*, k in N, v > 0. There is pg
in N such that, for any f > 0, any symbol a in the class S, g(My,n) of
Definition[A9.1.2 (with My given by (A9.1.2)), the following holds true, under
the restriction that, for (i) and (ii), either (k,B) = (0,0) or 0 < kB < 1 or
a(y,z,&1,...,&n) s independent of x:

(i) Assume moreover that a(y,x,&1,...,&,) is supported in the domain

&+ F &1l < K(1+ (&)
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for some constant K. Then, for any s > 0, there is C' > 0 such that, for any
test functions vy,...,v,

n—1

(Alll?’) Hoph(a)(yh s 72n)HHfL <C H ”QjHW,fO’OO HQnHHfL
j=1

uniformly in h €]0,1].
(ii) Without any support condition on the symbol, we have instead

n
(A1114) Hoph(a)(yh s 7271)“1;[2 <C Z H”QKHW;ZO’OO HQ]”H,SL
J=11#]
(iii) For any j = 1,...,n, we have also the estimate (without any restriction
on (k,B) ora)
(A11.1.5) 10Dy (a)(vy, .- 0,2 < CH”QZHW,fO’w”QjHL?-
(#j

Moreover, the above estimates hold true under a weaker assumption than in
Definition [A9.1.2 of the symbols: namely, it is enough to assume that bounds
(A9.1.3) hold with N = 2 (instead of for all N) for the last exponent in this

formula.
Before giving the proof, we establish a lemma.

Lemma A11.1.2. — Let a be in the class S, o(M{,n) of Definition[A9.1.2,
(or more generally a symbol satisfying (A9.1.3) for any oy, ap, k € N, € NP,
with the last factor replaced by (1 + M "|y|)=2). There is po in N depending
only on v, and a family of functions ak, .k, ,(V1,...,V_1,Y,,§) indezed by
(k1,..., ko_1) € N*=1 satisfying bounds

(All'l'ﬁ) ’553? akl,...,kn—l(yla sy U 1,9, 7, 5)’

n—1
< 027 sl ()72 TT o~
7=1

for 0 < a, o’ <2, such that if we set for any y

(A11.1.7) a(y,z,hDy,...,hDy)(vy,...,00_1,0,)

1 A A
= o / e ) gy, 2, ke, . hEy) jngj(gj) dey ... de,
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and use a similar notation for ay, . g, (V1,0 _1,Y,%, hDy)v,, then

(A11.1.8) a(y,z,hDy,...,hDy)(vy,...,00_1,0,)

+o0 +o0
= Z Z ak1,---,kn71(21’--'aQn—l,y,x,th)yn

k1=0 kn_1=0

Proof. — We take a Littlewood-Paley decomposition of the identity, Id =
S Al where Al = Opy, (1(€)), Al = Opy,(p(275€)) for k > 0, with conve-
nient functions 1 € C$°(R), ¢ € C(R — {0}). We also take 9 in C§°(R), @
in C3°(R — {0}) with ¢ = ¥, o = . We set @p(£) = (27F¢) for k > 0,
@0(€) = 1(€). Plugging this decomposition on each factor v, j=1,...,n—1
in (AIL1.7), we obtain an expression of the form (ATLIS) if we define

(Alllg) akl,...,kn71(yla e Un_1,Y, T, 5)

1

= Gyt | T aly n ke, B, )
s

—

H S (hE) AL (&) dEy - dEpy.

We may rewrite this as
(A11.1.10) apy,. gy (V15 U 1, ¥, 2, &)

e x — o r—x
(n 1)/Kk1’___7kn71(y,x, - Lo, n— 1’5)

X HA dwl...dx%_l

with

(A1L111) Kook, (0521, 20m1,€)

1

= @ /e’i(zl£1+'“+Zn—1£n—l)a(y’ 2,81, &n-1,€)

H (&) dEnr.

By definition of Mo (&1, .., &n—1,&n), on the support of [} ! @r; (&), one has
Mo(&1,y ... 60 1,6,) = O(2F), if k = max(k:l,...,k;n_}). As a is in the class

1.0(M§,n), this implies that a in (AILTIT) is O(2"*). Moreover, if we per-
form two 0, integrations by parts in (ATLIIT]), we gain a factor in <2*’;“zj>_2
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under the integral, for j = 1,...,n — 1, according to (A9.1.5]). In addition, we
. —2
have also a decaying factor in (27%%|y|) ~. It follows that for a, o’ <1

(A11.1.12) [0908 Kiy,.otouy (4,221, -+, 201, €)|

<02[li(a+a +2)4+v+n—1]k 1:[ 9- Iik >72.

Plugging this estimate in (AIL.II0) and using
h —k;
| Ay, v, ()] < 275 [(hDg) v oo

we see that if pg has been taken large enough relatively to v, k, we get bounds
of the form (AI1.1.6]). This concludes the proof. O

Proof of Proposition[ATL.1.1: (i) We reduce first to the case s = 0. Actually,
by Corollary [A9.2.4] that applies under the restrictions in the statement on
(k, B) or a, the operator

(217 s 7Qn) - <th>SOph(a)(U1, < Un—1, <hD >_8U )

may be written as Opy,(a@)(vy,...,v,) for some symbol @ in S, (M} ,n) for
some v/ that does not depend on s. It is thus sufficient to show that

n—1
(A11.1.13) 10D, (@) (w1, - - 2) r2 < C [ llyllypro oo llu | zz-

j=1

By expression (A9.1.6]), we have
(A11.1.14)

~ A
Oph(a)(yla"'ayn) :Q(E’xath,---ath)(Ql’---ayn)
a(—oo,x,hDy,...,hDy)(vy, ..., v,)

/ (0ya)(y,z,hDy, ..., hDy)(vy,. .., v,)dy.

As 9ya is in S| o(M{,n) (for some v), we may apply at any fixed y expan-
sion (AILLS)) to dya. The symbols ag,, ., , in the right hand side satisfy
(AI1.1.6l), so that we may apply to them the Calderén-Vaillancourt theorem [7]

in the version of Cordes [8], considering y,v;,...,v,_; as parameters. One
gets in that way for any y,vy,...,2,,
(A11.1.15) ||0yaly,z,hDy, ..., hDy)(vy,...,0,)|| L2

n—1

<CZ -y 2 ) ()72 T o oo 2

k1 kn—1 ]1
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The fact that the L? norm of the last term in (ATLILI4]) is bounded from
above by the right hand side of (AIL.L3]) (with s = 0) follows from that
inequality. If we apply the version of Lemma without parameter y
to a(—o0,x,&1,...,&,), we obtain also an inequality of the form (ATT.T.I5))
(without factor () 2 in the right hand side), which implies for the first term
in the right hand side of (AIL.1.14)) the wanted estimate. This concludes the
proof.

(ii) We just split @ as a sum of symbols for which > ,; || < K(1 + |§j]),
j=1,...,n and apply (i) to each of them.

(iii) It is enough to prove (AIL.L5]) with j = n for instance. Remember that
in the proof of (i), we use that the support condition on a and the restrictions
on (k,3) or a only to reduce the case of Hj to L? estimates. Once this
has been done, inequality (AI1.1.13)) has been proved without any support
condition on @, nor on (k,3), so that it implies (AIL.L5). This concludes
the proof, the last statement of the Proposition coming from the fact that
Lemma [ATT.T.21has been proved for symbols satisfying the indicated property
and that Corollary [A9.2.4] used at the beginning of the proof holds also under
such a condition. O

It will be useful to be able to decompose a symbol belonging to the class
Sk,0(Mg,n) as a sum of a symbol in S, g(M{,n) for some small § > 0 and a
symbol whose quantization satisfies better estimates than (A11.1.4]), (A11.1.5]).
Define

1
(A11.1.16) Ly = EOph(aE +p'(€)).

Corollary A11.1.3. — Let a(y,z,&1,...,&,) be in S, o(Mg,n) for some
k >0, somev >0, somen > 2. Let 5 > 0 (small), r € Ry. One may
decompose a = a1 + az where ay is in S, g(My,n) and ay is such that if s
satisfies (s — po — 1) > r + 2

(A11.1.17) 10DA(a2) (@, . vl arz < CH” ﬂnyjuH;
-
(A11.1.18) 1
|£:0pp(as) (s, -, v)llpe < Chrﬁ|ryj|rH;<|ryn\\L2 +1Lwallz2)
-
(A11.1.19) 1

1£:0pp(az) (v, - w)lre < OB [T lwsllag (lznllze + 1€ yroe)-
j=1
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(In the last two estimates, we could make play the special role devoted to n to
any other indezx).
A similar statement holds replacing classes Sy (resp. Sk.) by Sy o (resp.

Sy 5)-

Proof. — Take x in C§°(R) equal to one close to zero and define a; =
ax(h’My(€)), az = a(l — x)(RPMy(€)). Then a; is in S, 5(M¥,n) as it

satisfies (AQ.1.4), (A9.15). Let us show that as obeys (ATLIIT),

Decomposing as in a sum of several symbols, we may assume for instance
that it is supported for |§1] + -+ + [§n—1] < K(&,). Then, by definition of
as, there is at least one index j, 1 < j <n — 1, such that |;| > ch=? on the
support of as, for instance j = n — 1. Applying (ATLI3), we get

(A11.1.20) [|Opp(az)(vy,-- -, v,)|la:
n—1

< O [T llyllywro0PA((1 = ) (7€) wn1llypro< llualla;
j=1

for some new function Y equal to one close to zero. By semiclassical Sobolev

injection, HQjHW}fom < Ch*%HQjHH}sL if s > po + % and

(A11.1.21)
1 ~ _
10P((1 = () llygpo < Ch20PA((L = D) (A7) 1| yros
< Ch™ 3t D)y, ||y

If s is as in the statement, we get (ATLIIT]).
To obtain (ATL.I.I8]), we notice that

L10py(a2)(vy, -, 0,) =+ %Oph(p'(f))Oph(aa)(yla )

0
a—ZfL)(yla"- aQn)

+ Oy (a2) (215 21, %Qn)

(A11.1.22) + z’Oph(

The L? norm of the first two terms in the right hand side is bounded from

above by Ch" H?;llHQjHHZHQnHLQ if we use (AIL.L5]) and (ATL.1.27)), for s as

in the statement. On the other hand, in the third term, the last argument of

Opp(a2) in (AILI122) may be written L£1v, F +Op;, (p'(£)), so that we get an
upper bound by the right hand side of (AILI.18]) using again (AILI.5) and
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We may also estimate the last term in (ATL.I.22)) using (AILLH]), but

putting the L? norm on v i.e. writing

n—1»
”Oph(G’Q)(Qla <o Up 1 E:l:Qn)”LQ
n—2
< T e o= 10D (1 = P lz2 1o
j=1

Bounding the last but one factor by h%*||v,_4|| ms, we get as well (AILII9).
The last statement of the corollary concerning classes Sy, , S} 5 holds in the
same way. ]

Let us state next a corollary of Proposition [ATT.T.Tl

Corollary A11.1.4. — Letv > 0,n € N*. There is pg € N such that for
any £ > 0, any B >0, for any j = 1,...,n, any a in S, g(M{,n), there is
C > 0 such that for any vy,...,v,,

(A11.1.23)

T

h

Opn(@) Ly, - w)|| | < C [Tlzellwroe (B Nyl + 1€ 2)

L#£7
and for any j #7,1<7,7 <n

(A11.1.24) H%Oph(a)(yl,...,yn)

, < O(TT loellwyooe )l 22
L (#5.5'

X (g llwooe + (1€ lypooe ).

Proof. — Let us prove (ATLI1.23]) with j = n for instance. By definition of
the quantization

x x , da

T OPL(@) @1y ) = Op() (21, s 32) + 10D (5 ) 2.
If we write £ = L+ F h™'p/(D,), and apply (AILLE) with j = n, we obtain
(AI1.1.23). One obtains (AT1.1.24)) in the same way, applying (ATL.1.5]) with

j replaced by j', and using that p’(hD,) is bounded from W,fé’oo to W[ if
p6 > po. This concludes the proof. U

We shall also use some L°° estimates.

Proposition A11.1.5. — Letv € [0,+00[, k >0, n e N*, §>0. Let ¢ > 1
and let a be a symbol in S, g(M§ []j—1(&;) % n) (It is actually enough to
assume that in estimates (A9.1.5]), the last exponent N is equal to 2). Assume
(k,8) = (0,0) or 0 < kB < 1, or that a(y,x,§) is independent of x. Then,
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there is po in N and for any integer p > po, a constant C > 0 such that for
any Vi, ...,V

n
(A11.1.25) 10pp(a)(vy, - - 7Qn)”W}f’oo <C HHQ]'”W[L”D"'
j=1
If we have just a € SRB(M(’]’ [[j=1 (§j>_1,n), we get for anyr in N, any o > 0,
any s,p with (s —p—1)o >r+ % and p > po, the bound

n
”Oph(a)(yla s 7Qn)HW}f’°° < Ch™? ]:[IHQ]HW;"X’
J:
(A11.1.26) .
+Ch Y TTluellweos llgllm; -
Py

Proof. — One may assume that a is supported for |§1|+ - [£n—1] < K(1+(&,]).
One may use Corollary [A9.2.4] whose assumptions are satisfied, in order to

reduce (ATT.I.25) to estimate
n—1

(A11.1.27) 10pn (@) (w1 - -, wa)llzoe < C T yllyppo ol Loe-
j=1
We apply (AILI.14) to reduce (AIL.I.27) to bounds of the form
(A11.1.28)
n—1
HCL(—OO, z,hDn,. .., th)(Qla ce ayn)HL‘X’ <C H Hyj||W£0’°° HQnHLOQ
j=1

+00 n—1
/ 10yaly, =, hD1, ..., hDy)(wy, - - v0) Lo < C T Iy llyeoe gl oee-
00

j=1

We may decompose dya(y,z,hD1,...,hDy,) using equality (AILIS). Each
contribution in the sum is given by a symbol satisfying (ATL.I.6]), with an
extra factor (§,)” % in the right hand side, coming from the fact that our
symbol a was in S, g(Mg [j—1 (§;)" % n). The kernel of the corresponding
operator will then be bounded in modulus by

— r— — max — e,
Ch 1G(T)2 (k17-"7kn71)<y> 2 H HQ]”W;L’O’w
j=1

with some L' function G. The second estimate (ATLI.28)) follows from that.
The first one is proved in the same way.

Finally, to get (AI1.1.26]), we assume again a supported as above and de-
compose it as a = a1 +ag, with a1 = ax(h?§,) for some o > 0 and x in C§°(R)
equal to one close to zero. Then a; is in h™7 Sz (M(’)’ [[j=1 <§j>_2,n) (for a
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new value of v), so that (ATLI1.25]) applies, with a loss h°, which provides

the first term in the right hand side of (AT1.1.26]). On the other hand, we
: 1

estimate ||Opy,(az2)(vy, ... in)HW,f’“ from Ch™2||Opy,(az)(vy, . .. ,yn)HHZﬂ by

semiclassical Sobolev injection, and then this quantity by the last term in the
right hand side of (AILL26) with r = o(s — p — 1) — 3. This concludes the
proof. O

Let us translate the preceding results in the non semiclassical case using the
transformation ©; defined in (A9.1.7) and (A9.1R8), (A9.1.9). We translate
first Proposition [ATT.T.1l

Proposition A11.1.6. — Let a be a symbol satisfying the assumptions of
Proposition [ATL. 1.1, and (k, ) satisfying also the assumptions of that propo-
sition in the case of statements (i) and (ii) below (in particular, if a is inde-
pendent of z, these statements hold for any (k, ) with k > 0,8 >0).

(i) If moreover a is supported for |{1|+ -+ [€n—1] < K(14|&n]), one has for
any s > 0 the bound

n—1

(A11.1.29) |Op'(a)(vy, ... ,v0)||Hs < C H lvjllweooo||vn]| £rs
j=1
with some py independent of s, Op’ being defined in (AI1.38).
(ii) Without any support assumption on the symbol of a, one has

n
(A11.1.30) 10p"(a)(vy, . .., v0)||gs < C Z HHUKHWPOvoo v s
J=1e#£5
(iii) For any j = 1,...,n, one has also
(A11.1.31) 10p! (@) (v, -+, va) 22 < C T llvellwreoselfvj | 2.
L#j
Proof. — One combines Proposition [A11.1.1l (A9.1.8]) and the fact that by
1 . —
@BLID), 9wl = llullm;. Owllwes = h2|ullwpe if h=t"". O

To get non semiclassical versions of Corollaries [AT1.1.3] and [ATT.1.4] let us
notice that by (A9.1.7)

1 x

LiOw = W(ﬁiy) (?)
is L4 is defined by (ATL.I1.I6]) and

(A11.1.32) Li=z+ tp’(Dx).
‘We have then:
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Corollary A11.1.7. — Let a(y,x,&1,...,&n) be a symbol in Sy, o(My,n) for
some Kk > 0, some v >0, somen > 2. Let >0 be small and r in Ry. One
may decompose a = aj + aa, where ay is in S, g(My,n) and as satisfies, if
(s — po)B is large enough relatively to r,n,

(A11.1.33)
n
10D (a2) (v1, - va)lms < CE" [T vl s
j=1
n—1
IL+Op (a)(v1, .- vn)llz2 < Ct" [ Ivjlls [llvnllze + 1 Lxvn 2]
j=1

n—1
|LOp (@) (v, . vllze < G (T lloglze) [Ivallze + | Zsvallwn -
j=1

Moreover, in the last two estimates, one may make play the special role devoted
to n to any other index.

Proof. — Again, we combine (A9.1.7), (A9.1.8) and estimates (AILI.IT),
(AIL118), (AILII19) (up to a change of notation for r). O

In the same way, we get from Corollary [A11.1.4t
Corollary A11.1.8. — With the notation of Corollary we have

(A11.1.34) [l2Op'(a)(vi, ..., vn)llzz < C [Jllvellweo< [tllv; ]l z2 + [ Lvjll 2]
L#£]

for any 1 < j <mn. Moreover, for any j # 75 ,1<j,7 <n
(A11.1.35) [2Op*(a)(v1, ..., vn)|l L2

< C T Ilvellweooe vl ca[tllvsllweo s + | Lxvjllweoo].
t#5,5"

Finally, it follows from Proposition [ATT.T.5k

Proposition A11.1.9. — Under the assumptions and with the notation of
Proposition[A11.1.9, one has for p > pg

(A11.1.36) 10D (a)(v1, - .-, vn) [wee < C [T lvsllwes
j=1

if a is in S&B(M(’]’ [T7=1 (§j>_q,n) for some ¢ > 1 and

(A11.1.37)

n n
10" (@) (v1, . .., vn) [weee < Ct7 [ llvjllwese +Ct > T llvellwes l[v; ]l s
=1 i=1tj
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ifq=1,0>0 and (s — p)o is large enough relatively to r.

A11.2. Action of quantization of space decaying symbols

In this section we study the action of operators associated to symbols be-
longing to the classes S/{e, 5(M0V ,n) on Sobolev or Holder spaces of odd func-
tions. The oddness of the functions, together with the fact that elements in
the S’ class are symbols a(y, z, &) rapidly decaying in y, will allow us to re-
express the functions v on which acts the operator from hL v (using notation
(AT11.16)), thus gaining a power of h. Actually, it is not necessary that a be
rapidly decaying in y, and we shall give statements with less stringent decay
assumptions.

Proposition A11.2.1. — Let n be in N*, k in N, v > 0. There is pg in
N such that, for any 8 > 0, any symbol a(y,x,&1,...,&,), supported in the
domain |&1] + -+ + |€n—1] < K(1 + |§n]|) for some constant K, and such that
forsome £, 1 <0 <n-—1, a belongs to the class S’%EQ(M(’]’, n) introduced at the
end of Definition [A9.1.2, with k > 0 and either (k,3) = (0,0) or 0 < kB <1
or a 1is independent of x, the following holds true:

(i) For any s > 0, any odd test functions vy,...,v,, any choice of signs
€ € {—,+}, j=1,...,¢

¢
OPu(@) w12l < CH T (1L o + I gz
(A11.2.1) =

n—1

< | [ l[vyeooe llog |l s -
j=t+1

(i) Assume in addition to preceding assumptions that 5 > 0. Then, for any
0</? </, one has

zl
1y,
10Pg(@)(vrs -+ wa) iy < OB D T (11£6,05l12 + vyl =)

j=1
l
(A11.2.2) < T (12 usllwpo + llujlwpo=)
j=0+1
n—1
< T Mgllwro oo llunllg
j=t+1

where o(B) > 0 goes to zero when [ goes to zero (o(B) = €’<p0 + %)ﬂ holds).
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Proof. — We shall prove (i) and (ii) simultaneously. We notice first that, by
our support condition on (&1,...,&,), Mo(§) ~ 1+ ||+ -+ + |§n—1], so that,
up to changing v, we may study the H} norm of

(A11.23) O (@)(Opa((6) - Op4({6) ™zt vy 1)

for a new symbol a satisfying the same assumptions as a. Moreover, when

B > 0, this symbol is rapidly decaying in h®My(¢) according to (A1),

(A9.1.5)), so that, modifying again a, we rewrite (AI1.2.3]) as

(A11.2.4)  Opy(@) [Op, ((6) " (BR7E) My, -, Op,((€) " (BR7€) s,
Ypg1s--- ayn}

with v > 0 to be chosen. We use now that if f is an odd function, we may

write

5@ =5 [ @) d

Consequently, for j =1,...,¢
(A11.2.5)

om (1671610 "), = 55 [ [om(100%)

that we rewrite using (A11.1.16))
(A11.2.6)

€

© )QJ} (njz) dpj,

Opn((6) 18R ")y = ih L 001 ((887€) ) Le,v5] () dp
—ihd T _11 [0 ((8178) ) Ty () s

We may thus write (AIL2.6)) as a linear combination of expressions of the
form

(A11.2.7) h(%)q/l1 nd Vi) dp

where ¢ =0,1,2, ¢ € N and Vj(z) is of the form

(A11.2.8)  Vj(x) = Opy(b;(Bh°€)) Le,u; o Vj(x) = Opy (b;(Bh°E) ),
with |0%b; ()| = O((€)™"™). We plug these expressions inside (AIL24). We

remark that when we commute each factor # with a, we get again an operator

given by a symbol similar to @, up to changing v. Moreover, the (M, "‘y>_%_2

decay of a(y,x,§) that we assume shows that for ¢ < 2/, (%)%(%,x@) may
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be written dl(%,x,f) with a1 (y,z,§) in S’iﬁ(M{)’,n) (for a new v). Conse-
quently, we may write (AI1.2.4]) as a combination of quantities of the form

1 1
W[ [ O @ [Vali) e Vi) i)

XP(p1, ..oy pue) dpn - .. dpg

where V; are given by (AIL2.8) and P is some polynomial.
If we apply (AI1.1.3) (together with the remark at the end of the statement
of Proposition [AIL.T.T) and use that Opy,(b;(8h%¢)) is bounded from W/*>

to itself, uniformly in h, we obtain (AIL2.1]). To prove (A11.2.2)), we apply
again (AIL.I1.3) and use that, for factors indexed by j = 1,...,¢, we may

write if v > pg+ 1 and 5> 0
10, (b3 (BR7€) Jwllyyros = 0D ((€)7b; (BR7E) Jwl| o>

< Ch™3(|Op, (€)™ </3h65>*”)wui2 Hoph(<s>p°fs</3h6§>*”)wu%2

(A11.2.9)

1 1
<con 7’ (w+4) ]| 2

if ¥ > pg. This brings (AIL.2.2)) with o(3) = f’(ﬂo + %)ﬁ O

When we want to estimate only the L? norms, instead of the H* ones, we
have the following statement:

Proposition A11.2.2. — Letn be in N*, Kk € N, § > 0,v > 0. There is
po € N such that, for any symbol a in S 5(M{ 7=, (5]-)71,11) and for any

odd functions vy,...,uv,, one has the following estimate:
n—1

(A11.2.10) [[Opy(a)(uy,- - u,)llzz < Ch [T llusllwroe (L2022 + 2]
j=1

Moreover, when n > 2, we have also the bound

(A11.2.11)
n—2
104 (a)(vy,- - 2a) p2 <Ch T lllyyeo =
j=1

< (15201 llro + lzallm =] lzallzz
Estimate (A1L2.10) (resp. (AL1L2.11)) holds as well for n (resp. (n —1,n))
replaced by any j € {1,...,n} (resp. 3,5 € {1,...,n},j # j'). Moreover,
it suffices to assume that a is in S’iﬁ(Mo” 1= (5]')71,11) instead of a €

L (MY Ty (&) n).
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Proof. — Because of the assumption on a, we may write

(A11212)  Opp(@)(wy,---,2,) = OPL(@) (21, - 21, OPA((E) " )2y))
with @ in S;,B(MOV H;:ll €, n) (or @ in Sli,ﬂ (Mé’ H;L;ll €N, n)) We use
next (AIL.2.6) (with v = 0) in order to express Opy, ((€) v, as a combination

of terms of the form (AI1.2.7) with j = n and V,, given by (AI1.2.8). We
obtain thus for (AT1.2.172]) an expression in terms of integrals

(A11.2.13) h/_11 Opp(a) vy, - -+ Uty Valpin )1 P(ptn) dpin

for some polynomial P, some a; € S'iﬁ(M(’)’ H;‘;ll <§j>_1,n). Applying

(AI11E), we get (ATL.2.10).

To obtain (ATL.211]), we make appear the Opy, ((£) ™) operator on argument

v, instead of v, in (AT1.2.12]), use (AIL2.6) with j = n — 1, obtain an

expression of the form (AT1.2.13]) with the roles of n and n — 1 interchanged,

and apply again (ATL.1.5]). O
Let us also establish some corollaries and variants of the above results.

Corollary A11.2.3. — Let n,k, B,v be as in Proposition[A11.2.2. Let a be
in S, p(My T4 <§j>71,n+1). Let Z be in S(R). Then for any odd functions

7=1
Uiy Up
(A11.2.14)
n—1
10p4(@) [Z(w/h), o1, w2 < Ch T llegllweoos (1£22allz2 + gl 22).
j=1
If n > 2, we have also
n—2
(A11215) Hoph(a) [Z(x/h)ayla cee 7Qn] HL2 < Ch H HQ]'”W;ZO’OO
j=1

% (L0 lypoe + s lygo) onllz2.

Proof. — We write a(y,z,€) = (y)*a(y,z,¢). Then, according to the last
remark in the statement, Proposition [AT1.2.2] applies to a. Moreover, we may

write Opp,(a)[Z(z/h),v,,...,v,] as a sum of expressions

T\ _ x
(A11.2.16) () Oopn@[2(3) 1) 0 g <4,
The commutator

x

hOph(d) [Z(%),Ql, . ,yn} — Opy(a) [%Z(%),yl, . ,yn}

is again of the form Opy(a1)[Z(z/h),vy,...,v,], a new symbol satisfying the
same assumptions as a, eventually with a different v. Finally, we express
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(A11.2.36) as a sum of expressions Opy,(a1)[Z1(z/h), vy, ... ,v,], for new sym-
bols @1 and a new S(R) function Z;. If we apply (AI1.2.10]) (resp. (AI1.2.17])),

we get (ATT.2.T4]) (resp. (ATL2TH).

We have also the following variant of Proposition [AT1.2.2] that we state
only for bilinear operators.

Proposition A11.2.4. — Let v,k > 0. There is pyg € N such that, for any
a € Sy o(My H§:1 <§j>71,2), any odd functions vy,vs, one has the following
estimates
(A11.2.17)

10Dy (@) (w1, w9)ll12 < CRP[||Lwy [y + llwr o] [I£0s]l 12 + sl 2]
for any choice of the signs + in the right hand side. The symmetric inequality

holds as well.
If moreover s,o are positive with so > 2(pg + 1), we get

2
3o
(A11.2.18) 10py(a)(vy,v2)llp2 < Ch? H [Hﬁiﬂj”m + HQJ'HHi]-
j=1

Proof. — To get (AI1.2.17)), we write

Opy(a) (w1, 05) = Opy (@) (Op4((€) " )uy, O, ((€) s

with some @ in Sk o(M{,2). We use next (AIL.2.6) (with v = 0) for j = 1,2
in order to reduce ourselves to expressions of the form (AT1.2.9]) with ¢ = 2.

Applying (AILI.3]), we get the conclusion.
To obtain (AIL.2.18]), we may assume that a is supported for |&1] < 2(1+|&2|)

for instance. Let 8 > 0, x € C§°(R), equal to one close to zero and decompose

a’(ya xz, 517 52) = a’(y7 z, 517 SQ)X(h_ﬂfl) + a’(y7 z, 517 52)(1 - X)(h_ﬁgl)
If we apply (AILT3H) to the second symbol, we obtain an estimate to the
corresponding contribution to (ATL.2.18]) by

CllOpA((1 = X)(R€))urllyyro< llual 2.
By semiclassical Sobolev injection, this is bounded from above by
Ch™ 2P o | o .2,

so by the right hand side of (AIL.2.18]) if 5(s — (po + 1)) > 2 — 0.
Consider next Opy,(a1)(vy,vs) with a1 = ax(h™P¢;), so that a; is in

s (Mg H?:l (€)71,2). Since B > 0, we may rewrite as in (AIL2.4),
Opy,(a1)(v1,v2) as

Opy(a1)[Opy ((€) ™ (h7€) 7 vy, Oy ((6) s
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with a; in S'2 5(Mg, 2), hence under form (ATL2.9) with £ = 2, Vi (resp. Va)
being given by (AI1.2.8) with b; = O((£)™7) (resp. O(1)). Applying (AIT.1F),

we get, in view of the definition of the V; a bound in

C2[[[0py (b1 (F€)) Ly [l + 10D (b1 (A€ 0]

x [I1€402]l L2 + llwall2].

Using the semiclassical Sobolev injection, the first factor is bounded from
above by

Ch=3 =P+ £owy | 12 + [luy | 2] -

We set o = 5(po + 1) and get the conclusion under the condition so > 2(pg +
1). O

We prove now an L™ estimate that is a counterpart of (ATT.2.).

Proposition A11.2.5. — Let k € N, v > 0, n € N. There is pg € N such
that, for any p > po, any a in 5’2"+2(M6’,n), any ¢ < n, one has for any odd
functions vy, ... ,v,, anyr >0, the estimate

(A11.2.19)  [|Opp(a)(u1, - -, up)llwpee

n
H(”U]HW”O o+ |lu;llm;)

)4 n
+ChETET H(HQJ‘HW[L”O" + 1 Lavsllwe) TI (lellee + I1£225]l22)
j=1 j=t+1
for any o > 0, any s such that
1
(A11.2.20) 5> so(p, ) [1+ - i ]

(where so(p, k) is some explicit function of (p,kK)).

Proof. — Set |£|2 =&+ .. 4+ &2 Take x € C§°(R) equal to one close to zero
and let 5 > 0 to be chosen. Decompose a = a1 + as with

al(y7x7§17 v 7571) = a(yawagla s 7§N)X(h26’§‘2)
az(y7x7§17 LR 7571) = a(yawagla s 7571)(1 - X)(h25‘§’2)

Let us assume in addition that as is supported for instance for |&1| + --- +
|€n—1| < K(1+41&,]). By semiclassical Sobolev injection, we have

1
(A11.2.22) [[Opy(az)(uy; .-+ vp)llwpee < Ch72[|Opy(az)(vr; - -, )l gotr-

(A11.2.21)
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If we use (A9.1.4), (A9.1.3)), we see that the action of a hD, derivative on

Opy,(az)(vy, ... ,v,) makes lose at most one power of (&)%) (since &, is

the largest frequency). Consequently, (A11.2.22]) is bounded from above by
Ch™2 0Py (@2) (w1, -1, (hD) T, )

for a symbol as that has the same support properties as as. We apply next
(AT1.1.5) with j = n, and remember that, by definition of as, as is supported
for |¢,] > ch™" for some jo. We thus get a bound either by

n—1
1 max(1,x

(A11.2.23) Ch™2 HHQ]'HW,’ZO’OOHoph(<§>(p+1) Ex1(hP€) w2
j=1

if jo =mn, or

_1
Chz I llgyllweo= 0P (a (RP€))uj, oo
(A11.2.24) 1<j<n—1,j#jo

x [[0py, ()@ (RO€) o, || 2

if jo < n, where x1 € C*°(R) is equal to one close to infinity and to zero close
to zero. Writing (using semiclassical embedding)

10D, (€)™ x1 (7€) )uall 2 < CHIC™ |, |y
10p1 (x1 (7€) ) lypoe < Ch 2+ Dy 1y

we obtain for (A11.2.23), (A11.2.24])) an estimate in

n

(A11.2.25) O™ T (Il llywro + lleylla)
j=1
if
ﬁ(s — (p+ 1) max(1, /{)) >+ !
(A11.2.26) 2
B(s — (po+1) = +1.
Consider next a;, which satisfies h**"a; € Sl2n+2(M0 [Tj= (&) ) We

may write Opy,(a1)(vy,...,v,) under form (AI1.2.9) with £ = n and a new
symbol a1, such that

WPray € S 5 (Mg 1] (&) %)
j=1
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(for a new v). We apply (AIL.1.25) that implies

(A11.2.27) [|Opy(@1) (s, - -, v) lwpe

1 1 n
< Chn(l_gﬁ)/l”'/1 LTIV (g ) lwpoe dpoa . dpa
s

where Vj is given by (AI1.28) with v > p+ 1. For j = ¢+ 1,...,n, we use
semiclassical Sobolev injection to estimate

1 1
[ Vs g dis < OHA50D (1Ll + gl

whence finally a bound of (AI1.2.27)) in

14
Onr =D PO T [l pee + 125 lwpe<]
j=1

n

x TT (lellee + 1w lce).
j=t+1

Combining this with (ATT.2.25]) and taking 8 = DT Ve get the
conclusion if s satisfies the inequality in the statement. U

The same type of reasoning as above may be used to remove the assumption

B > 0 in (ii) of Proposition [ATT.2.7]

Proposition A11.2.6. — Let a be a symbol in Sy o(My,n) independent of
x, satisfying the assumptions of Proposition[A11.2.1. Then for any 3 > 0 with
kB < 1, one may decompose a = a1 + as with ay in S/%H(M(’]’,n) and ag 18
such that

(A11.2.28)
n—1
10Ds(@2) (wi, - w)llmz < O3 (Tl )l gl
Jj=1 {#i

as soon asﬂ(s—po—l)zr—i—%.
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As a consequence, one has the estimate, for 1 <£<n—1,0<{ </,

Z/
W
(A11.2.29) [Opy(a) (s - w) s < CRT 277 T] (1L, 0502 + Iluyllas )
j=1
14
X H (“Eej'yj|’w£°’°° + llyslly o + 122 )
j=0'+1
n—1
< | (HQ]'HWSO’OO+||QjHH}SL>HQnHH}SL
j=0+1

where o > 0 is any small number and s is such that (s — po — 1)o is large
enough.

Proof. — We decompose a = a1 + az as at the beginning of the proof of
Corollary [ATT.1.3] By (AILI1.20), (AILI.2T), estimate (AI1.2.28]) holds if
(s—po—1)8 > r+ 3. On the other hand, applying (AIL.2.2)) to Opy,(a1), and
expressing o(f) from 3, one gets a bound of ||Opj(a1)(vy; ..., v,)[lu; by the
right hand side of (AT1.2.29]). Since, for r large enough, the right hand side
of (AI1.2.28) may be estimated by (AIL.2.29) (using semiclassical Sobolev
injection to bound some W/°"* norm by h™3 times an H i one), we get the
conclusion. O

Let us translate the inequalities proved in this section in the non-

semiclassical framework, using (A9.1.7)), (A9.1.8)), (A9.1.9).

Corollary A11.2.7. — Under the assumptions of Proposition[A11.2.1, one
has the following estimates:

(i) For any s > 0, any odd test functions vi,...,v,, any choice of signs
€ € {—,+}, j=1,...,¢

14
10D" (@) (v, - -, vn) s < CEETT [I1Eeyvsllwooce + [[0jllweoo<]
(A11.2.30) 7=

n—1

< T Ivjllweooe onll =
j=t+1

with Ly defined in (A11.1.32).
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(ii) If moreover B > 0, one has for any 0 < ¢' </

g/
1Op! (@) (w1, -, va) |l < CEF O TT (I Lejvjlle + g2 )
j=1
l
(A11.2.31) < T [I1Ze,vjllwroes + v llweo<]
j=t+1
n—1

< TT llvjliweoes llonll s
j=t+1

with o(8) > 0 going to zero when ( goes to zero.
This is just a restatement of Proposition[AI1.2.1l Proposition[AT1.2.2gives:

Corollary A11.2.8. — Under the assumptions and with the notation of
Proposition [A11.2.9, one has the following estimates for any j, 1 < j<mn
(A11.2.32)

lop* (@) (vr, . on)llpe < CtH T llwellweoos [I1Lvjlz2 + l[vj] 2]
L#£j,1<Ll<n

and if n > 2, for any j £ 7, 1< j,j <n,
10p* (@) (ve, .. o)z <Ct1 T Ilvsllweoss
(A11.2.33) 041,41 1<0<n
X [[|Lvjs [weoee + ojellweo.os | v 2

Moreover, these estimates hold as soon as a € S'ﬁﬂ(Mé’ [17= <§j>71,n).
In the same way, we have the bounds of Corollary [ATT.2.3k

Corollary A11.2.9. — With the notation of Corollary[A11.2.3, one has for

any j
(A11.2.34)

0P (a)(Z,v1, . o)z < CEH T Ilvsllweos [I!Liijw + ijHLz]
1<0<n, b#]

and ifn>2,5# 7 arein {1,...,n}

(A11.2.35) [|Op'(a)(Z,v1,...,on)lpz <Gt I llvjllwees
0#5,5',1<t<n

< [[ILxvjrllweos + [[vjellwreocs][|v; ] .

Next we restate Proposition [AT1.2.4]



A11.2. ACTION OF QUANTIZATION OF SPACE DECAYING SYMBOLS 211

Corollary A11.2.10. — With the notation and under the assumptions of

Proposition one has for any odd functions vy, vs
(A11.2.36)

10p*(a) (01, v2)llz2 < Ct2[|[ Lvnllweooe + orllweos | [IIL£vallze + [lvzll 2]

and

2
(A11.2.37) 10p!(a) (v1, v2) 12 < CE277 TT [ILsvsl 2 + gl are]
j=1

if s,0 >0 are such that so > 2(pg + 1).

Finally, we translate the estimates of Proposition [AT1.2.5] and [AT1.2.6t

Corollary A11.2.11. — With the notation and under the assumptions of
Proposition[AT1.2.5, one has, for any odd functions vy, ...,v,, any 0 < £ <mn,
any r > 0,

n

1
(A11.2.38) [|Op'(a)(v1,. .., va)lweee < Ct" T (ll0jllweocs + ¢~ 2 |[vj] s )

j=1
L n
+ Ot [ [llojlwese + | Levjliwes] TT [lvgllze + 1 Zs0522]
j=1 j=0+1

if s > so(p, k) [1 + %‘1} for some function sy(p, k).

Corollary A11.2.12. — With the notation and under the assumption of
Proposition [AI1.2.6, one has for any odd functions vi,...,v,, any £, 1 < £ <
n—1,any 0 <0 </

[’
l0p* (@) (vr, .. o) s < CE 7 [T (I1Le,v5ll 2 + o2+ )

j=1
¢ 1
(A11.2.39) < T (IZe,villweoe + vjllweoe + 2 ||v; |l =)
J=0'+1

n—1
_1
x TT (lojllweos + 2 [[vj|las ) [onl s
j=0+1

for any small o > 0, as soon as (s — po — 1)o is large enough. The same
estimate holds true if we apply in the right hand side any permutation on the
indices {1,...,n — 1}.
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A11.3. Weyl calculus

In Chapter [7, we use a different quantization of symbols a(x,£) on R x R.
We give its definition and properties here. Our classes of symbols will be
variants of those introduced in Definition [A9.1.2]

Definition A11.3.1. — Let & € [0,3], B > 0, and (z,&) — M(z,£) be
a weight function on R x R. One denotes by S(\;Z,YB(M) the space of smooth
functions (h,x,&) — a(x,&, h) defined on ]0,1] x R x R satisfying estimates
(A11.3.1)  [9710¢2(hon)*a(e, &, h)| < OM (2, )R 1+ (14 Pl
for any a1, a9, k, N in N.

Remark: Notice that for § > 0, we assume a rapid decay of the symbol
in (RP¢ >7N. This is not the same condition as in (A9.1.4]), (A9.1.5) where the

rapid decay was in <h5MO(§)>7N, which, when there is only one ¢ variable,
is just O(1). Notice also that instead of having a loss in My(§)" for each
derivative acting on the symbol, we allow a h~% loss. Finally, at the difference
of (A9.1.3]), we consider symbols that do not depend on the y variable.

For a in SV,YB(M ), we define the Weyl quantization by

1 iy T+y
W _ (z—y)¢
(A11.3.2) Op}, (a)v 57 //eh a( 5 ,€, h)y(y) dyd¢
for any test function v. We recall some results of [59] that we use in Chapter [7]
Proposition A11.3.2. — Let p be in Ry, I'(z,&,h) a function satisfying

z £ p/(§) >_1
Vh

for any a1, a0,k in N. Then, for any o > 0, any r > 0, any s such that so is

large enough, we have

(A11.3.4) |0p}Y (D)OPY (€)7o < C[A™T7 w12 + A7 ]z

(A113.3) 05982 (hh)FT (2, €, )| < Ch= "3

Proof. — Fix 8 > 0 small. Decompose I' = I'y(h%¢) + T'(1 — x)(h?) for x in
C3°(R) equal to one close to zero. By Lemma 3.9 of [59], we may write

(A11.3.5) OpY (Tx(hP€)) = OpyY (r1)OpyY (X (7€) + KN OpYY (r2)

(A11.3.6) Opy (T(1=x)(h7€)) = Op} (r3)Opy ((1=X1) (K7€) ) +h™ OpY (1)
L
to zero. By semi%lassical Sobolev injection and Proposition [AT1.3.3] below,
the last term in (AIL3.5), (AIL3.6) acting on Op)' ((£)”)v has L norm

where r; are in SY" (1), N is arbitrary, X, x1 are in C§°(R) equal to one close
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estimated by the last term in (AT1.3.4]). Moreover, r; satisfies estimates of
the form (AT1.3.3]), so that we may apply Proposition 3.11 of [59] to estimate

10Dy (r1)OpyY (X(K€)(€)° )| Lo

by the first term in the right hand side of (A11.3.4)) with o linear in 3. Finally,
by semiclassical Sobolev injection and Proposition [A11.3.3] the L°° norm of
the first term in the right hand side of (AI1.3.6]) is bounded from above by

Ch=2[0pyY ((€)7 (1 = %) () [l

which is estimated by A"||lv||gs is sB is large enough. This concludes the
proof. O

One has also Sobolev estimates (see Dimassi-Sjostrand [18] or Proposi-
tion 3.10 in [59]):

Proposition A11.3.3. — Let >0, & € [0,3], r € R, a in Syﬁ(@y).

Then Op)Y (a) is bounded from Hp to Hy™" for any s in R, with operator
norm bounded uniformly in h.

We state next Proposition 4.4 of [59].

Proposition A11.3.4. — Let v be in C§°(R), equal to one close to zero.
Let L be the operator (AILI1.16) that may be written as well

Ly = %Ova(x +p'(€)).

For p in N, v a function, define

(A1187 e = OBl (1= () Yol ()7

Then for any o > 0, any s such that so is large enough, one has estimates

-
(A113.8) lohellze < CRE=7 [l z2 + el

1o
(A11.3.9) [hllz= < CRE [ Ls0ll2 + lullg .

Let us prove next an L estimate for OpXv (fy(m+\1/’;;(5))).
Proposition A11.3.5. — Let v be in C3°(R), with small enough support.

Then for any o > 0, N > 0, we have as soon as so is large enough relatively
to N,

(A11.3.10) HOpX"(w(L\%@))QHLw < Ch™[|lullzee + hN|ullm; .
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Proof. — Let >0, x in C§°(R) equal to one close to zero. Decompose
v =0p) (x(h€))u+ Op)Y (1 — x)(h*€) u.

By semiclassical Sobolev injection, Proposition [AT1.3.3] and the fact that
”Ova((l - X)(hﬁg))”g(HfﬂH}sL/) = O(hﬁ(s_s ))

if s > s’, we have

ot (+(“EEE) Jon (11 - )

<Ch™2

.-

on (1(Z D) s (1= v,

< Ch= 70D )|y

which is estimated by the right hand side of (AT1.3.10)) if s3 is large enough.
On the other hand, by Lemma 3.9 in [59], we may write for any N

Ol (4 (ZEZLDY) 0pl (s (7)) = OB (D, 1)) + ¥ OpY (1)

Vh
for some r in SWB( ) and a symbol T' in SYVB(I) supported for [¢] < h™P,
) 29

|z 4+ p'(€)] < ev/h for some small c. According to Lemma 1.2.6 in [17], we
know that setting ¢(z) = V1 — 22 for |z| < 1, if |z + p/(€)] < ¢(€)? for some
small enough ¢, then

€ = de(@)] < C€)°|z +p(€)-
It follows that
F(x7 57 h) = F(‘T7 67 h)ﬂ

The kernel of Op)Y (T') is

1 ifpe T+y
_— (x—y)¢
(A11.3.11) 2ﬂ_h/eh F( 5 ,g,h)dg

that may be written

1 .
|&—dp ()| <ch2 =

)

(A11.3.12) —_chleude(=

277\/E
x/ez(m y)%r(x";y,dgo(x+y)+fc h) dc.

R

; _C_
The integral is of the form [ TR A ,Y,¢)d¢, with A supported for

(
I¢| € Ch™38 and satisfying 9fA = O(1). It follows that (AIL3.IT) is
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-2
O(h_%_35<x—\;ﬁy> ), which implies that operator (AIL3.11]) has L(L*>)
norm that is O(h=7).

On the other hand, |hNOp)Y (r)v||z~ is bounded by the last term in the
right hand side of (ATL.3.10) using again semiclassical Sobolev injection. [J

We shall use also Proposition 4.11 of [59] that we reproduce below.
Proposition A11.3.6. — Define

) opt (e

where v € C5°(R) has small enough support. There is (On)nejo] @ family of

(A11.3.13) vi = OpyY (+(

smooth functions, real valued, supported in an interval [—1 + ch®?,1 — ch?P|
for some small ¢ > 0, with 936, = O(h=2%%) for some small 3 > 0, such that,

still denoting o(x) = /1 — 22 for |z| < 1,

(A11.3.14) OpYY (a€ + p(€))eh = p(a)h ()0 + hR
where

IRl < O3~ (1Ll + [l
IRl < ChT=7 (|| L0l + lvllm;)

for any o > 0, any s such that so is large enough.

(A11.3.15)

Finally, let us reproduce Lemma 4.5 of [59].
Lemma A11.3.7. — Let ~y be as in Proposition[A11.3.6. One may write

(A11.3.16) [D, — Op) (€ + p(€)), OPXV(’Y(L;%@))}

= n0pyY (v-1(= +\/]%,(£)) & J:%,(g)) +h20p) (r)
—1l-a

where y_1(z) satisfies for any a, |03v-1(2)| < Cu(z)

estimates (A11.3.3).

and where v satisfies






APPENDIX A12

WAVE OPERATORS FOR TIME DEPENDENT
POTENTIALS

The goal of this chapter is to construct wave operators for some time de-
pendent perturbations of a constant coefficients operator.

A12.1. Statement of the result
In order to state the result, we have to introduce some notation.

Definition A12.1.1. — Let a,b be in N, m >0, 1 > 0. We denote by gy
the space of functions (t,£,m) — q(t,&,n) defined on [1,+o00[xR x R, with
values in C, that are Lipschitz in time, smooth in (£,m), and satisfy for any
N inN, any j =0,1, any t > 1, any (£,71) € R?, any (a, o) € N?

(A12.1.1) 107920 a(t,0,€)| < Caarnet ™ (€] = ).

a b
We denote by E;’ZI the space of functions q of the form q = (é—>) (%) Q1

with q1 in Xy

Example: Let us give an example of functions in the preceding class. Let
q = 4 (k,0), Where g; (. ¢) is one of the functions defined in Lemma B.I.Jl As-
sume that these functions are defined and satisfy (5.1.14]) or (5.1.I5]) for ¢ in
some interval [1,7T] with 4 < T < e~47¢. Extend this function to [1, +oc[ by

t
(A12.1.2) q(t,&mleer +q(2T = t,¢, n)]lt>TXO(T)
where xo € C*°(R) is equal to one on | — 00, 3] and to zero on [I, +oo[. If we

denote this extension still by ¢, we get a Lipschitz function of time on [1,4o00]
that satisfies (5.1.14]) or (5.II5]) for any ¢ > 1. Notice that these inequalities
imply estimates of the form (A12.1.1]) when we take 7" in (A12.1.2]) smaller than
e~4+¢ for some ¢ > 0, so that (AI2.1.2)) is supported for ¢t < Ce=4+¢. Actually,

_1
writing for any m €]0, 1[, tc 2 < ™l =2 it follows from (ELI4) that ¢
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belongs to 26’,761 if © = min(1—2m, %69,) > 0. In the same way, under condition

Lm-l—l

(5II5), we obtain an element of ¥, *. The matrix Q; of Lemma [(.T.1] has
thus entries in %77

We consider in this section an operator V defined in the following way.
Assume given matrices ); with entries en 26’7761 form>0,.>0and —2<j <

2. Let \; = j@ and define
2 .
(A12.1.3) V()= > eNiKg,,
j=—2

where, when ¢ is in 26’75, and f is a scalar valued function, K, f is defined by

(A12.1.4) Ka0(© = [ at.&)f o dn,

and when @; is a 2 x 2 matrix, and f is C2-valued, Kgq; [ is defined in the
natural way. We shall assume also that operator V satisfies

(A12.1.5) V(N = —NoV(t)
with Ng = {(1) (1]} (see (B.LEH)) and that V(t) preserves the space of odd func-
tions. If Py = {p

(l())z) _p(ODx)}, we define

(A12.1.6) P(t) = Py + V(t).

We want to construct a family of operators B(t) so that, for any f in L?(R)
such that (D; — Py)f is in L?*(R) for any ¢,

(A12.1.7) (Dy — P(t))B(t)f = B(t)(D: — Ry)f.
We shall prove:

Proposition A12.1.2. — For any t > 1, let V(t) be a bounded operator on
L?(R). Assume that t — V(t) is compactly supported and define for anyt > 1,
n € N*

(A12.1.8) By,(t) = (—z’)"/He*iTjPov(t+rj)einP01O<ﬁ<...<Tn dry ...dm,
7j=1

where, for non commuting variables A1,..., Ay, 17 Aj denotes AjAs ... Ay.

Set also By(t) = Id. Assume that for any f in L*(R), one may find a sequence
(n)n in €1 such that one has

(A12.1.9) sup||Bn(t) fllr2 < an.
t>1
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Define
+oo
(A12.1.10) B(t)f =Y Bu(1)f,
n=0

that exists because of our assumptions. Then B(t) solves equation (AI2.1.7).
Moreover, define Cy(t) = Id and for n in N*,

n
(A12.1.11)  C,(t) = 2"/ [Te ™Vt + 7)™ P hocr, coocr, dry .. dr.
j=1

If we assume that the analogous of (AI12.1.9) holds for C,, and define then
C(t) as in (A12.1.10), one has

(A12.1.12) B(t)C(t) = C(t)B(t) = Id.

Proof. — Let us denote A(t,s) = —ie V(¢ 4 5)e’. Then
[Dt — Ds, A(ta 8)] = [P07 A(ta 8)]

and by (A12.1.8)

n

(A12.1.13) B, (t) = / [T A 75)Llocr <cccm, dry ... dT
j=1
so that
(D, — Py, By = /(Dn oo D) [T A )] Locrconcry dry .

J=1

n
__ / [ At 7)(Dyy + -+ + Dy Yocn <o dry ... d,
j=1

= iA(t,0)By_1(t).
Using (AI2.1.6), and making the convention B_;(t) = 0, we rewrite this as
(Dr — P()Ba(t) = Bu(t)(Ds — By) — V(O)(Bult) — Bus(1)).
If we denote by S, (t) = Y_n/_y Bn(t) the partial sum, we get
(A12.1.14) (Dy — P(t))Sn(t) = Sn(t)(Dy — Po) — V() By(t).

If we make act this on a function f in L?(R) such that (D; — Py)f is in L?, we
get when n goes to infinity, in view of (AI2.1.9]), (AI12.1.10l), the conclusion

We still have to show that C(¢) is the inverse of B(t). Let us denote for
J=0,....n =1, ¢i(7j,7j11) = Lr,,,>r, and rewrite the definition of B(t)
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given in (AI2.1.13)) as
n—1

B,(t) = / H A(t,m)x (11, .. ) H @i/ (T, Tjrgr) dry .. dry,
j=1 j'=1

where x(71,...,7) = [[}=1 Lo<r,- In the same way, (AI2.1.11]) may be written
as

n n—1
Cn(t) = (—1)n/H At m)x(r1s o) [T = i) (70, 1) d - dr
j=1 J'=1
We thus get for 1 </ <n
n {—1
Co(t) o By—o(t) = (—1)6/ [T A7) x(r, - m) TT (= @5) (s m041)
j=1 j'=1
n—1
X H @i (tjr, Tjrgr) dry ... dTy,
=041
using the convention H?:l = ;:,i = 1. This may be rewritten for ¢ =
1,....n—1
n )4
Co(t) o By—o(t) = (—1)E/ IT A m)x(s - m) T =) (7m0 11)
j=1 j'=1
n—1
X H i (Tjr, Tjrgr) dry .. dmy
ji=t+1
n {—1
— (=Dt / [T A )X, ) TT Q= w) (0 mi41)
j=1 J'=1
n—1
X H Spj’(Tj’,Tj’—f—l) dTl N d’Tn.
J'=t
It follows that Y~} C¢(t)By—¢(t) = 0 when n > 1, which implies C(t)o B(t) =
Id. In the same way B(t) o C(t) = Id. O

In the rest of this chapter, we shall show that the preceding proposition
may be applied to an operator of the form (AT2.1.3]), if one makes convenient
assumptions on the @;. Moreover, we shall obtain for the operator B(t),
C(t) estimates in other spaces than L?. More precisely, we shall prove the
proposition below, where we use the following notation. Set, according to

(ATL1.32)

(A12.1.15) Ly =x+tp (D), L= {Lo+ LO_:|
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so that
(A12.1.16) [Dy — Py, L] = 0.
In the following sections, we shall prove:

Proposition A12.1.3. — Let B,(t) and C,(t) be defined respectively by
(A12.1.8) and (A12.1.11), in terms of V given by (A12.1.3) with Q; a 2 X 2
matriz of elements of Ei’T, for some v > 0 small, some m €]0, %[, close to %
Then for € small enough, (A12.1.9) and the corresponding inequality for C,(t)
holds, so that 32720 B, (t) = B(t) and Y.,725 C,(t) = C(t) are well defined as
operators acting on L*(R). Moreover, the operators B(t), C(t) are bounded
on H*(R) for any s > 0 and satisfy for small §' > 0

”B(t) - Id”,C(Hs) S CELt_m+6,+%
One may also write for any f in L*(R;C?) such that Lf € L*(R; C?)

(A12.1.17)

(A12.1.18) LoC(t)f =C@{t)Lf+Ci(t)f

where

(A12.1.19) I1C(t) = Td||p(z2) < et +3
(A12.1.20) 1Cy ()]l 2y < Cetz ™,

Moreover, under condition (A12.1.5), one has

(A12.1.21) B(t)Ny = NoB(t), C(t)Ny = NoC(t)

and if V(t) preserves the space of odd functions, so do B(t) and C(t).

A12.2. Technical lemmas

In this section, we prove some technical lemmas that will be used to obtain

Proposition [A12.1.3]
Lemma A12.2.1. — For &, n, X real, denote

(A12.2.1) ¢=(&m A) = (§) £ () + A
There is C > 0 such that for any X in R, any t > 1

(A12:2.2) / (t6(¢,m, \) " dn < Ot
|6+ (EnN)|<1
(A12.2.3) / (to+ (€1, A)>*1m dn < Ct log(1 +1t).
b (£ N <1 (n)
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Proof. — We compute first the integrals over the domain n > ¢ or n < —c for
some ¢ > 0. On these domains, n — { = ¢+(&,m, ) is a change of variables,
whose jacobian has uniform lower and upper bounds. The corresponding in-
tegrals are thus bounded by

C t¢)td¢ < Ct'og(t +1).
¢l<1

We compute next the integrals for |n| < ¢. If ¢ is small enough, we may write
on this domain

Qbi(g, m, >‘) = ¢i (55 0, >‘) + 9(77)2
where g(0) = 0, ¢’(0) # 0, so that we may bound the two integrals (A12.2.2]),

(A12.2.3]) respectively by
cf toreTac o f o)l

I¢l<e!

where ¢’ > 0 is some constant, and p is some real number depending on &, A, t.
These two integrals are smaller than the right hand side of (A12.2.2)), (M)
respectively, uniformly in p.

We study now composition of operators defined by (A12.1.4]) from symbols
in the classes of Definition [A12.1.1], and we prove also Sobolev estimates for
such operators.

Lemma A12.2.2. — (i) If £ is in N, set pu(¢) = & if £ = 0 and let pu(€) be
strictly smaller than 1 if £ > 1. Let N > 2. There is a constant C > 0 such
that if two functions qq, qo satisfy estimates

b
M@mNSKM&—WVNQ%>

MQmNSKMH—WYNG%>,

(A12.2.4)

where a,b are in {0,1}, then the function

(A12:2:5) w(€n) = [ a6 OaCmitox(e ¢ ) de
satisfies
(A12.2.6) las(€,m)| < CK Kot~ T (je] — [y~

(ii) Let s be in Ry, & >0, N > s+2. There is C > 0 such that if a function
(&m) — (&, n) satisfies

(A12.27) 6ol < (e~ o~ (1 + 1)
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then the operator K, defined by satisfies
(A12.2.8) 1Kyl ey < K3+,
(iii) If instead of (A12.2.7), q satisfies

(312.29) o6 m)| < K (el — oy~ EL L

(&) (m
one gets instead of (A12.2.8)
(A12.2.10) 1Kyl ooy < CKEH

Proof. — (i) If in (AT2.2.5]) we integrate for ¢4 (&,{,\) > 1, then (AT2.2.6))

holds trivially, as a consequence of (A12.2.4]), with factor ¢~! instead of
t=#(b+a) " Tf we integrate for |¢+(€,¢, )| < 1 the contribution to g3 is bounded
from above by

(16560 (@YH’ i“.

R (e~ o)™ [ @)

lp£(£,¢,A)I<1

Applying Lemma [AT2.2.7] we get (A12.2.6]).

(ii) Since N > s + 2, the L(H?®) estimate is reduced to a £(L?) one for
N > 2 using the decay in (|¢| — |n|) in (AI2.2.7)). If the kernel of K, is cut-off
for |¢+(£,m,\)| > 1, then Schur’s lemma shows that (AT2.2.8)) holds with ¢~

instead of t~17%. We have thus to study

£ [ a€mtos(n ) Lo eanier () dn

By Schur’s lemma and (A12:2.7)), the £(L?) norm of this operator is bounded
from above by

N Ll
CK (s [ 40— ™ o6, m ) )

1
<(sup [ (161 = )~ (10 6m )~ )
and by the symmetric quantity. Using (A12.2.2]), (A12.2.3]), we get (A12.2.8)).

(iii) We make the same reasoning as above, except that (A12.2.11)) is now
replaced by

(A12.2.11)

Cx (sup [ (1 = (- (e 0. A g2

(m)
N RYIRY
<(sup [ el = Nt (€m0 gy )

We conclude by (A12.2.3)). O
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Let us define a class that will contain functions obtained from those of
Definition [AT2.1.7] by introduction of an extra variable.

Definition A12.2.3. — We denote by Eg’g’mo the space of functions
(t,v,&,m) — q(t,v,&,n), defined fort > 1, v >0, {,n in R, that are Lipschitz
and compactly supported in v and satisfy for any N and j = 0,1

(A12.2.12) [0Ja(t, v, & m)| < Cnet' ™ (14 0) "m0 (|| = |n) =

For a,b in N, we denote by f“m’mo the space of functions that may be written

(%)a(< >) q1 with q1 in Ebmmo.
We shall also allow q to depend on extra parameters, estimates (A12.2.13)
being uniform in these parameters.

Notice that if ¢ belongs to the class X7 of Definition [AT2.1.1] and is com-
pactly supported in time, then G(t,v,&,n) = tq(t(1 4+ v),&,n) is in E;?mo if
m > mg.

We shall discuss some operators constructed from functions in X
the following discussion, we shall identify operators and their kernels

Let @ be in E;fg 0@ Ma(R) (i.e. a 2 x 2 matrix of elements of E;fg’mo).
If A is in R, we consider the operator from L?(R) to L?(R) given at fixed ¢,v
by the kernel in (£, 7)

(A12.2.13) S(t,v,Q,\) = e WEOQ(t, v, £, )P M+A),

meo In

If we decompose

2 2
7521577 ZZ]ktv& ]ka
j=1k=1

where
(A12.2.14) Ej = (6768 )1<jr <2,
we may write
2 2

(A12.2.15) S0, QN => ) Sik(t,v,Q, )

Jj=1k=1
with
(A12.2.16) Sik(t,v,Q,\) = qjk(t,v,§,n)eitvd’f’“(g’"’)‘)Ejk
where

(A12.2.17) $in(&m.A) = (=1)p(&) = (=1)*p(n) + .
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~, L £ 4
We assume given functions Q¢ in X', "0 @ My (R) and real numbers Ay for
g albt ¢

£ in N*. We set
(A12.2.18) Q =(Q",...,QY, A=(\",...,Ah.

We define inductively a sequence of operators by their kernels, starting with

+o0
(A12.2.19) M1(t,U,Q1,A1) = / S(t, v, Q' \Y) dv

u

and forn > 1
(A12.2.20)
+oo

M1 (60, Q, ,, Ani) :/ S(t, 0, Q"X 0 My (1,0,Q |, A,) dv.

u

Notice that the above integrals converge since S is compactly supported in v.
According to our convention of identification between kernels and operators,
we shall set for a function f

(A12221)  Malt,0,Q A)F(©) = [ Malt,0,Q, A)(E 1) 1) dn
We shall prove the following estimates:
Lemma A12.2.4. — Let m,m{,mg,¢,a,b satisfy

1
(A12.2.22) my,my > 7Y b,e Nya+b>1,0.>0,m>0.

Let QQ be in i;ﬂghm& ® M2(R), X in R, and let K be the best constant C
in (A12.2.12) for the entries of Q. In the same way, denote by Ky the best
constant in (A12.2.12) for the entries of Qp, L =1,...,n.

There is for any N > 2, any 8" >0, a constant Cy that does not depend on
Ky, Ky, and a symbol Q in

ttin,m+m™

717 oy 11
o 2R @ Mo (R)
ifa” +b=0, and in

’iLJan ;mAm™—§ my+mf—

6/
a,bn ® M; (R)

if a” + b > 1, whose N-th seminorm is bounded from above by CNKnNKp p,
such that if n > 1,

+o0
(A12.2.23) / S(t,v,Q,\) o Mn(t,v,Qn,An) dv

+o0 -
= [ TS0 @0 0 Mua(4,0,Q,y Au 1) do + Rultu)
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where X = XA+ X\, and R, satisfies for any f in L*R), any & > 0
(A12.2.24)

1, 5
Isup [Ra (¢, u) fll 2 < CKaet™™ 5 |sup | My (8,1, @, M) £ 2-
u u

If n =0, (A12.2.23) holds as well without the integral term in the right hand
side.

Proof. — In the left hand side of (A12.2.23) we plug (A12.2.15). Then the

kernel of that operator is the sum in j,k,1 < j, k < 2 of

+oo
(A12.2.25) / /S]k L0, QA (E O M (0, QM) (G 1) dCdv.

Let us define for 1 < j, k < 2 the operator

(A12.2.26) Lypa(€.Q)

= (14 0)650(6C M) L+ HL+0)d(€. ¢ N (L +v)D,]
where we used notation (A12.2.17). Then, by (AT2.2.16)
(A12.2.27)

LiSin(6,¢) = Sin(e, €) + LT VO(E G

(1 +v)ir(6,¢,A)°

(1 + U)D'Uq_]k(ta v, 57 C? A)

X eitv¢jk (57(7)‘) E_]k .

We plug the expression of Sj; deduced from (A12.2.27) inside (AI2.2.25]). We
obtain on the one hand

oo H1+0)6ik(€,¢A) |
/ / (1 +0)dj(€, ¢ N)? (1 OIDull 06,6
< et (€.C, A)Ejan(t, 0,Q ,A,)(¢,m) ddv

(A12.2.28)

and on the other hand

+oo
(412229) [T [ LiaSiet v, Q0 (6 OMa(1:0.Q, M) (G dec
Using the expression (A12.2.26) of Ljxy, we perform in (A12.2.29) one inte-

gration by parts in v. We get the following contributions

(A12.2.30)
e t(1+v)d;(&, ¢, N)
/ /{ (1+v)g;k(&, ¢, )\)> — Dy {(1"‘”)( (1+U)¢]‘Jk(£ ‘) )\)>2H
xSjk(t, v, Q, A)(&, Q)M (t,v,Q, A, ) (¢, ) dldv,
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400
N / A+ 08N o0 0 0 (0)

(A12.2.31) (1+0)¢r (6, ¢ M)
(1 + U)DUMn(tv v?Qn7An)(<7 77) dCdU7
L[ (1 +u)?9r(€,¢N)
(A12.2.32) 7 Traeie S QN0

XMn(ta u, Qna An)((a 77) dC

Let us show that (A12.2.28]), (A12.2.30), (A12.2.37)), (A12.2.32)) may be writ-
ten as contributions to the right hand side of (A12.2.23]).

e Contributions of (A12.2.28) and (A12.2.30))
We make act (A12.2.28), (A12.2.30) on a function f. We shall get an

expression

+o0o
(A12.2.33) / /K 6O (Mo (t,0,Q,, A0) ) (€) dCalu
where, by the fact that g;; in (AI2.2.16)) is in i;?mé and (A12.2.12)), the

kernel K satisfies the bound

a b
K (0,6,Q)] < CEo (1 + )&, ¢, A”_l(%) (%)

X (14 v) (€] = [nl)
We bound the modulus of (A12.2.33)) by

+o00
[ IR0l (sup 1Mt 0.Q, A F(Q)) dec
0 w

Then the L? norm in ¢ of the supremum in u of (A12.2.33)) is bounded from
above by
dv.

(A12.2.35) /0+OOH/\K(v,&é)!(sg}p!Mn(t,w,QmAn)f(C)!)dC L

As a+b > 1, (A122.34]) shows that we may apply to the d(-integral, which
is of the form of the right hand side of (AT2.2.7)), estimate (AT2.2.8]), with ¢
replaced by ¢(1 + v). We obtain that (A12.2.35]) is smaller than

(A12.2.34)

+o0 , ’ ’
CKQ / eLt%—m-f-é (1 + U)—mo_%'ﬂs d’UHSUp ‘Mn(t, w, Qn7 An)
0 v -

with &' > 0 as small as we want. Since by assumption m{, > 1, we obtain

a bound of the form (AI12.2.24)), that shows that (AI12.2.28) and (A12.2.30)
contribute to R, in (A12.2.23]).
e Contribution of (A12.2.32)

This is an expression similar to (AI12.2.30]), except that we no not have a
dv integral and have a factor (14 w)? instead of (1+wv). Consequently, for the
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L? norm of that operator acting on f, we get a bound of the form (AT2.2.35])
but without dv-integration and an extra factor (1 + u), and with K estimated
at u instead of v. This implies again that we obtain a contribution to R,.

e Contribution of (A12.2.37])
By (A12.2.20) at order n — 1

DUMn(t7U7Qn7A ) ZS(t v Qn )\n) OMn 1(t v Qn 1° n 1)

Plugging this in (A12.2.37]), we get the expression

+oo A
(A12.2.36) — z/ // fi; jj:ff A))>2 Sjr(t, v, Q, N)(€,€)
J

X (L+0)S(t,v, Q" N )(C 1 ) Mp—1(t,v. Qs A1) (1) dCdn/ dv.
We write by (A12.2.15))

2

(tUQn )\n = ZZSth Qn )\n)

k'=14=1

By (A12:2.16) and the fact that EjEyy = 5£/Ejg, we have

2
(A12.2.37) Y Sjilt, v, QM) (€, O)Sw et v, Q™ N (¢, 1)

k'=1
= QJk(ta v, 57 C)qgk(t’ v, Cv 77,)
X eZtU¢Jk(£7C7>\)+Ztv¢kf(gvnlv)‘n)E]Z

where ¢}, denote the entries of matrix Q™. By (AI2.2.17), the phase in the
exponential is ¢;¢(§, 7', A + A\™). Define

(A12.2.38) Gje(t,v, &', A) = —i(1 + v) /quk t,v,&,0)qk(t,v, ¢, n')

<t(1+ ) (€, ¢ AL +0)dju(€,m, N) 2 dC.

Since gjj, is in i;’?’mo, (A12.2.12]) shows that we may write this function as
(éj)a multiplied by a function that will satisfy the first estimate (AI12.2.4)),
with K; bounded by e¢'="(1 4+ v)~™0. In the same way, since qp, is in

n 7\ D"
by an’?n ™0 it may be written as (TZT) times a function satisfying the second

estimate (A12.2.4)), with a replaced by a” and K» bounded by et~ (1 +
U)_mg- By (i) of Lemma [AT2.2.2] applied with ¢ replaced by t(1 + v), we see

RN
that (AT2.2.38]) may be written as a product of (é—>)a(<—:7,L>) times a quantity
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bounded from above by
CRNKyne ™" (277" (1 0) 37875 (jg] — ) ™
if b+ a™ = 0 and by
CR N Ky T 7m =m0 (14 )75 =m0 (e — [y |)

for any ¢’ > 0 if b+ a™ > 1, according to (A12.2.6).
If one takes a 0, derlvatlve of (A12238), one gains an extra de-
cay factor in (1 4+ v)~!.  Consequently, (m) defines a symbol in

~ 1 / 1
L+ mAmt — 5 mi+my—35 St mAm™ 6 mE +mf —

Ea,b" (resp. Ea pn ) if b+ a"™ = 0 (resp.
b+ a™ > 1). Since the phases in (m) satisfy

¢]k(§7 Ca )‘) + (pkf(C? 77/7 )\n) = ¢]Z(§7 77/7 A+ )‘n)7

this shows that (A12.2.36]) may be written under the form of the first integral
in the right hand side of (AI12.2.23)), with a matrix function Q, depending
on A, but with estimates uniform in A\, whose entries are respectively in the
classes of the statement of the lemma. This concludes the proof as, in the
case n = 0, one has just to estimate terms of the form (A12.2.28)), (A12.2.30]),

(A12.2.32). 0]
Our next goal will be to obtain bounds for (A12.2.20)) iterating (A12.2.23]).

We introduce some notation. '
Let p,n be in N*. Assume given for each (n,p) a sequence (X(]n p))lgjgn,

where X (Jn ) is an element
J _(,J J j

(A12.2.39) Xy = (o) ™) Mo .00 Ty o))

of 10, —i—oo[x]%, +oo[><]%, +oo[xN x N satisfying the following conditions:

3
>—j7=1,....n

If p<n, m(np) ,
(A12.2.40) R .
Ifp> n—i—l,m{n,p)’O > 3’ j=1,...,n—1and m’(@nJ)%0 > 1

A/
(A12241) TORESTITE s Gy + Wy 2

j' < j” = p (This exception being void if p > n or p = 1).

For any X{n p) of the form (AT2.2.39), we denote for short by i(Xgn ) the

> 1 except eventually if

class

j j j

E(Xj ) = 33 (p) " (np) M (), 0
J J

a(”’PVb(”’P)

of Definition [A12.2.3]
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If (X7 (n+1 p))1<i<ntl is a sequence of the form (A12.2.39)), we define from
it the concatenated sequence (X&Cp))lgjgn and the truncated sequence

(X (];lTp))lngn in the following way: We just set

(A12.2.42) X =X i i=1.m

while we denote

3,C 3,C J,C 3,C 3,C 3,C
X35 = (o Mty Ml 00 Wy o))

where the components of the preceding vector are defined in the following way:

C _ ntl C _ J -
(A12.2.43) ?n 0 = L?n+1 T L(nJer) L{n,p) = L€n+17p),] =1,...,n—1.

Ifn#p—1, we set

(A12.2.44)
C +1 ,C ] . _
My = Mt ) F M) = s My =M G =1, — 1
n,C +1 / 3C .
M0 = Mnr1),0 T Mnt1),0 =05 Minpy0 = Mipg1p),00d = Lieeon =1

where §’ > 0 is as small as wanted (In partlcular ¢’ will be small enough so that

the lower bound (A12.2.40Q) still holds with m(n »),0 eplaced by m’ L0 — 5.
If n =p— 1, we define instead of (A12.2.44))
(A12.2.45)
1
p—1,C _ -1+ 3,C i . B
m(p_17p) (pvp) - m(pvp) 2’ m(p 1 p) (p7p)7] - 17 By % 2
PO P U XY -
Mp—10),0 = M(pp).0 T "Mpp).0 5 Mp-1p),0 = "pp),00d = L....p—2.
Finally, we set for all (n,p)
n,C n+1 n,C n
a =aqa b =)
(A12.2.46) (np) — Ut 1p) Pnp) T P(ntLp)
e = al ) VS = b i=1...,n—1
(n.p) (n+1,p)* *(n,p) (n+1,p)7 cee .

Let us check that if the sequence (X(Jn +1,p))1§j§n+1 satisfies (AT12.2.40)),

with n replace v n + 1), then '~ )1<j<n satisfies also
h laced b hen (X7 )1<j< fies al
(A12.2.40), (A12.2.41)).

Verification of condition (A12.2.40)

Case p < n. Asn # p— 1, (A122.44]) applies and shows that m{ Cp) 0=

%n+1 2.0 for j = 1,...,n — 1. On the other hand, by (A12.2.40) with n
replaced by n + 1, m(n 0 3, so that the first condition (AT2.2.40) holds
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for m( mo ifj=1,...,n—1 To get it for m?ﬁ)) 0, We write by (A12.2.44)
that
C ol 3 . 3 3
Mg 0 = Mni1p)0 T Mnt1p)0 ~ 0 > s s~ o> 8

using the first line in (A12.2.40]) with n replaced by n + 1.

Case p = n + 1. By (A12:2.45]), we have m@(in),O = m{pm)p for j =
1,...,p—2, and by the first line in (A12.2.40)) (with n replaced by n+1 = p),
this is strictly larger than 2, so that the second line of (A12.:2.40) holds for

m{};(;p) o J=1,...,p—2. On the other hand, still by (AT2.2.45])

_ _ 1 3 3 1
LC :m’(’ +mP Tl o> 242 o=

) 1
my p.p),0 PpO 27878 27 4

p_lvp)vo
so that the last condition (AI2.2.40) holds for mz;lii)o. We thus got
(IMI)formnp)owhenn: p—1

Case p > n+2 Agaln we may apply (A12.2.44)) to write for j = 1,...,n—1

m{ C,:p) 0= (n )0 > 8 by the second condition (AI12.2.40) with n replaced
by n + 1. On the other hand, still by (A12.2.44])
n,C +1 , 1 3 , 3
M np)0 = ?n—l—l,p),o + m?n+1,p),o -0 > 1 + 3~ 4 > 3

using (A12.2.40) with n replaced by n + 1. This is better than what we
need to ensure the last condition (A12.2.40]) for m(n 0. This concludes the

verification.

Verification of (A12.2.47))
We assume that (m) holds at rank n + 1 i.e.

For 1 <j.,j"<n+1,d +u > 1 except eventually if j' < j” =

(n+1 D) (n+1 D)

Let us check (AT12.2.47]) for a(ni b{ng) If both j" and j” are strictly smaller

than n, then (AI12.2.46]) shows that the wanted property holds. On the other
hand, if 7 < n, 7/ < n, then

j/7C ‘//7C . j/

Unp) T bzn,p) = Ongip) T b(n+1,p)

by (A12.2.46]), and this expression is larger or equal to one, except eventually
if 3/ < j” = p, whence again (A12.2.47]). It remains to study the case j' = n.

We have then
n j",C n+1 i
%n,p) T b(nvp) A(n+1,p) + b(n+1,p)

The inequality n+1 < j” = p cannot hold, so that the above quantity is always
larger or equal to one. This shows that (A12.2.41]) is satisfied by (X (ncp))1§ j<n-

We may state our main proposition.
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Proposition A12.2.5. — Let n be in N, p be in N* and assume given
a sequence (Xgn_i_1 p))lSan+1 of the form (A12.2.39), satisfying (A12.2.40),
, with n replaced byn+ 1. For j=1,...,n+1, let Q{nH’p) be an
element of »(X7 (n+1 p)) ® M2 (R). Denote by K(nJrl p) the semi-norm provided

by the best constant in (A12.2.12), in the case N = 2. Set as in (A12.2.18),

Qn+1 _ (Qnr;:-ll o) ,Q%n+17p)). Then there is a universal constant Cy such

that, for any f in L%, any Ay = (A" .00 AY) dn R one has when
p>n+1orp=1 the bounds
(A12.2.47)

Hil;lg |Mn+1(ta ann+1aA

12 < Cg+1K(n+1,p)E£(n+l’p)t_m(n-H’p) ||f||L2

where
n+1
Lin+1,p) Z L (n+1,p)’
(A12.2.48) "+1

1
n+1,p Z m (n+1,p) — n + 1) (5/ - Z)
K(nJrl,p) - K(n—i—l,p) K&-ﬁ-LP)’

while if 2 < p < n+ 1, one gets instead

(A12249) Hilil()) ’]\4'71—‘,—1@7u?QnerA

Jr
< P ponot e g,
The proposition will be deduced from the following lemma.

Lemma A12.2.6. — Let Qn—l—l be as in the statement of Proposi-
tion [A12.2.5. There are C > 0, a sequence Q}: = (Q{th))lgjgn, with
Q{gp) in E(ngp)) ® Ma(R) with semi-norms K(]fp) satisfying

T
(A12.2.50) Koy < Kluia ),
a sequence QS = ( {fp))1<]<n, with (n p) in E(Xgncp ) ® M2(R) and semi-
i.C s
norms Kg;hp) satisfying
i,C . ,C
(A12.2.51) Kfn p) S Kfn+17p) Jg=1... K(n ) = CK(n+1,p)K(n+1,p)
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such that

(A12.2.52) Hsglg|Mn+1(t,u,Qn+1,An+1)f|)

L2

< [[sup (82 (t,u, QT AT) /1]
u>0

L2
n+1

-m +14g 0t +1 T T
4Ot Mt e(n+1,p)K&+17p)Hsglg\Mn(t,u,gn,gn)ﬂ‘
u

L2
C T
for other sequences of real numbers A, A\, -

Proof. — We apply Lemma [A12.2.4 with Q = (Qf,,11,),-- ’Q%n—l—l,p))’ Q=

+1 _ -1 . .
Q?nJrl,p), Q, = ?n+17p), . ’Q%n—l—l,p))' The left hand side (A12.2.23]) is
then, according to (A12.2.20)), equal to M1 (t,u, @, 1Ay y1). Let us check

that condition (A12.2.22]) holds. By (AI12.2.40]) with n replaced by n + 1, we

+1 1 1 +1 +1
have m?n+17p)70 > 1, m?nJrl,p)’O > ;. We have to check that a?n—kl,p) +b?n+17p) >
1, that follows from (A12.2.47]) at order n+ 1. Let us check that the first term
in the right hand side of (AI12.2.23]) may be written as Mn(t,u,Qg,AS), SO
that it will provide the first term in the right hand side of (A12.2.52]). We

shall define the sequence QS by

(A12.2.53) szp) = Q, Q{fp) = Qi1 d =1 n—1

where @ is introduced in the statement of Lemma [A12.2.4] Let us check that
we get for the elements of (X&Cp))lgjgn expressions (A12.2.43)—(A12.2.461).
Forj =1,... n = 1, this follows from the definition of Q{nm) in (A12.2.53)).
Consider now ). The class to which it belongs depends on the fact that

n+1 n
(A12.2.54) Dot ) T Unr1p) = 1

or not. By (AI12.2.41)) at order n+ 1, (A12.2.54]) holds except if n+1 = p > n.

Consequently, when n # p — 1, we shall have according to Lemma [AT2.2.4]

n,C n,C n,C . n,C n,C
that Lmp) Mmp)? Mmp),0 BT given by (A12.2.43), (A12.2.44)) and Ay ) b(n,p)

by (A12.2.46)). If n = p— 1, then we know only that b’gyﬁl,p) +a{41,) = 0, and
in this case, the lemma shows that m?;:;), m&i))ﬂ are given by (AT12.2.45)).
We thus obtain that the first term in the right hand side of (AT2.2.23))
is Mn(t,u,QS,AS) for a convenient sequence AS. Moreover, again by
Lemma [A12.2.4], the seminorm of Q = Q?T’L,C;) (corresponding to N = 2 in

(A12.2.12) is controlled according to the last inequality in (A12.2.51]), the

case of the semi-norms of Q{fp) €n+1 )’ j=1,...,n—1 being trivial.

We have next to check that the remainder R,, in (A12.2.23]) provides the last
contribution to (A12.2.52)). This follows from (A12.2.24]) and the fact that, by
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definition, Qz is the truncated sequence (Q(n p) ,Q(n ») ). This concludes
the proof. O

Proof of Proposition [AT22.3: We proceed by induction on n. If n = 0, the
last statement in Lemma [AT2.2.4] shows that we get (A12.2.47)). We assume

from now on that n > 1. Assume that (A12.2.47)), (A12.2.49)) have been proved
at order n instead of n + 1.

e Case p>n+2. We apply inequality (A12:252)). In its right hand
side, we may apply the induction hypothesis to Mn(t,u,QS,AS ) and
Mn(t,u,Qz,AE). Since p > n, estimate (A12.2.47) (with n + 1 replaced by
n) for Mn(t,u,QS,AS) will hold, with 1,11 ,) (vesp. M1 1), TeSD. Ky p1p))

replaced by L? = >0 L{fp) (resp. m&p) == m{’ncf — n(é’ ) resp.
K$ ) = T K7C,). Using (AI2243), (AIZ2), (AIZZEI), we get a
bound of the first term in the right hand side of (A12.2.52]) by

n+1
(A12.2.55) cee 1] K7 (1) €CTIPE RO | F o

7j=1

On the other hand, if we apply inequality (A12.2.47)) (with n+1 replaced by n)

to My (t, u,QE,A}:) and use (AT2.2.50]), we bound the last term in (AT2.2.52])
by

/7 n T _on T
(A12.2.56) Ct Mnrpti +5e<n+1p)K("++11,p)CSK(np)eW”t Hn|| £l 2

where we denoted

Q’(I;L’p) - Z { Z L{n—I—Lp
Jj=1 J=1
mavp) - Zlmffm B n(Z + 5I) - Zlm%nﬂ,p) - n(z + 5')
j= =
K= H K, ?p) H K(n—}—Lp

<.
||

according to the definition of X(]fp) in (A12.2.42)). Taking (AT12.2.48)) into
account, we bound again (A12.2.56) by (A12.2.55)).

e Case p =n+ 1. We apply again (A12.2.52). In the right hand side, the
first term may be estimated again from (Emb with n + 1 replaced by
n = p—1, since we have p > p— 1. The exponent m( ) of t in the right hand
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side will be here
/ 1 g J r 1 1
m(p 1,p) Zm(p 1,p) _1)(5 +Z):Z:1m(p7p)_(p_1)(5 +Z)_§
j=

according to (A12.2.45]). On the other hand, the last term in (AT2.2.52]) will

be estimated by (A12.2.47) at order n instead of n+ 1, and thus by (AT2.2.56)).
We thus get a bound of the form (A12.2.49]).

e Case 2 < p < n. We apply again (A12.2.52)). The first term in the right
hand side may be estimated from the induction hypothesis (A12.2.49)), applied
with n 4+ 1 replaced by n, to M, (t,u QS,AS) As n # p — 1, the exponent

(;L ») are given by (A12.2.44)), so that

v ; 1 1
_ JC - -
= ;:1 i, o) n(é + 4) > Mypy1p) T 1

which largely allows to bound the first term by

3
=)

(A12.2.57) CSCK(nH )€(n+1p)t —(n+1p)+2 ( )HfHLQ

The second term in the right hand side of (A12.252]) is estimated using
the induction assumption for M, (t,u, QrTL, AE) i.e. writing for this expression
(AT22.49) with n + 1 replaced by n. One gets again a bound of the form
(A12257).

e Case p=1. In this case, we proceed as when p > n + 1: We prove

(A12.2.47) by induction, using at each step (A12.2.52)), and the fact that the
condition n # p — 1 = 0 holding for all n > 1, we may use at each step

(A12.2.44]). This concludes the proof. O

A12.3. Proof of Proposition [A12.1.3]

We shall prove first Sobolev estimates.

Lemma A12.3.1. — Let By(t) (resp. Cyn(t)) be given by (A121.8) (resp.
(A12.1.77)) with V(:) of the form (A12.1.3), Q; being in X771 for some v > 0,
some m €10, %[ close to % (as in the example following Definition [AT2.1.1]).
There is K > 0, &' > 0 small, such that for any n in N*

152 O < (1”03’
(A12.3.1) -y
e < (s (4 2))"
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The same conclusion holds true if Q; is in E;’f(’f for all j or Qj is in 26’,7; for
all 7.

Proof. — We shall estimate |[(D;)° B, (t)(Dz) " °[lz(z2)- By (AI2.1.8)
(A1232) (D) Bu()(Dy)"

= [ TLe ™MD iVt + 73)(Da) e
j=1

X :U~O<T1<---<Tn d'Tl oo Tn-
By (AI2.1.3), this may be written as a sum of 5" terms

Z Z / H —iTj Po >SKQin+17j (t+75)

(A12.3.3) a=m? =
% elTjP0+Z(t+Tj))\in+l_j (Dx>_8

X:ﬂ‘0<7’1<"'<7’n d'Tl e dTn

where by assumption Q;; is an element of X7"" (resp. X5, resp. ¥gy') for all

j. We shall set (a,b) = (1,1) (resp. (2,0), resp. (0,2)). Composing (A12.3.3))
by Fourier transform on the left and inverse Fourier transform on the right,
as in (AI2.1.4]), we reduce ourselves to the £(L?) boundedness of an operator

that may be written, setting 7; = v;¢ in the integral, as the sum in ¢1,...,1%,
of

n ~
(A12.3.4) / T St v, Qinsrys Xy ) Lo<vr <o, d01 - . g,

where Qinﬂﬁ, is defined from @Q;, ,_; by

(A1235) Qin+1—j (t7 Uj? 57 77) = eZt ntl=d t<§>SQin+l—j (t(l + ’Uj), §7 77) <77> ®
and S(t,05, Qipyy_ss Ninyy_,) is defined in (AIZ213)). Since Q;,,,_, belongs to
the class ¥} of Definition AT2.1.1} Q;, 1, is in the class X" of Defini-

tion [A12.2.3] taking for mgy any number mg < m. As m is taken close to %, we
may assume mg > 2. In other words, (AI2.3.4)) is of the form M, (¢,0,Q", A"),

with notation (m with @ = (Qi,, .-, Qiy).
We shall apply Proposition [AT2.2.5] with n + 1 replaced by n and p = n + 1.

This is possible since, if in condition (AI2.2.41)), a; = b; = 1 for all j, or
aj = 2,b; = 0 for all j, or a; = 0,b; = 2 for all j, inequality a,s + b,» > 1is
always satisfied. We deduce from (A12.2.47)) that the £(L?) norm of (A12.3.4)
is bounded from above by

(ke (oD
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for some K > 0. Since we have 5" terms in the sum (A12.3.3), (A12.3.0)
follows for B,,(t). Since according to (AI2ZI.I1]), C,(t) may be written as
By, (t)* for some By (t) of the form (AI2.1.8]), we get also the first estimate

This concludes the proof. ]

We want next to obtain £(L?) bounds for L o Cy,(t), where L is defined in
(A12.1.15). We compute first the composition between L and an operator of
the form e~ 0V(t + 7)€’ where V is of the form (A12.1.3).

Lemma A12.3.2. — Let Q) be a 2 X 2 matrix of functions in the class Eﬂn
of Definition [ATZ.1.1. Let X be in R and set Vg(t) = eMKg according to
notation (A12.1.3), (A12.1.4). Then one may find 2 X 2 matrices Q" (resp.

Q") with entries in X5\ (resp. X5y or X¢'") such that

(A12.3.6) Lo (e_iTPOVQ(t + T)@”PO)

= (67iTPOVQ/(t + T)eiTPO) ol + (efiTPO VQN(t + T)eiTPO)

Proof. — Using notation (A12.2.14)), we write

2 2
- | LS
Qt, €)= g 2 aiklt: &M Ein e 7

with gj; in X37. We have to compute the action of L on the operator with
kernel

INt+T )
D) / A GV GE G o
(A12.3.7) 1k 2T
£ n
X—794jk t+T7§777 dfdn
GETRARR
One gets using expression (AT2.1.15]) of L
IA(t+T )
(A1238) Y © 2(”) / ey Hirl(=1p€) (1) n(0)]
1<jk<z =T
: £ 1
X (2 + (1) p! (€)) => ——q,1(t + 7, &, 1) dédn.
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Asp/'(§) = %, we have

(A123.9) (2 + (—1)7Hep'())

i_ &
ol Y T

ik & k1, s
+(-1) i 5[y + (=1 ().

We plug (A12.3.9)) in (A12.3.8]). The last term in (A12.3.9]) gives an expression
of the form of the first term in the right hand side of (AI2.3.6]), where the
operator e~ "0V, (t + 7)€’ is given by an expression of the form (A12.3.7),

1)i+k <§>2 gji i.e. Q" is given by

(=1)¥]

with é_)%qjk‘ replaced by (—1)

2 2 52
"(t,&m) ZZ qjx(t, & m)( )J+kEjk@-

This is an element of 22’70 as wanted.
On the other hand, if we plug the first term in the right hand side of

(A12:39) in (AT2:3.8)) and perform one integration by parts, we get

2 et (t471)

]Jrlzz

j=1k=1

/ i @E—yn) i (—1)7 p() —(—1)*p(n)]

i N k8 §

w [(=1)7 LD + (~1)* > D, | [
[ )" Rl

We get an operator of the form of the last term in (A12.3.6]), with a symbol

Q" that may be written as the sum of an element in X5 and an element in

gt + 7,€,m)] dédn.

¥ This concludes the proof of the lemma. O
We may prove now the following statement.

Lemma A12.3.3. — For any n in N*, one may find operators CE(t), 0 <
p < n such that

(A12.3.10) LoCyh(t)=C%t)o L+ i CP(t)
p=1

which have the following structure: Operator CO(t) is of the form

n
(A12.3.11) / [T e ™V (t + 7)€ P Locr, <ocr, dry ... dr,
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where V'(t) = Y22__, ei)“tKQz, with Q) matrices with entries in X5'. Opera-
tor CE(t) for 1 < p <n has structure

p—1
(A12.3.12) / [[ e ™7V (t + 7)™ x e ™oV (t + 7)™ 7o
j=1

n
X H e MVt 4+ 7)e 0 Ng i cocry dmy L dTy,
J=p+1
where V is as in (AI2.13), V' is as above and V" is a sum V"(t) =
2, el’\ltKQi/, with Q matrices with entries in X5y or Xg'\'. Moreover,
one has the following estimates

(A12.3.13) HCS(t)Hqu) < ([(eLtéuri—m)n’

~ / 1_ (g1
(A12.3.14) ICE(W) | £er2) < (Kett? i) (5 ) 1<p<n.

Proof. — We start from expression (AI2.1.11]) of C,(¢). If we compose at the
left with L and use (A12.3.6]), we obtain the sum of an expression of the form

(AT2.3.12) with p = 1 and a quantity of the form (AT2.1.17]), with the product
replaced by

n
(A12315) e—iTlpo,L'V/(t + Tl)einPo oLo H e—iTjPoiv(t + Tj)eiTjPO-
j=2
If we iterate, we obtain C9(t) o L with C(t) given by (AI2.3.11]) and the sum

for p going from 1 to n of (A12.3.12)).
We have next to obtain (A12.3.13)), (Al2.3.14)). By duality, we may replace

(A12:310) by
n

(A12.3.16) (—1)”/]"[ e TN (t+ 1) e 0 gy <oy Ay L dTy
j=1

and (AI12.3.12)) by
(A12.3.17)

n—p
(_1)n/ H efiTjPin(t +Tj)*eiTjPQefiTn+1_pP0ivl/(t+Tn+17p)*ei7'n+1_ppo
j=1

n
X H eiiTjPO’l.Vl(t + Tj)*eiq—jpo 10<7'1<"'<7'n dTl N dTn
j=n+2—p
for1 <p<n.
Consider first (A12.3.16]). We have an operator of the form (A12.3.3)) (with
s = 0) whose £(L?) boundedness reduces to the one of an expression of the
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form (A12.3.4) in terms of symbols Q; 1, given by (AI2.3.3]) from symbols
in the class X5y because of the definition of V'(t + 7;). Tt follows from the

last statement in Lemma [AT2.3.1] that the same estimate as (A12.3.T]) holds,
which gives a bound of the £(L?) norm of (AT2.3.16]) by the right hand side

of (A12.3.13).
Let us study (AI12.3.17) and show that its £(L?) norm is bounded from

above by the right hand side of (AT2.3.14). Operator (AI2.3.17) is of the form
(A12.34), with a sequence of symbols (Q;,,...,Q;,) with Qi; belonging to

the classes ifl’;né;no, where (a;,bj)1<j<n has the following form

(A12.3.18)
(am bn) = (1, 1)7 AR (a’p+17 bp+1) = (17 1)7 (aIN bp) = (07 2) or (1, 0)7
(ap—1,bp—1) = (0,2),...,(a1,b1) = (0,2).
The only couples (j',7") such that a;s + bj» may be eventually equal to zero

are those with j/ < j” = pi.e. those for which condition (AT2.2.47]) is satisfied.
We thus obtain that (AI2.3.17) is of the form (A12.3.4]) and has £(L?) norm

bounded from above by (A12.2.47)), (A12.2.49]), so by the right hand side of
(AT2.3.14). This concludes the proof. O

Proof of Proposition[AT21.3: Since m is taken close to 1 and ¢’ close to zero,
the exponent of ¢ in the right hand side of (A12.3.1]) is negative. As ¢ > 0, for
€ small enough, we have

1 1
1Bu®)llzae) < 5y GOl care) < 5

In particular, (A12.1.9]) and its counterpart for C,,(¢) holds, so that B(t) and
C(t) are well defined, bounded on H*® and satisfy (A12.1.17)
Since by (AT2.3.13), [|CI(t)|| (12) satisfies the same estimate as || By ()] (g+),

Cr ()| £ r+), the operator C(t) = Id+325 C9(t) is well defined and satisfies
(A12Z1.19). We notice next that if we set for n > 1, Oy, (t) = > p—1 Ch(t), we
have by (A12.3.14))

IC1n(t) 2y < Cn(f?e‘)"t(nfl) <5/+i*m)t%—m_

Since &' + 1 —m < 0, we get after summation estimate (AIZ.1.20) for Cy(t) =
S0P Cyn(t). We still have to check the last assertions of the proposition.

To prove (AT2.1.2)), it suffices to check that for any n, NoB,(t) = B, (t)No
for any n, and the corresponding equality for C,(t). Because of (AT2.1.8]),

(AT2.1.17)), it is enough to show that
Noe TVt + 7)™ = — ™Y (t 4 1)e TN,
But this equality follows from (AI2.1.5) and the fact that Noe!™ = e=7Fo Ny,
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Moreover, if V preserves the space of odd functions, so do By(t), Cy(t)
because of their definition, and of the fact that Py preserves such spaces. This
concludes the proof. O






APPENDIX A13

DIVISION LEMMAS AND RELATED
PROPERTIES

A13.1. Division lemmas

We establish here some division lemmas, which are variants of similar results
obtained in [17].

Definition A13.1.1. — For n in N*, denote by I',, the set of multiindices
I=(i1,...,ip) with i = %1 for j =1,...,n. Denote by It the subset of T,
made by those I = (i1,...,in) such that Y7 1i; =1 and roch — 1, — Téh,

Let us fix some notation. If I = (iy,...,4,) is in ', and as above p(§) =
V1 + &2, we define
(A13.1.1) gr(€1, .. &) = —p(&1+ -+ &) + D ijp(&)).
j=1

Set also p(z) = V1 — 22 for |z| < 1, so that by Lemma 1.8 of [17], if v €
C§°(R) has small enough support

_ zEp(9) 2000
(A13.1.2) a+{E4) £:ng0($)7(<5>( +p/(€)))
beo.§) = S0 (670 £/(6)

satisfy estimates
090F a(2,€)| < Caglg) >+

(A13.1.3)
020 (,€)| < Cop(€)* 117,

Proposition A13.1.2. — Recall notation (A9.1.2) for the function
My(&1,...,&,) and the class of symbols introduced in Definition
for 8>0,xk>0. Let v > 0.
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(i) Let I be a multiindez in (i1, ...,i7) be in Ty, and let my be a symbol in
S1,6(IT5=1 (&))" ' My(€)”,n). Then we may find symbols

(A13.1.4) mre € Sus([] (€)' Mo(©)* (@) n), 0=1,....n
j=1

such that if v is in C°(R) and has small enough support, one may write

(A13.1.5)

n

ml(y,x’gl""agn) :mf(y’x,gl""agn H ( x—{—ng (5&)))

n
> (@ + i (&))mre(y, @,&, - )
(=1
(ii) Assume that I is in T2, Then we may find a symbol

(A13.1.6) aj € 54,5(12[ (&) Mo (&) (z)™>,n)

and symbols my ; as in (A13.1.4) such that

(A1317) ml(yaxafla o 7571) = 91(517 o 7§n)al(y,$,§1, ce 7§n)
+ Z(I’ + ifpl(é.f))ml,f(y7 T, 517 e 7§n)
(=1
Proof. — Define

(1= 7) (Mo (&) (x + inp/ (&1)))
x +i1p'(&1)
) (s, €0, ) = maly, @61, )Y (Mo(€) (@ + 1 (61))
and write
mi(y,e, €1, &) =mi (2,60, ) (g x, €, E) (@i (6)).
Then my satisfies (m, and repeating the process with m; replaced by
my 1, successively with respect to o, ..., &,, we get (AI3.1.5).

(i) Equality (A13.1.7)) is obtained from (AI3.1.5]) defining

(A13.1.8) ar =myg;* ﬁ 7(M0(5)4($ + izp'(&)))
j=1

m[,l(y’x,gl"" agn) = m[(y’x,gl"" agn)

and showing that a; belongs to Sy 3 (H?:1 (&) T Mo(€)Y ()7, n). This is
done in the proof of (i) of Proposition 2.2 in [17] (with the parameter s in
that reference set to 2). O
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A13.2. Commutation results

We study now the action of the operator £, = 3Opy,(z + p/(£)) introduced
in (AI1.1.6) on characteristic terms.

Proposition A13.2.1. — Let I be in T'" for some (odd) n > 3 and
v be nonnegative. Let mp be an element of Sis([1}=y (&) 1My (€)7, )
with B > 0. Then, for some new value of v, there are symbols mr; in

S1p(Ij=1 (&) MY ), § = Loooyn, v in Syp([Tj— (&) Mg, n), o' in
4’175(]_[?:1 <§j>71M0”, n), such that for any function vy,...,v

T

(A1321) ‘C+Oph(m1)(yl? cee ayn) = Z Oph(ml,j)(yl? cee a‘cijyja s ’yn)
j=1

1
+ Oph(r)(yl’ s ayn) + Eoph(rl)(yla Tt ayn)'
Proof. — We write decomposition (AI3.1.5) of m;, denoting the first term
in the right hand side by mgl). This is an element of Sy g(T]7—; (£j>71M0”, n)
supported in

(A13.2.2) Ny, 2, €1, &) e +iep (&0)| < aMo(€r, ..., €)™}
/=1

for some small o > 0. It is proved in the proof of Proposition 2.2 in [17] that
on domain ([(AT3.2.2]), one has |&| < CMy(€) for any ¢ = 1,...,n and that
(dp(x)) ~ My(€) (see formulas (2.10) to (2.13) in [17], and the lines following
them as well as Lemma 1.8). Let us show that

n

(A13.2.3) m{(y, 2,60, &) 6+ &) = S D(E)]

J=1

=Y mri(yx, &, 60) (@ + 05D (€))
j=1

for symbols my ; in S4 3 (H?Zl <§j>_1MO(§)3+”(x>_°O, n) Actually, expanding
the bracket in the left hand side of (AI3.2.3) on & = i;dp(z), j = 1,...,n
and using Y7, i; = 1, one may write the left hand side of (AI3.2.3)) as

(A13.2.4) S mM (g, 61, 6 — ijde(x))E; (. €)
j=1
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&z, ):Al[p”((l—u)dw(w)w(fﬁ---+§n) zn: "((1=p)ijdep(@)+4&;) | dp

Notice that on the set (AI3.2.2) containing the support of mgl), x stays for
any £ in a compact subset of | — 1, 1] and that for any « in N*

(0“dip(x)) = O({dip(x)) T2*) = O(Mo(€)72*) = O(Mo(€)*),

so that each 0 derivative of €;(x, §) is O(M0(§ )30‘) on that support. Moreover,

we may write using (A13.1.2))
(& — ijde(2))&; (2,8) = (x +4;9'(§))b+ (2, )€ (2, €)

if (z,€) stays in (A13.2.2)) and the function v in (AI3.1.2)) is conveniently
chosen. Plugging this in (A13.2.4]) and defining

m[,j(y,x’gl,"'agn) - )(y’x 51’ ,§n)b+(x,§J)éj(x,§)

we get (AI3:2.3)), with a symbol my ; in the wanted class because of (A13.1.3)
and of the fact that ;] = O(My(§)) on (AI3.2.2). We use now Proposi-

tion [A9.2.T] to write
(A13.2.6) Opy(p/(&)) 0 Opy (mi (3,281, . &)
= Oph (p/(él +--+ én)mgl) (y’ z, 515 s agn))
+ hoph<T1(y,$,§1, cee 7§n)) + Oph<ri(y7x7§17 o 7§n))

with r1 in Sy g([T7=; (€)' MY, n), ¥} in Sh (I (&))" MY, n) for some v.
Using (A13.2.3]), we may rewrite the first term in the right hand side as

(A13.2.7) ZOph( 26,600 (&)

+ 3 0py (e (3,61, €)@ + i3/ (€5))).

j=1

Using that Y77 ;4; = 1, and that £, = +0py(z + p'(€)), it follows from
(A13.15), (A132.6), (A132.7) and Proposition [A9.2.7] that £, Op;(m;) is
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the sum of terms of the following form:
S0py (o, €+ i (€)=, m
(A13.2.8) %oph(ml,j(y,x,gl, &)@+ P (E)), G = L
Opy,(r(y, =, &1, &) + %Oph(ri(fyaxa&, e ,En))

with my; in S4,5(H?:1 (&) " My(€)*(x) ", n) coming from (AIZLH) or
(AI327). To conclude the proof, we just have to apply again Proposi-

tion [A9.2.] to the first two lines of (AI3.2.8)), in order to rewrite them as
the sum in the right hand side of (A13.2.1]), up to new contributions to the
remainders. O

In the non-characteristic case, we cannot expect an equality of the form

(AT13.27)). Instead, we shall have:

Corollary A13.2.2. — Let I be in T2, Then there are symbols mr j,
r, v’ as in the statement of Proposition [A13.2.1 and a symbol ry in
Sap(TT75=1 (&))" MY, n) for some v, such that

‘CJrOph(mI)(Qla s ayn) = Z Oph(ml,j)(yl’ ce >‘Cijyja s aQn)
j=1

+ Oph(r)(yl’ s aQn)

(A13.2.9) X
+ Eoph(r/)(yla s 7Qn)
X
+ Eoph(rl)(yla e 7211)'

Proof. — We may reproduce the proof of Proposition [AT3.2.1] except that,
when Taylor expanding the bracket in the left hand side of (A13.2.3) on §; =

ijdp(x), we shall get the right hand side of this equality and the extra term
1) IR L
(A13210)  m (g2 &) [P (Y dsde(@) — Yo p (isde(a))
=1 =1

which does not vanish if Y77 ;i; # 1. Since p'(§) = é? and dp(r) =

—z{dp(z)), with (dp(x)) = O(My(£)) on the support of mgl), we see that

may be written as xr; for some ry as in the statement. This gives
the last contribution to (A13.2.9)), the preceding ones being those furnished
by the proof of Proposition [A13.2.] O
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The last term in (A13.2.9]) does not enjoy nice estimates. Because of that,
non-characteristic terms have to be eliminated by normal forms. We describe
such normal forms in next section.

A13.3. Normal forms for non-characteristic terms

Proposition A13.3.1. — With the notation and under the assumptions of
(ii) of Proposition [A13.1.3, one may write for any vy, ...,v,

(418.31) (D~ Op, (26 +p(&) — in%) ) Opp(ar) (w1

= Opp,(mr)(vy, ..., 0,) + Z Opy(ar)vy, ..., (De — Oph(Aij))yj’ ce U]
=1

+E(£1" B ayn)

where \i;(x,§) = € +i;p(§) — %h, and where R is the sum of terms of the
following form

hoph(mf,j)(yla s ,Eijyj, e ’yn)’ 1 < J =n
(A13.3.2) Opy(rp)(uy, -, u,)
hoph(rf)(yl’ ce ayn)

where my; s in Sy p([1j=1 <§j>71M6’(x>71,n), rr (resp. 7 ) belongs to

Saa(IT=r (&) Mg (@)™, n) (resp. S} 5(IT1=1 (&) Mg, n)) for some v.
The first line in (A13.3.3) may also be written as

(A13.3.3) Oph(r})(yl, cey )

Jor a symbol r} in Sy ([T} (&) My n).

Proof. — Notice first that by the definition (A9.1.6) of Op;, and the fact that
h = %, one has

(A13.3.4) (D¢ — Opy,(2€))Opp(ar)(vy,- -, v,)

= 3" Opyar) (v - (D — Opy(€) )y - 2,

j=1
+ ihoph((xaxaf)(y’ xz, 5)) (yla oo ayn)'
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Moreover, by Proposition [A9.2.7] and the definition (AI3.1.1]) of g;
(A13.3.5)  — Op,(p(§))Opslar)(vy, -, v,)

= Opy(argr)(wy,- -, v,) — Y i;0p4(ar) (v, -, OPL (€))L - -, vy)
j=1

+ hOpy,(rr)(vy, .- ., v,) + Opp () (vy, - - ., v,)

where 7y s in Sy([Tjoy (&) ME (@)™ n), ) in 84 ([T (&) M),
Notice that p(¢) is in S, g((€),1) (for any &, [ since, this symbol depend-
ing only on one variable £, My(§) = 1), so that, to get from Proposi-
tion [A9.2.1] symbols r7,r} in the indicated classes, we would need that a; be
in Sy (Mg 171 (&) *(z)~°°, n) instead of (AI3.16). But by (AI3.1R), as
is supported in (A13.2.2]), and we have seen just after this formula that this

implies that |&| < CMy(§) for any £. Consequently, the above property for ay
does hold, for large enough v. If we make the sum of (AT3.3.4]) and (A13.3.5)),
we get that the left hand side of (A13.3.1]) is given by the sum in the right
hand side of (A13.3.7]), contributions to R of the form of the last two lines in

(A13:32) and the term Opy(argr)(vy,...,v,). By (AI317), we thus get the
first term in the right hand side of (A13.3.1]) and expressions

—Opy(mpey, .61, &)@ +ip (&) (i, - -, v,)-

Using again Proposition [A9.2.T], we write these terms as contributions to R
given by (A13.3.2). This concludes the proof. O

A13.4. Quadratic normal forms for space decaying symbols

In section we have performed an easy quadratic normal form, that al-
lowed us to get rid of the quadratic term in the right hand side of (ZI.1I1J),
given by Opy,(mo,r)[ur], with |I| = 2 and mg ; in 5’070(]_[?:1 (¢;)71,2). This
procedure made appear a new quadratic term Opy, (my ;)[us] in the right hand
side of (2.2.2]), given in terms of a symbol my ; in So.0(IT32, )71 2). We
shall have to perform also a normal form to eliminate such terms. We define
a new class of operators.

Definition A13.4.1. — Letw € [0,1], i = (i1,42,i3) in {—1,1}>. We denote
by Kiw (resp. K ,(i)) the space of operators of the form
(A13.4.1)

(f1, f2) = 7 / / /mgok?ffo,51,52,M1,H2)f(51)f(52)d§0d§1d§2d,u1d,u2
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where k is a smooth function of (t,&o,&1,&2, 11, p2) that satisfies for some v
in N; any N7’707717727:u17u27j in N

(A13.4.2) [0/00° 0 0L k(t, &0, 61, 62, pir, p12)]

1
< CMy(&r, &)V TR (g — 1&g — ppy) N0t

(resp. that satisfies

(A1343) ’agaggagllag;k(t7§07§17§27,u17/’LQ)’
< O My (&1, &) TOOTHIM (G — &y — pogy) ™ N0 H2)
X (t(io(€0) — i1 (&1) — ia(&2))) ™

in the case of K, (1)), where Mo(&1,&2) still denoted the second largest among

(&1), (&2)-
If k satisfies

(A1344) k(ta _505 _51, _52) = _k(t, 505 515 52)

then sends a couple of two odd functions or two even functions to
an odd function. If k satisfies

(A13.4.5) k(t, =€, —€1, —&a) = K(t, &0, &1, &2)

then [A157.1) sends a couple (f1, f2) with fi odd, fo even or fi even, fa odd
to an odd function.

Let us check first that we may express operators of the form Op(m')(vy,v2)
with m/ in 51 (Mo(fl, &) [15=1 €t 2) in terms of operators ICy .

Lemma A13.4.2. — Let m' be in S} o(MoT[22, (&) ".2). Let ir,ip €

{—1,1}2 be any choice of signs. Then if L1 is defined by , one may
find operators Ky, ¢, in K19, 0 < €1,0o <1 such that the action of Op(m/) on
any couple of odd functions (vi,ve) (as defined in (21.0)) may be written as

1 1
(A13.4.6) t? Z Z Kf17f2(Lfllv1’szlv2)'
£1=04¢2=0

Moreover, if m satisfies (ZL70), Ky, 0, is given by a symbol k satisfying
if b1+ 02 =0 or2 and if b1+ 41 = 1.

Proof. — We may rewrite

Op(m/)(v1,v2) = Op(m})((Dz)~"v1, (D)~ 'v2)
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with m/ in S10(Mo,2). Using the oddness of v;, we write

- 1
(D) My = 2o | (DalDy) Y0 (i) dpy
(A13.4.7) 335/_1(1

=57k /_1[(%%')(#]'35) — nyrj(pje) | du;
for any choice of the signs i; = +. By definition (ZI.6) of the quantization and
inequalities (ZI.4]) satisfied by elements of the class S, one may rewrite expres-
sions like Op(m))(x f1, f2) as sums of expressions of the form Op(m})(f1, f2),
for new symbols 1] in Sy o(ME,2) for some v. Using (AI3.4T), we thus see
that Op(m/)(v1,v2) may be rewritten as a sum of terms

1 1
2 [ 0p) (L) ), (L2 v2) (2] dand
for some symbols 7' in S ,(M,2). By (L), we have

Op(")[f1(p1-), f2(p2-)]

1

= (271-)2 /ez‘m(M1§1+M2§2)m/(x, wiéi, ,u2§2)f1 (51)f2(§2) d€1dés

- %/emgok(&)’517§2vﬂl7ﬂ2)f1(§1)f2(§2)d&d&z
with
]{?(507517527,“17#2) = #m/(go . /1/151 . /1/252’”151’/1/252)_

It follows from estimates (Z.I.4]) that hold for any «,«, that inequalities
(A13.4.2) are true for some v, K = 1, w = 0, which implies the conclusion
as the last statement follows from the transfer of property (ZI7T) to k by
inspection. U

Proposition A13.4.8. — Let K be in Kyo. Let i = (ig,i1,i2) € {—,+}>.
One may find operators Ky, K in IC; 1(2) such that for any fi, fa
2

(Dy = iop(D2) VK w (f1, f2)] = K (f1, f2)
+ VK ((Dy — i1p(D2)) f1, f2)
+VtKg (fi.(Dy —iop(Da)) f2)
+ K (f1, f2).

If K satisfies (resp. (A13.4.5)), so do Ky, K.

(A13.4.8)
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1-x(z)

Proof. — Take x in C§°(R) equal to one close to zero and set x1(z) =
Define from the function k associated to K by (AI3.4.1]) a new function

(A1349) kH(tv 507 §17 527 M, ILLQ) - k(&)? 517 627 K1, ILLQ)
x 1 (VE(=io(€o) +i1(&1) + ia(6)) )

Then ky satisfies (AI3.4.3) with w = 3. Call Ky the associated operator. If
we make act Dy —igp(D,) on VtKg(f1, f2), we get the second and third terms
in the right hand side of (AT3.4.8)), an operator associated to the function

(A13.4.10)  k(&o, &, €y s i2)(1— ) (VE(—ioléo) + i1 (61) +ia(62)))

and contributions coming from the action of D; on kp, that may be written
1

as contributions to K, in (AI3.4.8]) (with even an extra factor t~2). Finally,

we see that (AI3.4.10]) provides K in the right hand side of (AT3.4.8)), modulo

another contribution to K. This concludes the proof as the last statement

follows from (AT3.4.10]). O

Corollary A13.4.4. — Let m/ be in Si,o(H? LENTH ) One may find for

any iy,1i9 in {—,+}, any £1,0s in {0,1} operators K?zl?zz’ Kﬁfh in the class

K 1 (1,i1,42) such that for any odd functions v1,va, if one sets
’2

1 1
£1,02 01 12
Z Z KH,il,iQ (Li1 Ul’Lig UQ)

01=0/¢2=0

l\‘)lw

(A13.4.11) Qzl,zg (1)1,?}2 =t

then
(D¢ — p(D2))Qiy i (v1,v2) = Op(m/

~—

(v1,v2)

(A13 4 12) + Qll, i2 ((Dt - le )Ul,vg)
+Qzl ZQ(U Dt—ngD )) )
+ Riy i (v1,v2)
where
Fiy (01, v2) = 75 Z S KO, (Lo, L)
(A13.4.13) 052 0
.,_5
+22t 2 Z Z Kﬁ:ﬁ%ig (Lfll V1, Lf; ’1}2)_
01=0/¢2=0

Moreover, if m' satisfies (Z17), Kﬁ}’ffm, 21;?22 satisfy (A13.7.7) if 01+ s =
0 or2 and if 01+ 0y = 1. In particular, Qi, 4, sends a couple of odd
fuctions to an odd function.
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Proof. — By Lemma [AT3.4.2] we may write Op(m’)(v1,v2) under the form
(m We apply to each Ky, o, in (AI3.4.6]) Proposition [AT3.4.3] If we
define Kh}’l i (Tesp. Kﬁll’bl ) from the operator Ky (resp. K1) in (AI3.4.8]),
and use that L;, commutes to D; — igp'(D;), we obtain (AI3.4.12) for the
Qi, i, defined in (lm_l__]_l) The last statement of the corollary follows from
the last statement in Proposition [A13.4.3] and Lemma [A13.4.2] O

A13.5. Sobolev estimates

We shall prove Sobolev estimates for operators introduced in Defini-

tion [A13.4.11

Proposition A13.5.1. — Let w € [0,1], kK > 0, K be an operator in the
class K, (i) (for a triple i = (i1,i2,i3) € {—,+}*). Assume moreover that

the function k in is supported for |&a] < 2(&1). There is og € Ry
(depending on the exponent v in [A13.4.3)) such that the following estimates
hold true for any s in Ry, any test functions f1, fo

(A13.5.1) 1K (f1, f2)llms < Ct=5 || fallzroo || f1 s

(A13.5.2) (K (f1,zf)llms + 1K (@fr, f)llms + 1K (f1, f2) |l s
< Ct% | foll ol fall -

(A13.5.3) K (@ f1,afo)lls < CES | foll mroo | full -

Proof. — By (AI3.47]), we have to prove, in order to establish (AT3.5.7]), that
the operator

11
(91,92) —>/_1 /_1/(§0>8k5(f,50,51,52,H1,M2)<51>7S<§2>7UO
xg1(&1)92(§2) d1dSadprdps

is bounded from L? x L? to L?, with operator norm O(t~2). Because of our
support assumptions, My(£1,&2) < C(&2), so that we may control the factor
My(&1,&2) in (AI3.43) by C (&), i.e. M§ will be bounded using (&) 7° if oy
is taken large enough. Moreover, as s > 0, (€)% (€0 — &1 — pa&a) N (&)™ =
O(1) when |&2| < 2(&) if N is large enough relatively to s. The proof of
(AI3.5.0]) is thus reduced to the proof that operators of the form

(A13.5.5)

1o
(91.92) — /_1/_1/k?(f,50,51,52,M1,M2)91(51)92(§2)d§1d§2d,u1duz

(A13.5.4)



254 APPENDIX A13. DIVISION LEMMAS AND RELATED PROPERTIES

are bounded from L? x L? to L?, with operator norm O(tf%), if & satisfies

(A1356) “;:(t?gOa 517 527 M1, /1/2)‘ S C(SO - lel - M2§2>_1<£2>_2
(t(io(€0) — in(€1) — ia{&2)) ™!
The operator norm of (A13.5.5]) is bounded from above by

1 41 ~ 3
(A13.5.7) 0/1/1 {szlp/\k(t,fo,§1,§27/i17/i2)’dgldgz}

1
B 3
X {Sup/’k(ta§0,§17§27/i1,/~62)’dﬁo} dpidps.
1,

Notice that there is C' > 0 such that for any «, 5 in R, any p € [—1,1]

w

_ _ 1w
(A13.5.8) [+ (o)1 p+ ) dg < Ol Het
uniformly in «, 8. Actually, if we integrate for |{| > 1, we bound (AI3.5.8]) by

CWl ([ ta @) ae)

If one takes in the above integral computed either on domain £ > 1 or £ < —1,
n = (£) as a new variable of integration, we get a bound by the right hand side

of (AI3.5.8]). If one integrates for [¢| < 1 in the left hand side of (AT3.5.8]), we
bound the corresponding quantity by

/|§|<1 <t°’(oc+\/@)>*1dgg C/<a/+th2>_1d§§ o

which is better than the bound we want. We use (A13.5.), (AI3.5.8) with

¢ = & to estimate the second factor in (AI3.5.7) by t7 and (AI13.5.8]) with
£ = & to estimate the first integral factor by ¢~ 3 lpa|™ 2, We obtain that

(AI35.7) is O(t~ %) from which (AI3.5.1) follows.

To get (A13.5.2]), we notice that, by (AI3.4.1)), K (z f1, f2) (resp. K(f1,2f2),
resp. K (f1, f2)) may be written as K;(f1, f2) for an operator K; of the form

(AI3.41)), obtained replacing k by D¢ k (resp. Dg,k, resp. —Dgk). Since
by (AI3.4.3)) these Dg; derivatives make lose t (and change the value of the

exponent v), we get (A13.5.2]) from (AI3.5.1) (with a new value of o).
One obtains (AI3.5.3]) in a same way. O

Corollary A13.5.2. — Let K be an element of K, (i) forw € [0,1], K >0,

i € {—,+}3. The following estimates hold true for any s > 0 and some oy
independent of s:

(A13.5.9) 1K (1, fo)llzzs < % [[flloo || follzrs =+ 1 fllrrel| foll 2700
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1K (1, f2)llz2 < C %[ fall 2 foll oo

(A13.5.10) iy
K (fu f2)llrz < CE2 [ fill ool foll 2

(A13.5.11)
1K (2 frs f2)ll2 + | K (fr,2fo)ll 2 + 12K (frs f2)ll22 < CE2 | full 2 | foll o
1K (2 frs fo)ll2 + |1 K (fr, 2 fo)ll 2 + 12K (frs f2)ll2 < CE2 | fullmeo | foll 2

(A13.5.12)  [|K(z f1, fo)llms + K (fr, 2 f2) s + |2 K (f1, f2)l s
< Ct2 ||| Aullmeoll fallzzs + [1fll s | fall o ]

Proof. — We may split K = K. + K-, where K~ (resp. K.) is given by
an expression of the form (AI3.47]) with & supported for |£5]| < 2(&;) (resp.

1&1] < 2(&2)). If we apply (AI3.5.1) to K~ and the symmetric inequality to
K, we obtain

Let us prove (AI3.5.10)). It suffices to show that the two estimates hold
for K for instance. The first one follows from (AI3.5.0]) with s = 0. To get
the second one, we notice that it is enough to establish the L? x L? — L2
boundedness of

11
(91,92) —>/_1 /_1k‘(t,éo,51,52,,Ul,M2)<51>70091(§1)92(52)d51d52dﬂ1dﬂ2

with operator norm O(t~%). Since |&| < 2(¢;) on the support, if oo has been
taken large enough, we see that we may rewrite this under the form (AT3.5.5]),
with some £ fulfilling (AT3.5.6]) so that the conclusion follows.

Finally, estimates (A13.5.17]) follow from (AT3.5.10]), noticing that, as in the
proof of (AT3.5.2]), we may reduce ourselves to operator Ki(f1, f2) satisfying

the same assumptions as K, up to the loss of a factor ¢*. This concludes
the proof, as (A13.5.12)) follows from (AI3.5.2]) and the above decomposition
K - K< + K>. D

Corollary A13.5.8. — Let B > 0, K,0q as in Corollary [A13.5.2 and take
s large enough so that (s — o¢)B > 1. Then

(A13.5.18)  |K(Lefi )z < CO8 [P Lafillie + il ] fell e

(A13.5.14)  |K(f1, Lefo)llze < CUF | full g2 [0 | Lt foll g2 + | foll o)

Proof. — Let x be in C§°(R), x =1 close to zero. Decompose

Lifi = x(t"Dy)(Lefr) + (1= Xx)t PDo)(Lefr).
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Write
(1 - X)(tiﬂD:v)(Lifl) = x(l - X)(tiﬂD:v)fl + itiﬂx/(tiﬂD:v)fl

£(1= (Do) g5 i

If one applies the second estimate in (AT3.5.10), (AT3.5.11), one gets then
1K (1= x)(t™"Da) L fr. fo) |12
< C[tE(1(1 = )P D) il oo

+E (I (D) fill oo + (1 =)@ Da) fllzeo )| ol

Since (s — 09)8 > 1, this is bounded by Ct~ || f1||zs || f2] 2.
On the other hand, by the second estimate

1K (Xt Do) Lafi, fo) 2 < CE 2 |Ix(t P Do) Lt fill oo | ol 2
< Ct 30 L ful| 2 fol 2

This concludes the proof of (AI3.5.13]), and thus of the corollary since
(AT3.514) is just the symmetric estimate. O

Let us get next some Sobolev estimates for K (Ly f1, Ly f2).

Corollary A13.5.4. — Let K be in the class K, ,(i). Assume moreover

that k in is supported for |&1| < 2(&2). Let s,00,5 be as in Corol-
lary[A13.5.3. Then, if (s — 0¢)8 > 1,

(A13.5.15)  ||[K(Lsf1, Lo fo)llas < CE 2| fall s [t77° | L full 2 + || fall o

(A13.5.16)  [|K (L fr, fo)llms + I (fr, L fo) e < CE 73| fillare | foll e
1K (@ fr, fo)lls + 1K (Fry 2 fo) s < O | full s || follars
1K (2 fr, 2 fo)llme < CEZ | full s | follare-

Proof. — Take x in C§°(R), equal to one close to zero and write K (L4 f1, L+ f2)
as a linear combination of the four terms

(A13.5.17)

I= tK(X(t_ﬁDm)Lifh <g—z>f2)
_ (B Da_
(A13.5.18) 1=t (=20 D)L <Dx>f2)

I = K(X(fﬂDz)Lifl, xfz)

IV = K((1 =) (Do) Lafr,2f2).
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We apply (AI3.57) (with f; and fo exchanged since we assume here |£;]| <
2(£2) on the support instead of |£3] < 2(£1)) in order to estimate the H® norm
of I by

(A13.5.19) Ct'" 2 ||x(t P D) Ly fill oo || f2]| s
< Ct'=2 1P| Ly 1l 2 |l fall s
which is bounded by the right hand side of (AI3.5.15]).

To study I, we write it as a combination of terms

ER((1= 007D 55 7555 1)

(D)
tK(x(l — )t PDy) f1, %JE)
it P K (X (7 Do) fr, é;—;fz)-

We estimate their H® norm using m and (m) (with f1 and f5
interchanged) by
2| foll s [0 = X) (P Da) fillazeo + X' (P Dy )ﬁ”m]
< Ot o5 ]| s | fo s

This implies a bound by the right hand side of (AT3.5.15]) since (s —0¢)3 > 1.
By (AI3.5.2) (with f; and fy exchanged), we estimate the H® norm of I11
by
Ct% | x(t ™" D) L fillzroo | fo e

that we bound by the right hand side of (AI3.5.15]) as in (AI3.5.19) since
w<1.

We write IV as a combination of terms

tK((1- (D )< Shah)

K(x(l —X)(t g;)fhfo)
it*BK(X'(t*BDm)fla wfz)-

We estimate the H® norm of these quantities using (A13.5.2)) and (AT3.5.3))
with f; and fo interchanged. We get

C(1% + %) (1 = ) Do) fill oo | ol

As (s — 09) > w, this implies a bound by the right hand side of (A13.5.15]).
This concludes the proof of (A13.5.15))
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To prove (A13.5.16), we decompose K (L fi, fo) (resp. K(f1,L+f2)) as
the sum of itK(d;—z)fl, fg) (resp. £tK (fl, £—i>f2)) and of K (xfi, f2) (resp.

K(f1,zf2)) and we apply (AI3.5.1]) and (AI3.5.2)) to get the conclusion.
Finally, (A13.5.17) is just a consequence of (A13.5.2)), (A13.5.3]). O

We translate finally the preceding corollary when one does not make any
assumption of support on the frequencies.

Corollary A13.5.5. — Let K be in the class K, ,(i). With the notation of
Corollary one has the following inequalities

(A13.5.20)
IK(Ls f1, Ly fo)|us < Ot 72 [tﬂUO(HLileL?Hf?HHS + Al | L foll )

| fulle N £l

(A13.5.21)  [|K(f1, Lefo)llus + 1K (Lafu, fo)llms < CE72 || frl gl fol e,
(with any choice of the signs & in the left and right hand side of these inequal-
ities).

Proof. — One decomposes K = K.+ K- as in the proof of Corollary [AT3.5.2]
and applies (AT3.5.15), (A13.5.16). O



APPENDIX A14

VERIFICATION OF FERMI GOLDEN RULE

The goal of this Appendix is to check that the Fermi golden rule, used in
Chapter [3 (see Lemma [3.2.3] and the proof of Proposition B.2.T]) does hold. We
already know that from Kowalcyk, Martel and Munoz, who gave a numerical
verification of the condition. We shall prove here that it may actually be
checked analytically.

Al14.1. Reductions

We want to prove the following:

Proposition A14.1.1. — Let Ys be the function defined in (31.22). Then
Ya(v2) # 0.

Let us prove here the following reduction:

Lemma A14.1.2. — Define the integral

. 1 : h3
(A14.1.1) I= / e2irV2 [cosh2 x+ 3 + iv/2sinh z cosh x} w dx.
R

cosh' z
If I #0, then Ya(v/2) # 0.
Proof. — Recall that by (BI1.22]), Y3 is given by
(A14.1.2) Ya(z) = b(z, Dy)* [k(z)Y (2)?]

where k,Y are defined in (LLEH), (LLE) and b(z, D,) has been introduced
in Proposition [A8T.Il Since b(z, D,)* preserves real valued functions and
odd functions, we see that Y5 is real valued and odd. By Proposition [A8.1.1]
Wi = ¢(Dg)* o b(x,D,)* (when acting on odd functions), where c¢(£) has
modulus one. In order to show that 572(\/5) # 0, it thus suffices, according to
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(A14.1.2)), to prove that Wi [r(z)Y2](v/2) # 0. Recall that by (A82.23)) and
(A8.2.24),

(A14.1.3) Wow= o= [yl de
with, by (A8.2.25l),
(A14.1.4) by (2,€) = 1e0T(E) f1 (5, €) + LeoT(—E) ol —),

where f1, fo are the two Jost functions introduced at the beginning of Ap-
pendix [A8 and T'(€) is defined in (A8.2.16]). We thus get

WEk@Y2)(V2) = [ V(@ V()Y (o) do

(A14.1.5)

= T(V2) [ file, VDr(a)Y (0 do

Since the transmission coefficient 7'(1/2) is non zero, it remains to prove that
if T given by (AT4117) is different from zero, the same is true for the last
integral in (AT4.LH), or since xy? is real valued, that

(A14.1.6) / Fi(w, V2)R(2)Y (2)? de £ 0.
One checks by a direct computation that the function
; 1 x x
iz/2 - —2(< : e : -1
e [1+2cosh (2)+1\/§tanh2}(1+1\/§)

solves (ARILI) with ¢ = v/2 and is equivalent to V2 when z goes to +00, so
that is the Jost function fi(z,+/2). If one plugs that value in (AT4.1.6) and

uses the definition (LLH), (LLA) of ,Y, one obtains that (AT4.1.6]) is just a
nonzero multiple of (AT£1.T]). This concludes the proof. O

A14.2. Proof of the non vanishing of Y5(1/2)

In order to prove Proposition [AT4.1.1] it remains to show that I given by
(AT4.1.7)) is non zero. We compute explicitly this integral by residues.

Lemma A14.2.1. — One has

2
Al14.2.1 [=——.
( ) sinh(m/2)

Proof. — Denote

sinh? z

cosh” 2

; 1
(A14.2.2) F(z) = e2izV2 [cosh2 z+ 2 + iv/2sinh z cosh 2
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This is a meromorphic function on C with poles 2z, = i5(2k + 1), k € Z. Let
R be the rectangle in the complex plane with vertices at +kw, +km + ikw for
k in N*. In order to show that

“+oo
(A14.2.3) I =2im ) Res(F, z)

k=0
we have to check that

1
/ Ptk + ithm)|k dt — 0
0

1
/ \F(thr + ikm)|kdt — 0
~1

when k goes to +00. As F(—Zz) = —F(z), we just have to prove
1
(A14.2.4) k/ (|F (km + itkm)| + |F(thr + ikm)| ) dt — 0
0

when k — +o00. As F(z) is a sum of expressions of the form e2izV2 sl 2 (i

cosh? z
p,q in N, p < g, and bounding
sinh? z (1 —e22)p

< o(P—q)Rez
‘ (1+ e 2)a

cosh?z| —
we obtain when 0 <t <1, k € N*
|F(thr + ikm)| < e 2kmV2-thr

—2km
|F(kn + itkm)| < o—2kry3t—kr (1 F € 2km )P

(1 _ 672k7r)q
from which (AT4.2.4)) follows.
Using cosh(z;, + w) = i(—1)¥ sinhw, sinh(z; + w) = i(—1)* cosh w, we may
write

F(Zk + w) — e—nﬂ(2k+1)G(w)

cosh?® w

sinh” w

so that Res (F, zx) = e~ ™V2(2k+1) Res (G,0). One checks by direct computation
that Res (G,0) = —2. Tt follows that (AT4.2.3]) is given by

) 1
G(w) — 62“/5“’ [— sinh? w + 5~ 1\/5 sinh w cosh w}

+oo 2
[ = —djme—TV2 Z p2mkv2 _ AT
=0 sinh(7v/2)

whence (AT4.2.7)).
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a(t) (Component of the perturbation of
the kink on the odd eigenfunction of
—92+2V), 24

a%PP(t) (Approximation of ay(t)), 69

a+ (Functions defined in terms of a), 27

e(t,e) (Function going to zero), 69

¢jk(£7 B )‘) (Pha'se)7 216

(z) (Phase of oscillation), 233

Fgla;us,u_] (Quadratic term in a in
(C213)), 27
Fla;us,u_] (Cubic term in a in

), 27

F?[uz] (Linear term in uy in (LZIH)),
27

F3 [ur] (Quadratic term in wux in
CZT), 27

FP[ur] (Linear term in uy in (CZIH)),
27

F3 [ur] (Quadratic term in wux in
CZT), 27

F3 ;[ur] (Cubic term in uy in (LZI5)), 27

F?la;uy,u_] (Term homogeneous of or-
der 2 — j in a in (T213)), 27

F?la;ug,u_] (Term homogeneous of or-
der 3 — j in a in (L2I3)), 27

®y (Constant), 28

®;[us,u_] (Function of u+), 28

g[(fl, ey gn), 233

Iy (Constant), 28

I'jus,u—] (Function of uy), 28

I'" (Set of characteristic indices), 233

" (Set of non characteristic indices),
233

H(z) (Kink), 23

k(z) (Coefficient in equation for perturba-
tion of the kink), 23

L (Matrix of L4 operators), 212

L (Matrix of operators), 95

Ly = LOp,(z £ p/(€), 189

Ly =x+tp'(Dy), 42

Ly =z £1tp'(D), 193

H'HW{L’W (Semiclassical Holder norm), 185

I-|lwe.o (Holder norm), 25

[[[lzz; (Semiclassical Sobolev norm), 185

Op(-) (Quantization of symbols), 151

Op,(a) (Quantization of semiclassical
symbols), 150

Op'(a) (Quantization of classical sym-
bols), 151

Order function, 149

p(Dz) (Operator), 26

Py (Matrix of operators), 87

P.. (Projector on absolutely continuous
spectrum), 24

P(t) (Time depending operator), 210

Sik(t,v,Q,\) (Kernel of operator), 216

¥, (Space of functions of (£,7)), 209

i;’f:’mo (Space of functions), 216

¥+ (Remainder in second decomposition
of u3?), 43

S.,3(M, p) (Space of symbols), 149
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Sy..5(M,p) (Space of y-decaying symbols)
, 150

S',IX:B (M,p) (Space of mild y-decaying
symbols) , 150

te (Rescaled time), 37

us (p-uple of functions u+), 26

u+ (Complex valued unkown defined from
w), 26

u*PP (Vector with entries u"), 85

u”P (Approximate solution), 42

'SP (First term in decomposition of

app
uiP?), 42
u""PP (Second term in decomposition of
app
111 P, 42
ufP™" (First term in second decomposi-

tion of u3P?), 43

u'ipp’l (First term in decomposition of

uzirpp,l)7 43

1 . s
u”%PP" (Second term in decomposition of

utPPl), 43
ur,; (j-th component of ur), 26
u'*PP (Vector with entries u'5FP), 85
U+ (New unknown defined from u4 ), 68
@ (Vector with entries @+ ), 85

V(z) (Potential in equation for perturba-
tion of the kink), 23

V(t) (Time depending operator), 210

w (First reduced unknown), 26

Y () (Odd eigenfunction of —92+2V), 24
Y2(x) (Function in S(R)), 39
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