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Abstract
Purpose of Review Natural archives are imprinted with signs of the past variability of some aerosol species in connection tomajor
climate changes. In certain cases, it is possible to use these paleo-observations as a quantitative tool for benchmarking climate
model simulations. Where are we on the path to use observations and models in connection to define an envelope on aerosol
feedback onto climate?
Recent Findings On glacial-interglacial time scales, the major advances in our understanding refer to mineral dust, in terms of
quantifying its global mass budget, as well as in estimating its direct impacts on the atmospheric radiation budget and indirect
impacts on the oceanic carbon cycle.
Summary Even in the case of dust, major uncertainties persist. More detailed observational studies and model intercomparison
experiments such as in the Paleoclimate Modelling Intercomparison Project phase 4 will be critical in advancing the field. The
inclusion of new processes such as cloud feedbacks and studies focusing on other aerosol species are also envisaged.

Keywords Aerosol . Mineral Dust . Last GlacialMaximum . Iron Fertilization . Radiative Forcing

Introduction

Aerosols are a key component of the climate system; yet their
impacts on climate are still characterized by a high degree of
uncertainty, because of the variety in physical and chemical
composition, the complexity of their interactions, and the large
spatial and temporal variability of emissions and dispersion [1,
2]. The temporal variability in aerosol emissions is imprinted

in both instrumental and paleoclimate records across a variety
of time scales, including glacial-interglacial [3].

Aerosols directly impact the atmosphere radiation budget
by the reflection and absorption of solar and terrestrial radia-
tion. Depending on their size and chemical composition, spe-
cific aerosol species cause a net positive (black carbon) or
negative (sulfates) direct radiative forcing, while other aerosol
species have more complex net effects in different contexts
[4]. Aerosols also affect climate by acting as cloud condensa-
tion nuclei (CCN) and ice nuclei (IN), thus affecting cloud
lifetime and albedo [5, 6]. Absorbing aerosols can also impact
cloud formation by heating, which can reduce relative humid-
ity hence the liquid water path and/or cloud cover (semi-direct
effect) [7, 8]. Finally, aerosols affect heterogeneous chemistry
in the atmospheric environment [9]. Aerosol deposition to the
surface can also impact climate. Snow albedo can be dimin-
ished by the presence of dust and especially black carbon (BC)
[10, 11]. Last but not least, aerosols contribute elements such
as phosphorus and iron to the terrestrial and marine biosphere,
that can alter different global biogeochemical cycles and in
turn the global carbon budget and climate [12].

Wind stress on the surface is tightly linked to the emissions
of the most abundant natural primary aerosols. Mineral
(desert) dust originates by eolian erosion from arid and
semi-arid areas with low vegetation cover [13, 14], whereas
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inorganic sea salts (mostly NaCl) are emitted as sea sprays at
the air-water interface within breakingwaves via bubble burst-
ing and by tearing of wave crests [15], along with organic
components [16]. Seawater brine and frost flowers forming
on the surface of sea ice are a potentially important source of
fractionated sea salt species, as well as organic matter [17, 18].
Land vegetation is also an important source of primary aero-
sols, either as primary biological aerosol particles (PBAPs)
such as viruses, bacteria, fungal spores, pollen, plant debris,
and algae [19, 20] or in the form of black carbon and partic-
ulate organic matter emitted via biomass burning (vegetation
fires) [21]. Volcanic eruptions also emit ash [22]. Secondary
aerosols can form from gaseous precursors: wetland emissions
of ammonia, biogenic emissions of volatile organic com-
pounds (BVOC) from terrestrial vegetation and biomass burn-
ing [23], and sulfate compounds from volcanic eruptions
(SO2) and marine biota (dimethyl sulfide) [17]. Natural nitrate
aerosols are formed from sources of NOx such as biomass
burning, biogenic soil emissions, lightning, and stratospheric
injection [24].

There is sometimes confusion about aerosol naming con-
ventions. Different categorizations are possible, depending on
[1] source process [2] chemical characterization as an airborne
species or [3] operational definition when measured from sed-
iments for the paleoclimate record. Here, we choose to orga-
nize the discussion around the potential of accumulation and
measurement in paleoclimate archives.

Changing climate conditions that affect winds, the hydro-
logical cycle and vegetation will affect aerosol emissions [25].
This is of interest for future climate change, where non-fossil
fuel aerosol emissions can change along with direct anthropo-
genic emissions [26, 27], and it is relevant for the attribution of
changes in the framework of the Intergovernmental Panel on
Climate Change (IPCC). This is also relevant for climate,
because of aerosols’ feedback on the climate system [2, 28],
as well as for public health [29, 30]. Past climate changes will
also have caused differences in aerosol emissions, as evi-
denced by natural archives [31]. In the context of climatic
changes, simulations of the past climate constitute a test bed
for global Earth SystemModels (ESM), including for aerosols
such as dust [32].

Driven by changes in the amount and distribution of in-
coming solar radiation, and mediated by internal feedbacks
in the climate system, the last 100,000 years long glacial pe-
riod culminated ~ 21,000 years before present (21 ka BP)
during the last glacial maximum (LGM). The LGM was char-
acterized by a significant drop in temperatures of several de-
grees, moremarkedly at high latitudes, associated to a massive
reduction in the concentration of greenhouse gases compared
to pre-industrial values [33]. Extensive ice sheets covered
North America and West Eurasia, and the sea level was
120 m below the present level, associated with a reorganiza-
tion of atmospheric and oceanic circulation, the hydrological

cycle, and ecosystems [34]. As we describe later, there is
ample evidence that natural aerosol emissions were profound-
ly impacted by such climatic changes, in particular by changes
in vegetation, glacial erosion and sea ice cover, and winds.
Therefore, the LGM is an ideal target to explore natural aero-
sols (and dust in particular) interactions with climate.

Climate archives such as ice cores, marine sediments, lakes,
peat bogs, and soil and loess profiles (Table 1) contain most of
the information available about past aerosols. To interpret a
paleoclimate record, the aerosol (or proxy) deposition flux to
the surface of the archive needs to be connected to atmospheric
concentrations of aerosols, and we need to understand how
much the record is representative of larger scale patterns on
different temporal and spatial scales [57]. Prognostic aerosol
models represent a good example of process-based model-
ing—the modeling of a variable as it could be retrieved from
a climate proxy [58]; in order to (almost) directly compare
models with observations, the variable of interest is deposition
flux, which for a meaningful model should include both dry
and wet deposition processes [59].

Most of the information we have is about desert dust; dust
is insoluble and, while it undergoes aging, it can be conserved
to some extent in several natural archives from close to the
source areas (e.g., loess) to remote sinks into the ocean or
polar ice sheets [60]. Ice cores also preserve information about
sea salt, sulfur and nitrogen species deposited to the surface
[33]. Ice core data on carbonaceous aerosols is more limited,
although some complementary information can be gathered,
in terms of paleofire proxies, from charcoal, which offers
chances of constraining Earth system models [56]. However,
ice cores are limited in spatial coverage.

Some observations (Table 1) refer to the aerosol directly
(e.g., particle counter dust measurements) or semi-directly
(e.g., 232Th for dust), and may be also used as a quantitative
constraint of the aerosol mass in the past; other observations
provide information about a process or a combination of pro-
cesses, in which case we have a paleoclimate proxy in a tra-
ditional sense (e.g., ammonia for fires). In yet other cases both
perspectives hold, e.g., desert dust is both a tracer and an agent
of climate change. Besides determining the physical, chemi-
cal, and optical properties of aerosols, their mineralogical and/
or elemental composition (including the isotope composition)
may provide very useful insights onto geographical prove-
nance and genesis processes (Table 1), as exemplified by dust
radiogenic isotopes [33, 59].

Uncertainties from present day estimates of aerosols will
propagate into the understanding of paleoclimate; for instance,
modeling uncertainties in the parameterizations of cloud nu-
cleation or the prescribed intrinsic optical properties of dust; or
uncertainties in relating air-snow transfer of tracers. On the
other hand, information from paleoclimate archives can also
help to clarify some of these issues, and indeed provide a test
for those models aiming to predict future climate change.

100 Curr Clim Change Rep (2018) 4:99–114



Ta
bl
e
1

Su
m
m
ar
y
of

th
e
in
fo
rm

at
io
n
on

pa
st
ae
ro
so
lf
ro
m

na
tu
ra
la
rc
hi
ve
s,
re
le
va
nt

fo
r
th
e
la
st
gl
ac
ia
lm

ax
im

um

Ty
pe

of
ae
ro
so
l

N
at
ur
al
ar
ch
iv
e

M
ea
su
re
d
pr
op
er
ty

D
er
iv
ed

pr
op
er
ty

C
om

m
en
ts
an
d
ex
am

pl
e
re
fe
re
nc
e

M
in
er
al
du
st

Ic
e
co
re
s

In
so
lu
bl
e
du
st
nu
m
be
r
an
d
vo
lu
m
e
co
nc
en
tr
at
io
n

(C
ou
lte
r
co
un
te
r,
la
se
r
op
tic
al
co
un
te
rs
)

D
us
tm

as
s
ac
cu
m
ul
at
io
n
ra
te
s

(M
A
R
)
an
d
as
so
ci
at
ed

pa
rt
ic
le

si
ze

di
st
ri
bu
tio

ns

T
he

m
os
td

ir
ec
tm

ea
su
re
m
en
to

f
du
st
,i
n
Bm

in
im

al
ly

di
st
ur
be
d^

an
al
yt
ic
al
co
nd
iti
on
s
[3
5–
37
]

N
on

se
a
sa
lt
ca
lc
iu
m

D
us
tM

A
R

P
ro
xy

fo
r
du
st
,w

ith
un
ce
rt
ai
nt
ie
s
re
la
te
d
to

va
ri
ab
le

du
st
co
m
po
si
tio

n
[3
8]

R
ad
io
ge
ni
c
is
ot
op
e
co
m
po
si
tio

n
(N

d,
Sr
,P

b,
H
f)
;

ra
re

ea
rt
h
el
em

en
ts
(R
E
E
);
re
la
tiv

e
ab
un
da
nc
e

of
m
aj
or

el
em

en
ts
;m

in
er
al
og
y;

an
d
m
ag
ne
tic

pr
op
er
tie
s

Pr
ov
en
an
ce

fi
ng
er
pr
in
tin

g
S
pa
tia
lv

ar
ia
bi
lit
y
an
d
lim

ite
d
sa
m
pl
in
g
in

po
te
nt
ia
l

so
ur
ce

ar
ea
s
ca
n
be

a
lim

iti
ng

fa
ct
or

[3
9–
42
]

D
us
te
xt
in
ct
io
n
an
d/
or

sc
at
te
ri
ng

(o
pt
ic
al
m
et
ho
ds
)

S
ha
pe

an
d
si
ze
-r
es
ol
ve
d
in
tr
in
si
c

op
tic
al
pr
op
er
tie
s

O
nl
y
a
co
up
le
of

pi
lo
ts
tu
di
es

[4
3]

M
ar
in
e
se
di
m
en
ts

M
as
s
of

re
si
du
al
se
di
m
en
ta
ft
er

se
le
ct
iv
e
re
m
ov
al

of
op
al
an
d
ca
rb
on
at
es

(o
pe
ra
tio

na
lly

de
fi
ne
d

fr
ac
tio

n)

D
us
tM

A
R

U
su
al
ly

us
ed

in
co
m
bi
na
tio

n
w
ith

ag
e-
m
od
el
-d
er
iv
ed

m
as
s
ac
cu
m
ul
at
io
n
ra
te
s;
no

fo
cu
si
ng

co
rr
ec
tio

ns
[4
4]

G
eo
ch
em

ic
al
lit
ho
ge
ni
c
pr
ox
ie
s
(e
.g
.,
A
l,
T
i,

2
3
2
T
h,

4
H
e)

co
nc
en
tr
at
io
n
in

se
di
m
en
t

D
us
tM

A
R

U
su
al
ly

us
ed

in
co
m
bi
na
tio

n
w
ith

ag
e-
m
od
el
-d
er
iv
ed

m
as
s
ac
cu
m
ul
at
io
n
ra
te
or
,i
n
th
e
ca
se

of
2
3
2
T
h,
a

co
ns
ta
nt

fl
ux
-b
as
ed

m
as
s
ac
cu
m
ul
at
io
n
ra
te

2
3
0

T
h-
ex
ce
ss
,3
H
e)
,t
o
co
rr
ec
tf
or

se
di
m
en
tf
oc
us
in
g

[4
5–
47
]

L
as
er

op
tic
al
co
un
te
rs

P
ar
tic
le
si
ze

di
st
ri
bu
tio

ns
U
se

of
di
sp
er
sa
nt
s:
si
ze

m
ay

no
tb

e
fu
lly

re
pr
es
en
ta
tiv

e
of

at
m
os
ph
er
ic
de
po
si
tio

n
[4
8]

R
ad
io
ge
ni
c
is
ot
op
e
co
m
po
si
tio

n
(N

d,
Sr
,P

b)
;R

E
E
;

4
H
e/
T
h

Pr
ov
en
an
ce

fi
ng
er
pr
in
tin

g
S
pa
tia
lv

ar
ia
bi
lit
y
an
d
lim

ite
d
sa
m
pl
in
g
in

po
te
nt
ia
l

so
ur
ce

ar
ea
s
ca
n
be

a
lim

iti
ng

fa
ct
or

[4
9]

L
oe
ss

de
po
si
ts

R
ad
io
ca
rb
on

or
lu
m
in
es
ce
nc
e
da
tin

g
of

so
il
ho
ri
zo
ns

D
us
tM

A
R

R
el
ia
bi
lit
y
hi
gh
ly

de
pe
nd
en
to

n
ge
om

or
ph
ol
og
ic
al

se
tti
ng
s
an
d
da
tin

g
pr
ot
oc
ol
s
[5
0,
51
]

L
as
er

op
tic
al
co
un
te
rs

P
ar
tic
le
si
ze

di
st
ri
bu
tio

ns
U
se

of
di
sp
er
sa
nt
s:
si
ze

m
ay

no
tb

e
fu
lly

re
pr
es
en
ta
tiv

e
of

at
m
os
ph
er
ic
de
po
si
tio

n
[5
2]

R
ad
io
ge
ni
c
is
ot
op
e
co
m
po
si
tio

n
(N

d,
Sr
,P

b)
;R

E
E

Pr
ov
en
an
ce

fi
ng
er
pr
in
tin

g
S
pa
tia
lv

ar
ia
bi
lit
y
an
d
lim

ite
d
sa
m
pl
in
g
in

po
te
nt
ia
l

so
ur
ce

ar
ea
s
ca
n
be

a
lim

iti
ng

fa
ct
or

[5
2]

S
ea

sa
lts

Ic
e
co
re
s

M
aj
or

io
ns
,e
.g
.,
N
a+

S
ea

sa
lt
fr
om

op
en

w
at
er

an
d

se
a
ic
e

U
nc
er
ta
in
ty

in
di
se
nt
an
gl
in
g
th
e
tw
o
so
ur
ce
s
an
d

in
te
rp
re
tin

g
th
e
si
gn
al
[5
3]

S
ul
fu
r
sp
ec
ie
s

Ic
e
co
re
s

S
O
4
2
−
an
d
M
SA

Su
lf
at
es
:b

io
ge
ni
c
ac
tiv

ity
,

vo
lc
an
oe
s,
an
d
se
a
sa
lt;

M
S
A
:

bi
og
en
ic
em

is
si
on
s

P
re
se
rv
at
io
n
is
su
es

fo
r
M
S
A
.V

er
y
lim

ite
d
da
ta
,

di
ff
ic
ul
tie
s
in

in
te
rp
re
tin

g
th
e
si
gn
al
[5
4]

N
itr
og
en

sp
ec
ie
s

Ic
e
co
re
s

N
O
3
−
an
d
N
H
4
+

N
itr
at
e
ae
ro
so
lf
ro
m

lig
ht
ni
ng
,

fi
re
s,
an
d
bi
og
en
ic
em

is
si
on
s

C
on
ta
m
in
at
io
n
an
d
pr
es
er
va
tio

n
is
su
es
.V

er
y
lim

ite
d

da
ta
,d
if
fi
cu
lti
es

in
in
te
rp
re
tin

g
th
e
si
gn
al
[5
4]

C
ar
bo
na
ce
ou
s

ae
ro
so
ls

Ic
e
co
re
s

O
rg
an
ic
ca
rb
on
,f
or
m
at
e,
le
vo
gl
uc
os
an

N
H
4
+

B
io
ge
ni
c
em

is
si
on
s,
fi
re
s

C
on
ta
m
in
at
io
n
an
d
pr
es
er
va
tio

n
is
su
es
.V

er
y
lim

ite
d

da
ta
,d
if
fi
cu
lti
es

in
in
te
rp
re
tin

g
th
e
si
gn
al
[5
5]

L
ak
es

se
di
m
en
ts
,

pe
at
s,
an
d
so
il

C
ha
rc
oa
l

S
ou
rc
e
lo
ca
tio

n
of

pa
le
of
ir
es
,

ty
pe

of
bu
rn
in
g
re
gi
m
e

G
eo
gr
ap
hi
ca
ll
im

ita
tio

ns
in

id
en
tif
yi
ng

th
e
so
ur
ce
s.

U
nc
er
ta
in
tie
s
in

lin
ki
ng

fi
re
s
to

ty
pe

an
d
am

ou
nt

of
ae
ro
so
ls
pe
ci
es

[5
6]

Curr Clim Change Rep (2018) 4:99–114 101



Next, we will review the information arising from natural
archives, and the state of the art in explaining the variability in
LGM aerosol and understanding their feedback on climate, by
targeting key scientific questions that have sparked research
for the last decades or that are prone to become hot topics in
the near future.

Climate Impacts on Aerosol Emissions

In this section, we review the information from paleoclimate
archives concerning the major natural aerosol species docu-
mented for the LGM. For each aerosol species, we provide a
brief description of the specific characteristics and the poten-
tial issues concerning the preservation of the depositional sig-
nal and estimates of the mass accumulation rates; we also
describe the picture emerging from the specific paleoclimate
records, as well as possible causes for observed changes in
aerosol load/deposition rates.

Mineral Dust

Mineral dust is entrained in the atmosphere by wind erosion of
sparsely vegetated soils or loose surface sediments [61]. It is
composedmostly of silicates, along with carbonates and metal
oxides, in the clay and fine silts dimensional range [62].
Aggregates have been observed [62], but their features are
poorly understood, documented in the observational record,
and represented in models [63, 64]. Dust composition, shape,
and size combine to determine the intrinsic optical properties
(mass extinction efficiency, single scattering albedo, asymme-
try factor), which determine dust interaction with radiation
[43, 65]. Pure mineral dust can be considered almost insolu-
ble. This feature makes it a stable tracer that can be preserved
in different environmental matrices, therefore potentially
allowing the reconstruction of paleodust records from several
natural archives (Table 1), including ice cores [35, 36], marine
sediments [47, 66], loess/paleosol sequences [50, 52].

Extracting a paleodust record requires (1) preservation of
the deposition signal, (2) the possibility to establish a chronol-
ogy and (3) the possibility to isolate the eolian fraction, either
operationally or geochemically, from the environmental ma-
trix and other terrigenous components. In addition, it is nec-
essary to verify that (4) the sediment accumulation rate is
representative of the deposition flux to the surface [59].

Paleodust archives worldwide show a generalized two- to
fivefold increase in dust deposition in the LGM compared to
the Holocene [60], more marked at high latitudes [66–68].
Reconstructions from polar ice cores consistently show an
order of magnitude variability in dust deposition flux between
different climate states [35, 53]. These extreme variations are
particularly evident in the Greenland ice core records [53, 69].
The cold climate—high dust relation holds over several

glacial interglacial cycles, as well as for millennial scale var-
iability within glacial climates and during the last deglaciation
[35, 47, 70, 71].

Several hypotheses have been proposed to explain glacial
interglacial changes in paleodust records. Increased aridity
[72, 73] and gustiness [51, 74, 75] are widespread conditions
that could have enhanced dust emissions during glacial cli-
mate, when a general reduction of the hydrological cycle
could also reduce wet scavenging and increase dust lifetimes
[76, 77]. Additional mechanisms active at a more regional
level could cause a characteristic geographic signature in spe-
cific paleodust archives in different geographical settings [78].
Source erodibility could be enhanced by reduced vegetation
cover, linked to regional drying [79], and possibly reduced
plant fertilization by CO2 [80], and especially by increased
sediment availability through glacial processes [39, 81],
which is a well-established source of LGM dust at least in
the Southern Hemisphere [82, 83], possibly also in connection
to the exposure of continental shelves by lowered sea levels
[40]. From an atmospheric transport perspective, reorganiza-
tion of the atmospheric circulation between mid and high lat-
itudes [35, 84], shifts in the intertropical convergence zone
[85], and changes in the monsoonal variability [48] all con-
tributed to shape the regional patterns of dust deposition in the
LGM. In general, the LGM saw an expansion of mid and high
latitude dust sources.

Global data compilations [59, 60, 80, 82, 86–89] allow for
a generalized and consistent view of the geographical variabil-
ity of the dust cycle, as well as constraining models, by com-
paring deposition fluxes from the models and mass accumu-
lation rates for the observations in the same size range [86].
Model simulations including changes in dust sources (Fig. 1a)
can be used in climate change experiments. The LGM climate
constitutes an excellent test for dust; a model’s spatial contin-
uum can support the interpretation of paleodust archives [57],
and yield quantitative estimates of the mass budget of the
global dust cycle (Fig. 1c). Currently, only a few models, with
diverse mechanisms to account for changes in dust sources,
and diverse levels of validation against modern and paleodust
data, have tried to simulate the LGM dust cycle [77, 82, 86,
90–98]; model emissions (loading) range from ~ 2400 to ~
16,100 Tg a−1 (23 and 71 Tg) for the LGM, and between ~
1100 and ~ 7100 Tg a−1 (8 and 36 Tg) for the corresponding
pre-industrial/current climate control cases, with a median in-
crease by a factor 2.0 (1.9) in the LGM (Fig. 1b, d).

The large spread is attributable to differences in the repre-
sentation of dust emissions and deposition mechanisms, in-
cluding from the dust schemes themselves, as well as differ-
ences in boundary conditions (including vegetation), the con-
sideration of different aerosol size ranges, and lastly whether
or not glaciogenic sources of dust (derived from glacier ero-
sion) [81] were included. Each of these aspects contributes to
the variability. Examples from specific studies illustrate and
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quantify the impacts of, e.g., allowing for source changes and
using different emission schemes [80, 82, 95]. Future im-
provements anticipated to positively impact the representation
of the dust cycle include the representation of physical climate
boundary conditions, vegetation cover [91, 95], and
glaciogenic sources [82, 86]. Dust sensitivity experiments
planned for PMIP4 will provide an excellent opportunity to
coherently compare LGM dust simulations for the first time
[99]. Importantly, by exploiting the concept of process-based
modeling, dust can be also viewed as a tracer and used as an
indirect test to evaluate other components in the climate sys-
tem, including vegetation, atmospheric circulation, and pre-
cipitation [58, 90].

Sea Salt

Here, we focus on the inorganic component of marine primary
aerosols, i.e., sea salt from both open water [100] and sea ice
[101–103]. Information about LGM sea salt deposition is de-
rived from the interpretation of signals preserved in polar ice

cores (Table 1). This limits the spatial coverage of this kind of
paleo-records compared to dust. Nonetheless, the location of
polar ice cores in the proximity of high latitude oceans, where
sea salt is the dominant aerosol species, offers an interesting
chance for model validation.

Soluble Na+ ions, stable in snow and ice, are considered the
more robust indicators of sea salt depositional fluxes in
Greenland and Antarctic ice core records, because crustal so-
dium contributions are considered negligible in relative terms,
and be corrected for [54, 69]. Beside the dominant NaCl, other
sea salts (Na2SO4, CaSO4, CaCO3) contribute to the ionic
budgets in polar snow and ice; in particular, it has been noted
that Na2SO4 is a species present in open water sea salts, but
almost absent from sea ice salts originated from frost flowers,
which can allow for disentangling the two sources based on
considerations of ion balance and corrections based on stan-
dard sea water content [17, 104]. A few recent studies based
on the sublimation of ice samples and the combination of
microscopy and spectroscopic analyses helped the characteri-
zation in their solid state of soluble aerosols trapped in ice

Fig. 1 a Map of active sources for dust emissions in the LGM and pre-
industrial (PI) conditions [90]. b Comparison of global mass budgets of
dust emissions for LGM (upper panel, blue) and corresponding PI or
CUR (PI/CUR) control (lower panel, red) for different climate model
simulations [77, 82, 86, 90–97]. c Example map of dust load in the
LGM [86]. d Global mass budget of dust load for LGM (upper panel,

blue) and PI/CUR control (lower panel, red) simulations [77, 86, 90, 91,
93–95]. The black diamonds in b and d highlight the simulations
displayed in a and c [86, 90]. The semi-circles on the x-axis in b and d
mark the average LGM (blue) and control (red) of the respective model
ensembles. The vertical gray dotted lines mark the zero value on the x-
axis
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cores, as well as variations in relative abundance in different
climatic periods [105, 106].

The relative influence of sea salts in specific ice cores
varies with the geographical location and proximity to the
edges of the ice sheets, hence to the open water and sea ice
sources [54]. In general terms, ice core records indicate that
deposition rates of Na+ in Antarctica increased by a factor of 3
to 5 during the LGM, compared to the Holocene [107–109].
Smaller increases, between 1.5 and 3 times the Holocene av-
erage if looking Na+ accumulation rates or concentration in
ice, were observed in Greenland [53, 110]. About whether
concentrations in ice, rather than deposition fluxes, should
be regarded as more representative of aerosol burden, some
have argued that, because of changes in snow accumulation
and aerosol deposition mechanisms, concentrations in ice are
more informative than deposition fluxes in areas where wet
deposition of aerosol dominates over dry deposition, and vice
versa [57, 69].

Changes in sources (sea ice cover), emission strength and
transport pathways (wind speed, cyclogenesis), and residence
time (reduced wet scavenging) have all been invoked as pos-
sible candidates to explain glacial-interglacial variability in
sea salt deposition to polar ice sheets [69, 111]. Because only
ice cores are available to compare against for the LGM, open
ocean sea salts emissions from the mid and low latitudes,
which should be the most important for radiative forcing, can-
not be validated in these comparisons.

Very few modeling studies attempted to simulate the LGM
sea salt aerosols. Experiments considering only an open ocean
source estimated LGM (current/pre-industrial control) emis-
sions of ~ 5700 (~ 6000) Tg a−1 [112], ~ 3400 (~ 4000) Tg a−1

[93], and ~ 4100 (~ 4300) Tg a−1 [113], respectively. The gen-
eral slight decrease observed in those studies, as well as in
others focusing more on the comparison with specific ice core
records [114, 115], was generally attributed to an increase sea
ice cover, which reduces the source areas and increases the
distance from source to sink. On the other hand, by also in-
cluding a sea ice source, Yue and Liao found an increase of
almost 200% in their LGM global emissions, reaching ~
11,900 Tg a−1 [113]. In general, studies incorporating a sea
ice source found a significant increase in emissions, improv-
ing the comparison with, but still underestimating, sea salt
deposition fluxes from ice core records in terms of Na+ depo-
sition rates [93, 112, 113, 115] or modern atmospheric con-
centrations [116].

Sulfur and Nitrogen Species

The major sources of natural sulfur aerosol in polar ice are
phytoplankton’s emissions of dimethyl sulfide (DMS), which
is oxidized into methane sulfonic acid (MSA) and H2SO4 in
the atmospheric environment. These two species can be mea-
sured in ice core samples via ion chromatography [54]. SO4

2−

anions are stable in snow and ice, and those produced from the
DMS oxidation pathway are a major contributor to the total
SO4

2− budget, which also includes contributions from volca-
nic activity and sea salt. The fraction of non-sea salt sulfates
can be artificially separated from the total SO4

2− budget by
subtracting the sea salt fraction, based on the standard
Na+:SO4

2− ratio in sea water; the presence of sea ice salts
depleted in sulfates complicates this kind of exercise [54,
107], adding uncertainty to a quantitative separation of differ-
ent sources of sulfate aerosol in polar ice. On the other hand, it
was shown that MSA has preservation issues in present-day
conditions [117], whereas the presence of larger amounts of
dust in the LGM is thought to have stabilized its preservation
by offering the potential for fixation of the MS− anion onto
particulate material [107].

Ice core data suggests no significant glacial-interglacial
variations in non-sea salt sulfate deposition fluxes to
Antarctica [107], in contrast to increase in MSA LGM fluxes
[118, 119], which are nonetheless affected by preservation
issues. In contrast, an increase of ~ 2 of non-sea salt sulfate
deposition fluxes was observed in Greenland [53]. In general,
substantial uncertainties still exist in reconstructing and under-
standing the LGM sulfur cycle. Modeling studies [120] and
present day observations [121] may help shed some light on
these issues.

A few records of NO3
− and NH4

+ from polar ice cores also
exist [122], although some concern arises from potential con-
tamination and/or proven preservation issues, especially for
nitrates [123]. The few existing records indicate an increase
in LGM nitrate deposition fluxes in both Greenland [53] and
Antarctica [124]. Very little is known about nitrate deposition
on polar snow, although the analysis of NO3

− oxygen isotopes
has emerged as a viable tool to make inferences about the
potential sources [125]. On the other hand, NH4

+ records in-
dicate larger fluxes during interglacials [122, 126]. In general,
there is so far too little information to make robust inferences
about the magnitude and causes of variations in nitrogen aero-
sol species on these time scales.

Since most of the radiative forcing from these short-lived
aerosols will come from the concentration in tropical and mid-
latitude regions, which are not sampled by polar ice cores,
there are limits to how much information we can obtain [1].

Carbonaceous Aerosols

Black carbon is also referred to as elemental carbon (char and
soot). In terms of carbon mass budget, the BC concentration in
present day continental atmosphere is about one order of mag-
nitude lower than OC [127]. Natural OC aerosol is made up by
primary organic aerosol (POA), and foremost by secondary
organic aerosol (SOA) originated from volatile organic com-
pounds (VOCs) [128]. BC is preferentially emitted during the
flaming phase of a wildfire, whereas OC aerosols mostly
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originate under smoldering conditions. The highly heteroge-
neous chemical composition of carbonaceous aerosols may
give rise to confusion in the nomenclature used in the scientific
literature, where different operational definitions appear [129].

There is limited direct information on BC and OC, from ice
cores. Measurements of total/dissolved OC and speciation of
carbonaceous aerosols have been carried out on surface snow
or shallow firn cores and alpine ice cores [130, 131], but
deeper paleoclimate records are very rare at best [132]. In
particular, we are not aware of any record spanning the
LGM that provides estimates of mass accumulation rates of
carbonaceous aerosol species. A recent paper on variations in
relative abundance of different types of fluorescent organic
matter in West Antarctica indicates a stronger imprint of
humic-like material during the Holocene compared to the
LGM, interpreted as more expansive vegetation cover and
increased production and degradation of complex organic
matter in terrestrial environments [133].

On the other hand, chemical tracers of past fire activity have
been sought and measured in snow and ice; while some of
these species may not be direct measurements of the most
important carbonaceous aerosol species, they have the poten-
tial to be related to the major aerosol emissions from paleofires,
upon knowledge of a present day characterization of fire emis-
sions and deposition of its proxies onto snow and ice [134]. In
particular, ammonium, formate, and levoglucosan seem to be
the most promising species so far applied to ice cores dating
back several millennia, at least in Greenland [55]. Ammonia
tends to be the dominant nitrogen species emitted during boreal
forest fires that would leave a trace in Greenland ice, by depo-
sition on the form of ammonium formate; levoglucosan is only
produced by combustion of cellulose under smoldering condi-
tions, although its chemical stability during transport is still
uncertain [55].

Complementary to ice core tracers, charcoal sedimentary
records from lakes, peat bogs, and soil profiles represent a
proxy for paleofires. The global patterns of charcoal abun-
dance and the relative variations at specific sites provide an
indicator of the frequency, intensity, and extent of past fires
[135]. The Global Charcoal Database collects and organizes
such type of records [56, 135]. Synthesis from the Global
Charcoal dataset indicates a consistent pattern of low fire ac-
tivity in the LGM compared to the Holocene, with a few
localized exceptions [56]. This is generally consistent with
an overall reduction of land vegetation biomass acting as fuel
for fires—at high latitudes, the reduced fire activity is also
linked to the presence of the Laurentide and Fenno-Scandian
ice sheets. Indication of reduced fire activity in Northern high
latitudes in the LGM is also consistent with the only ice core
proxy record fromGreenland, i.e., the ammonium record from
the North Greenland Ice core Project (NGRIP) [126].

In terms of other biogenic emissions from land vegetation,
global simulations with an Earth system model estimated

isoprene emissions between ~ 250 and 850 TgC a−1 in the
LGM depending on the assumptions on CO2 sensitivity and
temperature boundary conditions, and a decrease by 42–44%
in total SOA burden compared to their pre-industrial control
for their central case [136, 137].

In synthesis, the overall knowledge on LGM carbonaceous
aerosol is very limited. By combining information from the
source of fires with information of past vegetation [138] and
linking with past and modern data from sinks like snow and
ice [134], we might have the tools to evaluate and constrain
models simulating past fire activity, hence potentially the
emissions of carbonaceous aerosols from fire [136, 139,
140] and vegetation [137]. Additional information is therefore
needed, to provide a constraint on the sinks of carbonaceous
aerosols, from polar (and potentially some alpine) ice cores
spanning the LGM.

Aerosol Feedbacks on Climate

We now review the available information concerning the eval-
uation and quantification of aerosol feedbacks on climate dur-
ing the LGM, in terms of direct and indirect effects in the
atmosphere [1], as well as in terms of indirect impacts on
biogeochemical cycles [141].

Direct and Indirect Impacts on Atmospheric Radiation

Numerical models are the main tool for studying aerosol im-
pacts on atmospheric radiation, because it is very difficult to
establish a causal relation for co-variations of aerosols and
other climate proxies from the paleoclimate records, perhaps
with the exception of very large volcanic eruptions. This is not
the case for dust impacts on ocean biogeochemistry, as
discussed in the following section.

Because of the large variations and the evidence of the
strong dust-climate coupling imprinted in the paleoclimate
records, most of the modelers’ attention was focused on dust.
Still, of the few studies simulating the LGM dust cycle, only
some also included climate feedbacks. The case of dust is very
interesting and very challenging because of dust interaction
with both solar short-wave (SW) and terrestrial long-wave
(LW) radiation [86, 142], which, combined with particle size
distributions and the underlying surface albedo [63, 143–145],
can result in geographically distinct patterns characterized by
either a positive or a negative direct radiative forcing (Fig. 2a).
On top of that, the LGM is challenging in particular because of
the uncertainties in constraining dust emissions and changes
in surface albedo [77, 86, 95].

The existing model studies that include both SW and LW
dust-radiation interactions estimate the net top of the atmo-
sphere (TOA) direct radiative forcing (RF), either instanta-
neous or effective, in a range between − 0.02 and −

Curr Clim Change Rep (2018) 4:99–114 105



3.2 W m−2 for the LGM, and between − 0.01 and − 1.2 W m−2

for the corresponding pre-industrial/current climate control
cases; LGM-control climate anomalies range from − 2.0 to +
0.1 W m−2 (Fig. 2b). Note that here we considered only the
control cases for the LGM simulations, not other studies focus-
ing on pre-industrial or present day climate. For reference, for
present day climate, IPCC AR5 estimated net TOA direct RF
from dust in the range − 0.61 to + 0.10 W m−2 [1], whereas a
recent study re-evaluating some of the former estimates in light
of new constraints indicates a range from − 0.48 to +
0.20Wm−2 [147]. The large spread in RF estimates is probably
linked to the spread in estimating dust loads (Fig. 1), as well as
to differences in assumptions on dust particle size and optical
properties. Note that because of the spatial variability in RF,
even models showing relatively low global averages of net
TOA RF may predict strong regional forcing (Fig. 2a).

Far fewer studies exist looking at other types of climate
impacts. Dust impacts on snow albedo could have been an
important mechanism preventing the development of an ice
sheet in Northern Asia [148], and accelerating the retreat of
the ice sheets during glacial terminations [149]. A recent study
estimated indirect effects of dust onto clouds through ice nu-
cleation processes in an idealized LGM simulation, indicating
a significant increase in cloud cover, and a corresponding net
TOA RF of − 1.1 W m−2 in the LGM, and − 0.5 W m−2 for
their control climate [97]. One study estimated that the net
TOA direct RF of sea salt from open water sources is −
0.92 W m−2 for their present day control simulation and −
0.96 W m−2 for the LGM, associated to a surface temperature
anomaly of − 0.55 and − 0.5K, respectively; if the sea ice
source is also included, the LGM impacts become larger,
i.e., − 2.28 W m−2 and − 1.27K [113]. The global impacts
associated with aerosols changes from the interglacial

reference period to the LGM are non-trivial, if compared to
the major climate forcings characterizing the LGM climate,
i.e., greenhouse gases (− 2.8 W m−2) and ice sheets and sea
level changes (− 3.0 W m−2) [150].

In synthesis, we have a fewmodel studies targeting the dust
cycle in the LGM and its direct climate impacts. While this
ensemble provides a first-order constraint of LGM dust direct
feedbacks, a coherent analysis of their differences was never
carried out. It is expected that dust experiments in PMIP4 will
provide an opportunity to make progress in this sense [99].
Notably, the consistent use of the same model configuration
for Climate Model Intercomparison Project phase 6, i.e., the
CMIP6-PIMP4 experiments under different climate scenarios,
including a pre-industrial control case, will also provide a
common reference scenario for the LGM—as well as for pres-
ent and future climate [151]—that was not consistently avail-
able for models shown in Figs. 1 and 2. The inclusion of
additional processes such as ice nucleation in a few models
could be an important step forward in for understanding and
testing past climate variability.

Indirect Impacts on Biogeochemical Cycles

Mineral dust is thought to be the main aerosol species of
relevance for global biogeochemical cycles during the LGM.
Due to its mineralogical composition, mineral dust effectively
acts as a windblown carrier for chemical elements, which can
be transported and eventually deposited far from the dust
source areas, impacting land and aquatic ecosystems. On land,
in particular, there is evidence that on long time scales, dust-
borne phosphorus can compensate the basin scale losses in the
Amazon, maintaining the balance of this major nutrient [152,
153]. On the other hand, ocean ecosystems are most notably

Fig. 2 a Example map of dust direct net (SW + LW) top of the
atmosphere (TOA) instantaneous radiative forcing (RF) [86]. b
Comparison of global estimates of dust direct net TOA RF from the
literature, either in terms of instantaneous or effective RF, for LGM (up-
per panel, blue) and corresponding PI or CUR (PI/CUR) (middle panel,
red) simulations [86, 90, 93, 95, 98, 146], and in terms of the LGM,

control climate anomaly (bottom panel, green) [86, 90, 93–95, 98, 146].
The black diamonds in b highlight the simulation displayed in a [86]. The
semi-circles on the x-axis in b mark the average LGM (blue), control
(red), and anomaly (green) of the respective model ensembles. The ver-
tical gray dotted line mark the zero value on the x-axis
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impacted by inputs of silica and especially iron. The latter in
particular is a micronutrient that can limit primary production
at the ecosystem level [154]. This can be of great importance
for high nutrient–low chlorophyll (HNLC) regions, where the
primary production is relatively low despite the excess in ma-
jor nutrients available for phytoplankton growth. The Biron
hypothesis^ postulates that enhanced inputs of dust-borne iron
during glacial climate stimulated an increase in productivity in
HNLC areas which in turn lead to increased carbon sequestra-
tion in the deep ocean drawing down atmospheric CO2 con-
centrations [155]. This mechanism has been proposed to be a
potentially relevant contributor to the ~ 80–100 ppmv ob-
served decrease in atmospheric CO2 concentration during
the LGM, compared to pre-industrial levels [107, 155, 156].
Artificial iron fertilization experiments have clearly shown an
increase in productivity in HNLC zones in response to iron
inputs, but a quantification of the consequent deep carbon
sequestration remains unclear [157].

Marine sediment records have the potential to provide crit-
ical information on this subject, provided that it is possible to
derive a record of export production, and ideally nutrient uti-
lization, that this can be related to iron inputs, and that the
source of iron can be identified. Export production represent
the fraction of organic matter that Bescapes^ remineralization
(recycling in the photic zone) and reaches the sea floor; it can
be estimated directly through the sedimentation rates of organ-
ic matter, often challenging because of preservation issues, or
more often by a proxy such as mass accumulation rates of opal
[158] and biogenic barium [159], or through the Pa/Th ratio
[158, 160, 161]. In general, the consistency of multi-proxy
reconstructions of export production and iron fluxes can be
interpreted as an indicator of iron fertilization [157]. An

additional constraint comes from the analysis of nitrogen iso-
topes in bulk sediment, foraminifera or diatoms, which is an
indicator of nutrient utilization, and provides information on
changes in the efficiency of major nutrient consumption [66,
162]. Finally, disentangling the role of different contributors to
the iron budgets can clarify the actual mechanism of iron
fertilization and allows for the quantification of the role of
dust aerosol compared to other lithogenic inputs from the
bottom, volcanic material, ice-rafted debris, or hydrothermal
vents [163, 164].

The general view emerging from marine sediment cores
[165], complemented by a number of recent studies
(Fig. 3a), is that iron fertilization during glacial periods actu-
ally caused an enhancement of the efficiency of the ocean
biological pump in specific regions [158, 183]. In particular,
there is evidence that in the Southern Ocean, the most relevant
HNLC area in terms of spatial scale and potential to influence
the global carbon cycle, iron fertilization enhanced the effi-
ciency of nutrient utilization [174]. In the subantarctic zone,
this iron fertilization attributed to dust was also coupled to a
net increase in export production, suggesting enhanced carbon
sequestration in the deep ocean [167–169]. South of the polar
front, a reduction of export production is observed, associated
to diminished upwelling and increased stratification [165,
170, 183]. The other potentially relevant HNLC areas are
the North and Equatorial Pacific (Fig. 3a). A study along the
Line Islands in the central equatorial Pacific finds no evidence
for iron fertilization by dust, nor increased export production
or increased nutrient utilization, during the LGM [160]. A
detailed investigation of three sediment cores, spanning the
entire equatorial Pacific, showed that at each of the sites, bio-
logical productivity did not respond to increased dust

Fig. 3 a Map of present day high nutrient—low chlorophyll (HNLC)
oceanic regions, indicated by patterns of nitrate concentrations in surface
waters [166], along with the location of the most relevant recent core sites
shading light on iron fertilization during the LGM [159, 160, 167–173].
The shape of the symbols indicate whether the observations suggest an
increase (triangle) or not (circle) in export production in the LGM. The
color of the symbols indicate whether observations suggest dust-driven

iron fertilization in the LGM (green) or not (red). See also pre-existing
global compilations of changes in ocean productivity in references (165,
174). b Model-based estimates of CO2 drawdown induced by increased
LGM dust deposition [175–182]. The semi-circle on the x-axis in bmarks
the average of the model ensemble. The vertical gray dotted line mark the
zero value on the x-axis
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deposition during glacial conditions, thus arguing against dust
fertilization [159]. Both of these studies are inconsistent with
prior work in the region [184]. In the subarctic North Pacific,
the very limited studies seem to indicate that increases in ex-
port production mark the beginning of the deglaciation, rather
than the LGM, and seem unrelated to dust activity or in gen-
eral to iron inputs [68, 171, 172, 185].

Ocean biogeochemistry models can help quantify potential
impacts of iron fertilization, if the inputs of dust [86, 90, 175]
and other sources of iron are reasonably prescribed [186, 187].
A few studies with three-dimensional ocean biogeochemistry
models of different complexity targeted the LGM, applying a
variety of assumptions/strategies in terms of dust inputs, iron
solubility, presence of iron-binding ligands, carbonate com-
pensation, and even climate boundary conditions for their
LGM dust experiments. In general, the models indicate that
LGM dust-induced iron fertilization could be responsible for
increased export production and for the associated drawdown
of almost 20 ppmv of atmospheric CO2, despite the large
spread in estimates (Fig. 3b) and the difficulty in establishing
a coherent comparison given the diversity on experimental
designs [175–182]. Box model studies (not included in Fig.
3b) tend to indicate larger estimates of CO2 drawdown [156,
188].

In synthesis, marine sediment core data generally agree
on the occurrence of dust-borne iron fertilization as a mech-
anism that enhanced the efficiency of the biological pump
and resulted in increased export production, at least in the
subantarctic Southern Ocean [167, 189]. Ocean biogeo-
chemistry models indicate a reduction of ~ 20 ppmv CO2

during the LGM in response to iron fertilization [182]. The
quantification of this effect and its impact on the global
carbon cycle remain however highly uncertain, most nota-
bly because of uncertainties in the representation of key
process in ocean biogeochemistry models [157], in the
quantification of dust [90] and other potential sources of
iron to HNLC areas in particular [186], and because of un-
certainty in quantifying the bioavailable fraction of iron
[190]. By considering combined uncertainties in dust depo-
sition and iron solubility alone, a recent study estimated
differences of a factor ~ 5 in soluble iron inputs to the ocean
globally, and up to two orders of magnitude in the glacial
Southern Ocean [90].

Additional paleodata from marine sediment cores, as well
as future improvements in ocean biogeochemistry models,
also driven by data from initiatives such as GEOTRACES
[191] or process-based field campaigns, are needed to better
quantify iron solubility [192–194] and indirect effects of dust
on the ocean carbon cycle. Recent developments in explicitly
representing mineralogy and aging in dust models [195–197]
will provide enhanced tools to derive dust-borne iron inputs to
the ocean, especially if also used for paleoclimate experiments
and notably for the LGM [99].

Conclusions

The preservation of certain aerosol species in natural archives,
along with other paleoclimate records, offers the opportunity
to study the response of these aerosols’ life cycle to changing
climate conditions, and in some cases, it provides clues about
aerosol feedbacks onto climate. Past climate variability since
the last interglacial can be seen as an envelope of the potential
natural aerosol variability, in terms of changing emissions as
well as feedbacks onto climate. In particular, paleoclimate
records from the LGM seem to indicate a decrease in aerosol
emission from land vegetation, whereas emissions of dust and
sea salt at mid and high latitudes were significantly enhanced.

For the LGM climate, mineral dust has receivedmost of the
attention, because of its preservation in several natural ar-
chives worldwide, the amplitude of its temporal variability,
and its potential to impact climate directly and indirectly.
While significant uncertainties still persist, dust seems likely
an important contributor to the LGM climate forcing; enough
knowledge has emerged to combine several models and ob-
servations, offering a unique opportunity to improve our un-
derstanding of the mechanisms controlling the global dust
cycle, as well as its feedbacks onto climate. The LGM climate
is also an ideal target to test the inclusion of new processes in
models, such as iron fertilization of the oceans and ice nucle-
ation in clouds.

The global budgets and causes of variability of other aero-
sol species are far less well constrained, although at least sea
salt from open water and sea ice sources seems to be a near-
future potential target, because of its potential direct and indi-
rect effects on the atmospheric radiation balance, and the
availability of some quantitative constraint on its variability
from polar ice cores.

Ongoing and future work on constraining and modeling
vegetation cover is a key aspect for the representation of past
and future natural aerosol emissions, because of its tight link
with dust emissions as well as for direct and post-fire aerosol
and aerosol precursors’ emissions.

In general, more observations are needed, in order to
enhance the geographically resolved, quantitative con-
straints of aerosol mass budgets, and the understanding of
specific processes. The coherent organization of such data
into global databases is a key tool, allowing a holistic view
of biogeochemical cycles, and providing a benchmark for
global Earth system models aiming at predicting climate
change.

In addition to LGM equilibrium climate conditions
discussed in this manuscript, abrupt changes related to the
deglaciation as well as glacial variability imprinted in natural
archives [31, 198] offer a unique opportunity to improve our
understanding of aerosols-climate interactions, provided that
adequate observational databases can support modeling ex-
periments [59].
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