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Long-Lived Snapshots with Polylogarithmic Amortized Step Complexity

MIRZA AHAD MIRZA BAÏG∗, IST Austria, Austria

DANNY HENDLER†, Ben-Gurion University, Israel

ALESSIA MILANI‡ and CORENTIN TRAVERS‡, LaBRI, U. Bordeaux, France

We present the first deterministic wait-free long-lived snapshot algorithm, using only read and write operations, that guarantees

polylogarithmic amortized step complexity in all executions. This is the first non-blocking snapshot algorithm, using reads and

writes only, that has sub-linear amortized step complexity in executions of arbitrary length. The key to our construction is a novel

implementation of a 2-component max array object which may be of independent interest.

CCS Concepts: • Theory of computation→ Concurrent algorithms.
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1 INTRODUCTION

The snapshot object [1, 2, 7] is a fundamental abstraction in distributed computing since it allows a process to obtain

a consistent view of a collection of shared memory locations while other processes are concurrently updating them.

Snapshot objects were used in the past for solving synchronization tasks such as consensus and approximate agreement

[7, 11] and for implementing concurrent objects such as counters [8] and bounded timestamps [13]. In this paper we

study the single-writer atomic snapshot (henceforth referred to simply as snapshot) object which allows each process to

update its own component in a shared array (by invoking an Update operation) and to obtain an atomic view of all

components (by invoking a Scan operation).

Wait-free snapshot can be implemented, using reads and writes only, in step complexity linear in the number of

processes n [9, 16]. A well-known result by Jayanti, Tan and Toueg [17] showed that this is tight, by proving a linear

lower bound on the worst-case step complexity of obstruction-free implementations of a large class of shared objects

that includes snapshots from operations in a set that includes (among some other operations) read and write.

Aspnes, Attiya and Censor-Hillel [3] observed that the lower bound of [17] holds only when numerous operations

are applied to the object and does not rule out the possibility of obtaining algorithms whose wort-case step complexity

is sub-linear when the number of operations is bounded. Leveraging this observation, they presented constructions of

several concurrent objects for which an operation’s step complexity is polylogarithmic in n as long as the object’s value

is polynomial in n.

Their constructions are based on a new abstraction they introduced called a max register. A max register r supports a

WriteMax(r ,v) operation that writes a non-negative integerv to r and a ReadMax(r ) operation that returns the maximum

value previously written to r . Anm-bounded max register can assume values from {0, . . . ,m − 1}, for some integerm.

Building upon them-bounded max register algorithm introduced in [3], Aspnes et al. [4] presented the first wait-free

snapshot algorithm with sub-linear worst-case step complexity. Specifically, their algorithm hasO(logn) step complexity

for Scan operations and O(log3 n) step complexity for Update operations, in executions in which the number of update
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operations is polynomial in n. However, both the worst-case and the amortized step complexities of their snapshot

algorithm deteriorate as the number of Update operations increases. For executions in which the number of Update

operations is exponential in n, both the worst-case and the amortized step complexities become linear in n.

Our contribution. The lower bound of [17] leaves open the question of whether there exists a snapshot algorithm

with sub-linear amortized step complexity. In this paper, we answer this question in the affirmative. We present a wait-

free, linearizable atomic snapshot algorithm whose amortized complexity is polylogarithmic in all executions, regardless

of their length. This is the first wait-free snapshot algorithm that provides sub-linear amortized step complexity in all

executions.

Our unbounded snapshot algorithm is largely inspired by the bounded snapshot algorithm of Aspnes et al. [4]. The

latter is based on a new data structure they defined and implemented called a 2-component max array. It consists of

a pair of (left and right) bounded max registers and supports a MaxUpdate(side,v) operation that writes value v to

either the left or the right max register, and a MaxScan() operation that returns a view consisting of the values of both

components.
1
Since their snapshot algorithm uses bounded max registers and bounded max arrays, once the number of

update operations exceeds this bound, it falls back to a linear step-complexity algorithm.

We replace every instance of a bounded max register used by their algorithm by an instance of an unbounded max

register implementation withO(logn) amortized step complexity, recently presented by Baig et al in [12]. We also replace

every instance of a bounded 2-component max array they use with an instance of a novel unbounded 2-component

max array implementation that we present in this paper. Our unbounded 2-component max array implementation

provides O(log2 n) amortized step complexity in all executions. This algorithm and its analysis are our key technical

contribution.

Aspnes and Censor-Hillel [5, 6] presented a randomized snapshot algorithm in which each operation incursO(log3 n)

step complexity with high probability. Their implementation is based on randomized constructions of an unbounded

max register and an unbounded 2-component max array, whose operation step complexities are, respectively, O(logn)

and O(log2 n) with high probability. Our unbounded 2-component max array algorithm differs substantially from

their conference version [5] but is similar to the algorithm in their updated version [6]. The key difference is that,

whereas their algorithm employ a randomized helping mechanism, ours uses a deterministic helping mechanism, and is

consequently deterministic. This, as well as additional differences between the two algorithms, result in much simpler

linearizability proofs.

The rest of this paper is organized as follows. We present the system model we assume and additional required

definitions in Section 2. In Section 3, we present our key technical contribution – an unbounded 2-component max array

algorithm, and prove that it guarantees linearizability and polylogarithmic amortized step complexity when the values

of its components are not increased “too quickly”. In Section 4, we prove that by “plugging” our unbounded 2-component

max array and the unbounded max register of [12] into the snapshot algorithm of [4], we obtain a linearizable snapshot

with O((log3 n)) amortized step complexity. The paper is concluded with a discussion in Section 5.

2 PRELIMINARIES

We consider a standard shared-memory model, where n crash-prone asynchronous processes communicate via shared

registers, supporting only atomic read and write operations. A concurrent object implementation specifies the object’s

state representation and the algorithms processes follow when they perform operations supported by the object.

1
Aspnes et al. [4] refer to these components at 0 and 1 and define different operations for updating each of them, but other than this syntactic difference,

our definition of a max array is identical to theirs.
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An execution is a series of steps performed by processes as they follow their algorithms, in each of which a process

applies at most a single read or write operation to a register (possibly in addition to some local computation). The

execution interval of a high-level operation is the interval between its invocation step and response steps.

Linearizability [15] ensures that, for every completed operation in the execution E and some of the uncompleted

operations, there is a point within the execution interval of the operation called its linearization point, such that the

responses returned by operations in E are the same as the responses returned if all these operations were executed

sequentially in the order determined by their linearization points. An object implementation is linearizable if all its

executions are linearizable. An implementation is wait-free [14] if, in every execution, each correct process (i.e., a process

that does not crash) completes each operation it performs within a finite number of steps.

A max register r supports two operations : a WriteMax(r ,v) operation that writes a non-negative integer v ≥ 0 to

r and a ReadMax(r ) operation that returns the maximum value previously written to r . A max register can be either

bounded or unbounded. A bounded max register can assume values from {0, . . . ,m − 1}, for some integer m. An

unbounded max register can store any non-negative integer.

A 2-componentmax array consists of a left and a rightmax registers and supports two operations. The MaxUpdate(side,v)

operation receives two arguments: side specifies whether the left or the right array component should be written, and v

is the value to be written to that component. The MaxScan operation returns a view of the max array – a pair of values

where the left (resp. right) pair-value contains the maximum value written to the left (resp. right) component by a

MaxUpdate operation that was linearized before the MaxScan. An (m1,m2)-bounded 2-component max array can assume

values from {0, . . . ,m1 − 1} in its first component and values from {0, . . . ,m2 − 1} in its second component, for some

positive integersm1,m2. Each component of an unbounded 2-component max array can store any non-negative integer.

A single-writer snapshot object consists of n locations and supports two operations : Update(v) allows a process

to store a value v in its location and Scan takes no input and returns n values (one for each location), such that the

value corresponding to each location i is the value of the last Update operation by process i that has been linearized

before the Scan operation. We say that a snapshot object is b-limited-use if the total number of Update operations that

can be applied to it in any execution is at most b. If there is no such bound b, we say that the object is an unlimited-use

snapshot object.

Amortized step complexity is defined as the worst case (taken over all possible executions) average number of steps

performed by operations. It measures the performance of an implementation as a whole rather than the performances

of individual operations. More precisely, given a finite execution E, an operation Op appears in E if it is initiated in E.

We denote by Steps(Op, E) the number of steps performed by Op in E and by Ops(E) the number of operations that

appear in E. The amortized step complexity of an implementation A is then:

AvgSteps(A) = max

E : finite execution of A

∑
Op∈Ops(E) Steps(Op, E)

|Ops(E)|
.

The unbounded 2-component max array algorithm we present in Section 3 uses two instances of an unbounded max

register due to Baig et al. [12], whose amortized step complexity isO(logn). However, the correctness and complexity of

this unbounded max register algorithm are guaranteed only in executions in which its value is increased in increments

of at most n. This notion is formalized by the following definition.

Definition 2.1 (ℓ-Bounded-Increment Execution). Let E be an execution and letM be an UnboundedMaxReg object.

We say that E is an ℓ-bounded-increment execution for M if for each operation op = WriteMax(v) on M in E, with

v > ℓ, there exists an operation op′ = WriteMax(v ′) onM in E that precedes op, such that v − ℓ ≤ v ′ < v .
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3 UNBOUNDED 2-COMPONENT MAX ARRAY ALGORITHM

The pseudo-code of our unbounded 2-componentmax array implementation is presented byAlgorithm 1. A UB-MaxArray

object contains the following data components.

• MR
left
, MR

right
are two shared unbounded max registers [12], initialized to 0, representing the left and right max

array component, respectively. Each such register encapsulates an array of bounded max registers and the

subscript in the type UnboundedMaxRegn2 indicates that the bound on each of them is n2. As proven in [12,

Theorem 10], the correctness of UnboundedMaxRegn2 is guaranteed only in n-bounded executions, in which they

have logarithmic amortized step complexity.

• An infinite number of shared (m ×m)-bounded 2-component max array objects [4], denoted MAj , for all j ∈ N0.

All max arrays are initialized to ⟨0, 0⟩. MAj stores the modulom residues of the left and right components of

the implemented max array. For simplicity of presentation and without loss of generality, we assume thatm

is an integral power of 2. The left (resp. right) component of MAj stores the logm low-order bits of a value vl

previously written to MR
left

(resp. value vr previously written to MR
right

), whereas j is the sum of the high-order

bits of vl and vr .
2

• A shared helping array H[1..n]. Entry H[i] is used by process i for helping other processes to complete their MaxScan

operations. Each entry consists of two fields. The first is a monotonically increasing timestamp incremented by

process i before each write to H[i]. The second is a (2-component) view computed by i .

• tsi is an integer timestamp, accessed by process i only, whose value persists throughout the execution.

We now describe the MaxScan operation. A MaxScan operation S , performed by some process i , simply invokes the

CompScan function and returns the view computed by the latter. CompScan consists almost entirely of the loop of lines

9-29. In each loop iteration, process i attempts to obtain a view ⟨l∗, r∗⟩ by itself. If i succeeds, we say that ⟨l∗, r∗⟩ is a

direct view. As we prove, if CompScan fails in obtaining a direct view, then eventually a helping mechanism built into

the algorithm will make available to it a view computed by another process; in this case, we call the view returned by

CompScan (and then by S) an indirect view.

Each loop iteration starts by reading MR
right

(line 10), then MR
left

(line 11), and then MR
right

again (line 12). Lines 10-12

attempt to compute a snapshot of the high-level bits of MR
left

and MR
right

, hence we name their execution a high-level

bits snapshot attempt. We say that the high-level bits snapshot attempt succeeds, if the high-order bits of the two values

read from MR
right

are equal; otherwise we say that the high-level bits snapshot attempt fails.

Successful high-level bits snapshot attempt: In this case, the condition of line 13 is satisfied and process i computes

(line 14) an index h of a bounded 2-component max array object by summing up the high-order bits of the values read

(in lines 10-12) from the two unbounded max registers. Then, i writes the low-order bits of value l , read from MR
left

(line

11), to the left component of MAh (line 15) and the low-order bits of the 2nd value, r2, read from MR
right

(line 12), to the

right component of MAh (line 16). As we prove, when MR
left

is read in line 11, the sum of the high-order bits of MR
left

and

MR
right

is h; this will be used to prove the correctness of the algorithm. Next, i invokes a MaxScan operation on MAh (line

17) and obtains a view ⟨ℓ′, r ′⟩ of the low-level bits. It then verifies (line 18) that the high-order bits still sum to h. If

this is the case, then a direct view was successfully computed, so i proceeds to compute the left and right values by

concatenating the high-order and low-order bits (line 19), writes the direct view together with a fresh value of i’th

2
In the initial configuration, both MRleft and MRright are 0 and so are the values of both components of each MAj object.
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Algorithm 1 Unbounded 2-component Max Array UB-MaxArray, code for process i

Shared objects:
MR

left
, MR

right
: UnboundedMaxRegn2 registers, initially 0 ▷ Unbounded max registers [12] for left & right components

MAj : an (m ×m)-bounded 2-component max array for each j ∈ N0, initially ⟨0, 0⟩ ▷ 2-component max array objects [4]

H[1..n]: array of n registers, initially [(0, ⟨0, 0⟩), . . . , (0, ⟨0, 0⟩)] ▷ Each entry consists of a timestamp and a values-pair

Persistent local variables for process i :
tsi : integer, initially 0 ▷ Timestamp used for helping

1: function MaxScan( )

2: return CompScan() ▷ Invoke utility function, return the view it returns

3: function MaxUpdate(side , v )
4: WriteMax(MRside , v) ▷ Write input to the MR object corresponding to side

5: CompScan() ▷ Invoke utility function, disregard its response value

6: return
7: function CompScan( ) ▷ Utility function implementing most algorithm logic

8: c ← 0 ▷ Initialize iterations number counter

9: while true do ▷ Loop until a view is obtained

10: r1 ← ReadMax(MR
right
) ▷ First read of the MR object corresponding to the right side

11: l ← ReadMax(MR
left
) ▷ Single read of the MR object corresponding to the left side

12: r2 ← ReadMax(MR
right
) ▷ Second read of the MR object corresponding to the right side

13: if ⌊ r1m ⌋ = ⌊
r2
m ⌋ then ▷ If this was a successful high-level bits snapshot attempt

14: i1 ← ⌊ lm ⌋, i2 ← ⌊
r2
m ⌋, h ← i1 + i2 ▷ Compute the high-level bits of left and right sides and their sum

15: MaxUpdate(MAh , left, l mod m) ▷ Write the low-level bits of MR
left

to the left side of MAh
16: MaxUpdate(MAh , right, r2 mod m) ▷ Write the low-level bits of MR

right
to the right side of MAh

17: ⟨ℓ′, r ′⟩ ← MaxScan(MAh ) ▷ Obtain from MAh a view of the low-level bits of both components

18: if ⌊
ReadMax(MR

left
)

m ⌋ = i1 ∧ ⌊
ReadMax(MR

right
)

m ⌋ = i2 then ▷ If the sum of the high-level bits of MR
left

,MR
right

is still h
19: l ∗ ← i1 ·m + ℓ′, r ∗ ← i2 ·m + r ′ ▷ Compute view by concatenating high-order and low-order bits

20: tsi ← tsi + 1 ▷ Increment process timestamp used when helping

21: Write(H[i], (tsi , ⟨l ∗, r ∗ ⟩)) ▷ Write timestamp and view to i ’th entry in the helping array

22: return ⟨l ∗, r ∗ ⟩ ▷ Return direct view

23: if c = ⌊n/log2m ⌋ then ▷ If performed a linear number of steps since CompScan’s execution started

24: h0 ← Collect(H ) ▷ Perform first collect of helping array

25: else if (c mod ⌊n/log2m ⌋ = 0) then ▷ If performed a linear number of steps since previous collect of helping array

26: h1 ← Collect(H ) ▷ Perform an additional collect

27: if ∃j : (h0[j] = (ts0, s0)) ∧ (h1[j] = (ts1, s1)) ∧ (ts1 > ts0 + 1) then ▷ A view that can be used is available

28: return s1 ▷ return an indirect view

29: c ← c + 1 ▷ Increment iterations number counter

timestamp (a local variable initialized to 0 in line 8) to its entry in the helping array (lines 20, 21) and returns the direct

view (line 22).

Failed high-level bits snapshot attempt: A high-level bits snapshot attempt fails if the condition in line 13 is false or,

if it is true, but the condition in line 18 is false. In either of these cases, i attempts to obtain an indirect view via the

helping array. In order to amortize the steps incurred by the helping mechanism against those taken by the attempts to

obtain a direct view, a collect of the helping array (which consists of copying all of its entries and incurs a linear number

of steps) occurs only when the number of failed attempts is an integral multiple of ⌊n/log2m⌋ (incurring altogether, as

we show, a linear number of steps). If exactly ⌊n/log2m⌋ failed attempts were performed by the current instance of

CompScan (line 23), then it performs a first collect of the helping array H and stores the result in a local variable (line

24). It then increments the number of failed attempts (line 29) and proceeds to the next loop iteration. Otherwise, this is

not the first collect of the helping array done by the current instance of CompScan (line 25), so it stores the result of
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the new collect to a second local variable (line 26) and then checks if there exists an entry H[j] that was written to (by

process j) at least twice since the first collect was computed (line 27). If this is the case then, as we prove, the value

stored in the second component of H[j] of the new collect is a view that can be used by S , so CompScan returns it (in

line 28). Otherwise, i increments the number of failed attempts (line 29) and proceeds to the next loop iteration.

The MaxUpdate operation is very simple. It receives two argument – a value v to write to the implemented max

array and the side to which v should be written. It first writes v to MR
side

(line 4) and then invokes CompScan (line 5).

Once CompScan returns, so does MaxUpdate (line 6), disregarding the view returned by CompScan.

In what follows, unless stated otherwise, we only consider executions that are n-bounded-increment for both MR
left

and MR
right

. As we prove in Section 4.1, this is the case for all executions in which our unbounded 2-component max

array is used by the snapshot algorithm of [4].

3.1 Linearizability

We refer to the instance of CompScan invoked by an instance of a MaxScan or a MaxUpdate operation Op as Op’s

CompScan instance. For presentation simplicity, we sometimes refer to steps taken by Op’s CompScan instance as the

steps of Op.

Operations are linearized according to the following linearization rules.

(1) A MaxScan operation that returns a direct view is linearized when its last invocation of MaxScan(MAh ) (line 17)

before it returns occurs .

(2) Let S be a MaxScan operation that returns an indirect view s1 (line 28) after reading it from some entry j of

the helping array (line 26). Let S ′ be the CompScan function instance (invoked by a MaxScan or a MaxUpdate

operation) by process j that wrote this view to H[j] (line 21). Then the linearization point of S is set at the last

invocation of MaxScan(MAh ) (line 17) in S ′ before S ′ returns. If several MaxScan operations are linearized at the

same step, then their internal order is set arbitrarily.

(3) Let E be an execution and letW be a MaxUpdate
side

operation that appears in E. Let E = E0 ◦ E1 be such that the

last step of E0 isW ’s write to MRside (line 4). Let Ops be the set of operations (which may or may not includeW

itself) that read MRside in E1 (in line 11 or line 12) and then write in E1 to side side of an MA object (in line 15 or

line 16). If Ops is empty, thenW is not linearized in E. Otherwise, let Op ∈ Ops be the first operation in Ops to

write to side side of an MA object after reading MRside in E1 and let s be the first step by Op in E1 in which such a

write occurs, thenW is linearized at s . If there are several write operations that are linearized at s , then their

internal order is the order in which they wrote to MRside .

Claim 1. Let S be a CompScan instance that returns an indirect view s1. Then there is a CompScan instance S ′ such that

s1 is a direct view of S ′ and its last execution of lines 10-19 is within the execution interval of S .

Proof. Let S be a CompScan instance by process i that returns an indirect view s1 (line 28). It follows that there is a

CompScan instance S ′ by some process j , i that wrote s1 to H[j] (line 21) before returning a direct view (line 22). From

lines 23-28, the value of the first component of H[j] (j’s timestamp) increased by at least 2 between when S read it in

line 24 and when it read it in line 26. From the code of the CompScan function, process j executes lines 10-19 between

every two consecutive increments of its timestamp (line 20). It follows that the last execution of lines 10-19 by S ′ is

contained within the execution interval of S . □
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Claim 2. Let E be an execution and letW be a MaxUpdate
side

operation that appears in E. Then ifW completes in E, it

is linearized within its execution interval.

Proof. From linearization rule 3,W cannot be linearized before it writes to MRside (line 4), hence it cannot be

linearized before it starts. Assume towards a contradiction that W completes in E but is not linearized before it

completes. IfW completes in E after its CompScan instance returns a direct view, then it reads MRside (line 11 or line 12)

and then writes to MAh with side side (line 15 or 16) in E after it writes to MRside (line 4). It follows from linearization

rule 3 thatW is linearized either when it executes line 15 or line 16, or before that – a contradiction. Assume, then, that

W ’s CompScan instance returns an indirect view s1. In this case, from Claim 1, there is a CompScan instance S ′ such that

s1 is a direct view of S ′ and the last execution of lines 10-19 by S ′ is within the execution interval ofW ’s CompScan

instance, hence it followsW ’s write to MRside (line 4). Thus, from linearization rule 3,W is linearized either when S ′

writes to MAh with side side (line 15 or 16) for the last time in E or before that, hence it is linearized within its execution

interval. This is a contradiction. □

Lemma 3.1. The order specified by linearization rules 1-3 respects the real-time order of operations that appear in the

execution.

Proof. We prove the lemma by showing that every operation that completes in the execution is linearized at some

point within its execution interval. The following cases exist.

(1) Let S be a MaxScan operation that returns a direct view (line 22). Then S is linearized according to rule 1 when

its CompScan instance invokes MaxScan(MAh ) (line 17). The lemma follows since this is a step performed by a

function called by Op.

(2) Let S be a MaxScan operation by process i that returns an indirect view s1 (line 28). Then the lemma follows from

Claim 1.

(3) LetW be a MaxUpdateside operation that appears in the execution. IfW completes, the claim follows from Claim

2. Otherwise, from linearization rule 3,W cannot be linearized before it writes to MRside (line 4), hence it cannot

be linearized before it starts. This completes the proof. □

Recall that we refer to the value of the logm low-order bits of a value v as v’s low-order bits. We refer to the value of

the binary representation of ⌊v/m⌋ as v’s high-order bits.

Observation 1. The high-order bits of the values of MR
left

and MR
right

are monotonically increasing.

Proof. The values of MR
left

and MR
right

are monotonically increasing because of the semantics of a max register,

hence the high-order bits of their values are monotonically increasing as well. □

Observation 2. The values i1 and i2 computed in line 14 are, respectively, the high-order bits of MR
left

and MR
right

when

l is read in line 11.

Proof. From the semantics of a max register and the computation in line 14, i1 is the high-order bits of MRleft when

it is read in line 11. i2 is the value of the high-order bits of MRright when l is read in line 11, because it is read from

MR
right

both before and after line 11 (in lines 10, 12), from Observation 1, and from the its computation in line 14. □

Observation 3. Whenever an index h is computed in line 14 as the sum of i1 and i2, the same values of i1 and i2 are

used.
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Proof. Follows immediately from Observations 1, 2. □

Based on Observation 3, in what follows we refer to the values i1,i2 used for computing index h in line 14 as the left

and right high-order bits corresponding to h, respectively. Also, we let O denote the implemented max array object. We

let val(MAj .left) (resp. val(MAj .right)) denote the value of O’s left (resp. right) component of MAj .

Definition 3.2. Let E be an execution. Let MAh be O’s bounded 2-component max array object with the highest index

such that a MaxUpdate operation to at least one of MAh .left or MAh .right appears in E, or MA0 if no MaxUpdate operations

to any MA object appear in E. We say that MAh is O’s active two-component max array (or simply active array) after E.

We let active(O, E) denote index h. We define O’s value after E as follows:

• If no MaxUpdate operations to any MA object appear in E then O’s value after E is ⟨0, 0⟩.

• Otherwise, O’s value after E is ⟨val(MAh .left) + i1 ·m,val(MAh .right) + i2 ·m⟩, where i1 and i2 are the left and

right high-order bits corresponding to h.

Observation 4. The value of active(O, E) is monotonically increasing.

Proof. Immediate from Definition 3.2 and Observations 1, 3. □

Claim 3. Let E = E0 ◦ s0 ◦ E1 ◦ s1 ◦ E2 ◦ s2 be an execution, where:

• s2 is a step in which a CompScan function instance S returns a direct view ⟨l∗, r∗⟩ (line 22).

• s1 is the step in which S executes (for the last time before s2) a MaxScan in line 17 and received a view ⟨ℓ′, r ′⟩.

• s0 is the step in which S executes (for the last time before s1) line 11.

Then ⟨l∗, r∗⟩ is O’s value when s1 occurs.

Proof. From lines 10-14 and Observations 1,2, no write to an MAh′ object, for h
′ > h, appears in E before s0. From the

code, CompScan can only reach lines 19-22 if the condition of line 18 is satisfied. It follows, once again from Observations

1,2, that no write to an MAh′ object, for h
′ > h, appears in E before s1. Since S writes to MAh (lines 15-16) in E before s1, it

follows that h is O’s active array when s1 occurs. The claim now follows from Definition 3.2, line 19 and the semantics

of a max array MaxScan operation. □

Claim 4. Let E be an execution and let ⟨l∗, r∗⟩ be O’s value after E. Then l∗ (resp. r∗) is the maximum value written by

a WriteMax instance to MR
left

(resp. MR
right

) that was linearized in E, or 0 (resp. 0) if no such WriteMax instance exists.

Proof. If no WriteMax instance (to neither MR
left

or MR
right

) was linearized in E then it follows immediately from

Definition 3.2 and linearization rule 3 that O’s value after E is ⟨0, 0⟩. Assume otherwise. From Definition 3.2, l∗ =

val(MAh .left) + i1 ·m (resp. r∗ = val(MAh .right) + i2 ·m), where h is active(O, E) and i1 (resp. i2) is the (unique) value

of the left (resp. right) high-order bits associated with h. From lines 10-16, l∗ (resp. r∗) is the largest value read in E

from MR
left

(resp. MR
right

) whose low-order bits were then written to the left (resp. right) side of MAh . Moreover, from

the definition of h, l∗ (resp. r∗) is the largest value read from MR
left

(resp. MR
right

) in E whose low-order bits were later

written in E to the left (resp. right) side of any MA object. Since l∗ (resp. r∗) was first written in E in line 4, then read in

E from MR
left

in line 11 (resp. from MR
right

in lines 10,12) and then its low-order bits were written in E to the left (resp.

right) side of MAh in line 15 (resp. line 16), from linearization rule 3, a WriteMax operation that wrote l∗ (resp. l∗) to

MR
left

(resp. MR
right

) was linearized in E and l∗ (resp. r∗) is the maximum such value. □

Lemma 3.3. The order specified by linearization rules 1-3 respects the semantics of the 2-max array object.
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Proof. From Claim 3, every CompScan instance that returns a direct view returns O’s value at some point during its

execution interval. From Claim 1, this is also the case for a CompScan instance that returns an indirect view. Consequently,

from Claim 3, every view returned by a MaxScan instance is O’s value at some point during its execution interval. The

lemma now follows from Claim 4. □

3.2 Wait-freedom

A MaxScan operation invokes CompScan and returns the response of that invocation. A MaxUpdate operation writes

once to MR
left

or MR
right

and then invokes CompScan. To show wait-freedom, it therefore suffices to prove that the

CompScan function is wait-free.

An instance of a CompScan operation consists of one or more iterations of the while loop (lines 9-29). We say that

a loop iteration is unsuccessful if either the test on line 13 or on line 18 fails. Otherwise, we say that the iteration is

successful. In a successful iteration that completes, the conditions of both tests are satisfied, a view is returned at line 22,

and the instance of CompScan terminates. Note that a view may also be returned in an unsuccessful iteration, if help is

received (line 28).

Lemma 3.4. Let E be a b-bounded-increment execution for both MR
left

and MR
right

. Let S be a CompScan instance in E. If

K ≥ 2 unsuccessful loop iterations are performed in S , there are at least
⌈
(K−2)m

b

⌉
instances of MaxUpdate operations that

start during the execution interval of S .

Proof. For each i, 1 ≤ i ≤ K , let Ri (respectively Li ) denote the value of max register MR
right

(respectively MR
left

)

the first time it is read in iteration i at line 10 (respectively, line 11). Similarly, let R′i (respectively L
′
i ) denote the value

of max register MR
right

(respectively MR
left

) the last time it is read in iteration i , at line 12 or line 18 (respectively, at

line 11 or line 18). As iteration i is unsuccessful and since successive values read from a max register are monotonically

increasing, we have

⌊
Li
m

⌋
<

⌊
L′i
m

⌋
or

⌊
Ri
m

⌋
<

⌊
R′i
m

⌋
. Moreover, since iteration i + 1 starts after iteration i , for every

i, 1 ≤ i ≤ K − 1, L′i ≤ Li+1 and R
′
i ≤ Ri+1.

Let ℓ denote the number of iterations i for which
⌊
Li
m

⌋
<

⌊
L′i
m

⌋
. Hence,

⌊
L1
m

⌋
+ ℓ ≤

⌊ L′K
m

⌋
, from which it follows that

(ℓ − 1) ·m + 1 ≤ L′K − L1. Similarly, denoting the number of iterations i for which
⌊
Ri
m

⌋
<

⌊
R′i
m

⌋
by r , we have that

(r − 1) ·m + 1 ≤ R′k − R1. Note that ℓ + r ≥ K .

For each side s ∈ {left, right}, the value stored in MRs may be modified only by an instance of a MaxUpdate(s,v)

operation. Specifically, each instance of MaxUpdate(s,v) may change the value of MRs to v when performing line 4.

As the value of MR
left

increased by at least (ℓ − 1) ·m + 1 during these K unsuccessful iterations, it follows from our

assumption that E is b-bounded-increment for MR
left

that at least

⌈
(ℓ−1)m+1

b

⌉
instances of WriteMax operations on MR

left

occur during S . As WriteMax operations on MR
left

are only invoked in MaxUpdate(left,v) operation instances and

each such instance invokes WriteMax operations on MR
left

only once, it thus follows that at least

⌈
(ℓ−1)·m+1

b

⌉
instances

of MaxUpdate(left,−) operations have started during S . Similarly, the number of instances of MaxUpdate(right,−)

operations is at least

⌈
(r−1)·m+1

b

⌉
. Since r + ℓ ≥ K , denoting the number of instances of MaxUpdate that start during S

byW , we get:

W ≥

⌈
(ℓ − 1) ·m + 1

b

⌉
+

⌈
(r − 1) ·m + 1

b

⌉
≥

⌈
(ℓ − 1 + r − 1) ·m + 2

b

⌉
≥

⌈
(K − 2) ·m

b

⌉
□
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In the following, for each i, 1 ≤ i ≤ n, we denote by H [i].ts and H [i].view the first and second member of the couple

stored in H [i].

Observation 5. Let S be an instance of a CompScan function by process i that completes. Let h and h′ denote the

value of the array H when S starts and ends, respectively, then the following holds: h[i].ts + 1 = h′[i].ts or ∃j, 1 ≤ j ≤ n :

h[j].ts + 2 ≤ h′[j].ts .

Proof. We first note that any write to H [j].ts increments it (lines 20-21), thus, for all j, the value of H [j].ts is

monotonically increasing. Consider the last loop iteration of S . If S returns a direct view, i.e. it returns at line 22, then

H [i].ts is incremented at line 20 and this is the only write to H [i].ts during the execution interval of S , hence the

observation follows. Otherwise, S returns an indirect view at line 28. In that case, the condition of line 27 is satisfied,

so there exists j such that h0[j].ts + 2 ≤ h1[j].ts . h0[j].ts and h0[j].ts , h1[j].ts are the values of H [j].ts at two different

points during the execution interval of S . The observation now follows from the monotonicity of H [j]. □

Lemma 3.5. In any b-bounded increment execution, Algorithm 1 is wait-free.

Proof. It suffices to prove that CompScan functions are wait-free. Let E be a b-bounded increment execution and

let K be an integer such that ⌈
(K − 2)m

b

⌉
≥ 2n + 1.

We show that every instance of the CompScan operation in E, performed by a correct process, terminates after performing

at most K + 2
⌈

n
log

2m

⌉
loop iterations. Assume towards a contradiction that there is an instance of CompScan, by some

process i , that performs K + 2
⌈

n
log

2m

⌉
iterations and does not terminate. We partition the loop iterations of S to three

intervals: I1 that consists of the first
⌈

n
log

2m

⌉
iterations, I2 that consists of the next K iterations and I3 that consists of

the

⌈
n

log
2m

⌉
remaining iterations.

As S does not terminate, every iteration in I2 is unsuccessful. Therefore, by the choice of K , it follows from lemma 3.4

that at least one process j starts 3 instances of MaxUpdate in this interval. Hence, at least two instances of MaxUpdate

by the same process start and complete in I2. Therefore, by Observation 5, there exists j, 1 ≤ j ≤ n, j , i , such that

h[j].ts + 2 ≤ h′[j].ts , where h and h′ respectively denote the values of the help array H at the beginning and at the end

of I2.

In the last iteration of I1, each entry of array H is copied to the local array h0 (line 24). Since the value of each

entry H [ℓ].ts is monotonically increasing, h0[j].ts ≤ h[j].ts . Furthermore, the array H is copied to the local array h1

every

⌈
n

log
2m

⌉
iterations (lines 25-26). Thus, this occurs in some iteration in interval I3, since I3 consists of

⌈
n

log
2m

⌉
consecutive iterations. In that iteration, once the local array h1 has been updated (line 26), we have h′[j].ts ≤ h1[j].ts .

Hence, h0[j].ts + 2 ≤ h1[j].ts and S terminates (lines 27-28). □

3.3 Step Complexity Analysis

Let E be a finite n-bounded-increment execution in which processes execute operations on an unbounded 2-max array

object O. We now prove an O(log2 n) upper bound on the amortized step complexity of E, formally defined as follows :

AmtSteps(E) =

∑
ops ∈Ops(E) nsteps(op, E)

|Ops(E)|
,

where Ops(E) is the set of instances of MaxUpdate or MaxScan operations on O that take at least one step in E and

nsteps(op, E) is the number of steps performed in E by the instance op.
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Before proving the main Lemma 3.6, we need to introduce some notation and observations. We partition Ops(E) to

two sets,W the set of instances of MaxUpdate operations and S , the set of instances of MaxScan operations. Each

instance of MaxUpdate or MaxScan invokes the CompScan function. An instance of a CompScan consists in one or

several loop iterations (lines 9-29). We denote by L the set of all loop iterations in E in which at least one step is taken.

We further partition L = Lu ∪ Ls ∪ Lnt into three sets: Recall that a completed iteration is said to be successful if a

direct view is returned at line 22, and unsuccessful otherwise.

• Ls is the subset of iterations that complete and are successful;

• Lu is the subset of iterations that complete and are unsuccessful and;

• Lnt is the subset of iterations that do not complete.

For every iteration I ∈ Ls ∪ Lu , we define:

• proc(I ), the process that performs I .

• index(I ) =
⌊ r1
m

⌋
+

⌊
ℓ
m

⌋
, where r1 and ℓ respectively denote the values read from MRr iдht and from MRlef t at

lines 10 and 11 during I . This is well-defined, since every complete iteration applies these read operations to

MRr iдht and MRlef t . Also, from lines 10-17, if I accesses an underlying bounded 2-component max array MAh ,

then index(I ) = h holds.

We first observe that different unsuccessful iterations performed by the same process never have the same index:

Observation 6. ∀I , I ′ ∈ Lu s.t. proc(I ) = proc(I ′) : index(I ) , index(I ′).

Proof. Suppose WLOG that iteration I precedes iteration I ′ and both are performed by process i . As I is unsuccessful,

the high-order bits of the value stored in MR
right

or MR
left

(or both) change between when they are read in I and when

they are read in I ′. From Observation 1, it follows that index(I ) < index(I ′). □

For any given op ∈ Ops(E), in the corresponding instance of CompScan (if any), at most a single loop iteration does

not complete or is successful. This proves the following observation 7.

Observation 7. |Ls | + |Lnt | ≤ |W | + |S |.

To compute AmtSteps(E), we need to count the number of steps performed in instances of operations on the low level

max registers andm-bounded 2-max array objects. We denote by nsteps(O,op,σ ), where σ is a sequence of steps and op

is an operation supported by object O, the number of steps in σ that are performed in the instances of op. Similarly, we

denote by Ops(O,op,σ ) the set of instances of operation op on O for which at least one step is a step of σ .

For n-bounded increment executions, the amortized complexity of the max register implementation in [12] isO(logn).

Therefore, for each side ∈ {left, right},

nsteps(MR
side
, WriteMax, E) + nsteps(MR

side
, ReadMax, E)

|Ops(MR
side
, WriteMax, E)| + |Ops(MR

side
, ReadMax, E)|

= O(logn).

Hence, ∑
O∈{MRleft ,MRright },op∈{WriteMax,ReadMax} nsteps(O, op, E)∑
O∈{MRleft ,MRright },op∈{WriteMax,ReadMax} |Ops(O, op, E)|

= O(logn). (1)

We will thus count together steps performed in WriteMax and ReadMax instances on MR
left

and MR
right

. For op ∈

{WriteMax, ReadMax}, letnsteps(MR, op,σ ) = nsteps(MR
left
, op,σ )+nsteps(MR

right
, op,σ ) andOps(MR, op,σ ) = Ops(MR

left
, op,σ )∪
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Ops(MR
right
, op,σ ). Equation (1) can thus be rewritten as follows:∑

op∈{WriteMax,ReadMax} nsteps(MR, op, E)∑
op∈{WriteMax,ReadMax} |Ops(MR, op, E)|

= O(logn). (2)

Lemma 3.6. Ifm = Θ(nc ), where c ≥ 2 is a constant, then the UnLimMaxArray implementation of Algorithm 1 has

amortized step complexity of O(log2 n) in any execution E that is n-bounded-increment for both MR
left

and MR
right

.

Proof. Since E is n-bounded-increment for both MR
left

and MR
right

, Equations (1) and (2) hold. We thus have:∑
op∈Ops(E)

nsteps(op, E) = O

( ∑
w ∈W

nsteps(MR, WriteMax,w)+

∑
I ∈L

(
nsteps(MR, ReadMax, I ) + nsteps(MAindex (I ), WriteMax, I ) + nsteps(MAindex (I ), MaxScan, I )

)
+

|L|⌊
n

log
2m

⌋ n) . (3)

Indeed, an instance of a MaxUpdate operation on the high-level unbounded 2-max array consists in an instance of

a WriteMax operation applied to either MR
left

or MR
right

, followed by an instance of CompScan in which one or more

iterations of the while loop are performed. Similarly, an instance of a MaxScan operation consists in one or more loop

iterations of an instance of CompScan. Each step in iteration I is (1) either performed in an instance of a ReadMax on

MR
left

or MR
right

, or (2) performed in an instance of WriteMax or MaxScan on MAindex (I ), or (3) is a Write to an entry of

the shared helping array. Additionally, at most every

⌊
n

log
2m

⌋
iterations, an instance of Collect is performed on H ,

which incurs O(n) additional steps for every such iteration.

Them-bounded 2-max array algorithm in [4] has O(logm) and O(log2m) worst case complexities for WriteMax and

MaxScan operations, respectively. Hence,∑
op∈Ops(E)

nsteps(op, E) = O

( ∑
w ∈W

nsteps(MR, WriteMax,w) +
∑
I ∈L

nsteps(MR, ReadMax, I ) + |L|(log2m + logm)

)
. (4)

Each instance of MaxUpdate calls WriteMax on an unbounded max register once, and in each iteration I ∈ L, the

number of invocations of ReadMax operation on unbounded max registers is upper-bounded by a constant. It thus

follows from Equation (2) that:∑
w ∈W

nsteps(MR, WriteMax,w) +
∑
I ∈L

nsteps(MR, ReadMax, I ) = O

((
|Ops(MR, WriteMax, E)| +

�� ⋃
I ∈L

Ops(MR, ReadMax, I )
��)
logn

)
= O

(
(|W | + |L|) logn

)
. (5)

Let h∗ =
⌊
r ∗
m

⌋
+

⌊
ℓ∗

m

⌋
, where r∗ and ℓ∗ are respectively the value of MR

right
and MR

left
at the end of E. As E is n-bounded-

increment for both MR
right

and MR
left

, at least
mh∗
n MaxUpdate instances appear in E. Hence,

h∗ ≤
n |W |

m
. (6)

Recall that Lu is the set of unsuccessful iterations I ∈ L that complete. From Observation 6, unsuccessful iterations

with the same index are performed by distinct processes. Hence, |Lu | ≤ nh∗, from which it follows by combining

Observation 7, Equation (6) and the fact that |L| = |Lu | + |Ls | + |Lnt |:

|L| ≤
n2 |W |

m
+ |W | + |S |. (7)
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Therefore, by combining Equations (4) and (5), the bound on |L| of Equation (7), and recalling thatm = Θ(nc ), for some

constant c ≥ 2, we obtain:∑
op∈Ops(E)

nsteps(op, E) = O
(
(|W | + |L|) logn + |L| log2m

)
= O

(
(|W | + |S |) log2 n

)
.

Hence,

AmtSteps(E) = O

(
(|W | + |S |) log2 n

|Ops(E)|

)
= O

(
(|W | + |S |) log2 n

|W | + |S |

)
= O(log2 n),

which concludes the proof. □

Theorem 3.7. If m ≥ n2, then Algorithm 1 is a wait-free linearizable n-process implementation of an unbounded

2-component max array, with amortized step complexity of O(log2m), in any execution E that is n-bounded-increment for

both MR
left

and MR
right

.

Proof. Follows from Lemmas 3.1, 3.3, 3.5 and 3.6. □

4 WAIT-FREE SNAPSHOTWITH POLYLOGARITHMIC AMORTIZED STEP COMPLEXITY

Aspnes et al. present implementations of both a limited-use and an unlimited-use single-writer snapshot [4]. We obtain

an unlimited-use single-writer snapshot with polylogarithmic amortized step complexity by making the following

simple changes in their limited-use algorithm: We replace every instance of a bounded max register used by their

algorithm by an instance of an unbounded max register implementation of [12]; we also replace every instance of a

bounded 2-component max array they use with an instance of the unbounded 2-component max array implementation

of Algorithm 1.

The resulting pseudo-code is presented in Algorithm 2. For simplicity, we assume that n is an integral power of 2. An

UnLimSnapshot object encapsulates a balanced binary tree with n leaves. Each process i is uniquely associated with a

leaf, denoted leafi . Each node u is associated with an infinite array u .views, each entry of which is intended to store a

partial snapshot. More precisely, a non-⊥ entry stores a partial snapshot of the components of the processes whose

associated leaves are the leaves of the tree rooted at u. In particular, leafi .views stores the sequence of inputs of the

updates performed by process i . The index of the entry of u .views containing the most recent partial snapshot is stored

in the parent node. To that end, each internal node v contains an unbounded 2-component max array v .MA, whose

implementation is described by Algorithm 1. The left component of v .MA stores the index of the most recent partial

snapshot on the array views of the left child. Similarly, the right component stores the index for the array views of the

right child of v . As the root has no parent, an additional unlimited max register root.MR stores the index associated

with the root.

For each array u .views, the index of the most recent partial snapshot is actually the number of instances of Update

performed by the processes whose associated leaves are in the sub-tree rooted atu. When process i performs an instance

of Update, it first increments a persistent local variable counti , which keeps track of the number of Update instances

performed by i (line 2). The new value is then written to the first ⊥-entry of leafi .views whose index is counti (line 4).

Process i then propagates the new value of its component in the partial snapshots stored in the nodes on the path

from its leaf to the root. For each node u in this path, process i obtains by performing a MaxScan on u .MA the indexes

lptr and rptr of the most recent partial snapshots stored in the left and right children of u (line 9). It then reads the

corresponding entries of the views arrays of the children (lines 10-11) to form a new partial snapshot, which is stored

at index s = lptr + rptr in u .views (line 13). The new index s is then reported into the appropriate component of the
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max array associated with u’s parent (line 8) (or, if u is the root, into the max register root.MR, in line 14). Consistency

of partial snapshots (and also the full snapshots stored in the root) follows from the semantics of max arrays.

A Scan instance first obtains the index ptr of the last fully propagated snapshot by reading the max register root.MR

(line 16) and then returns the snapshot stored in the corresponding entry of root.views (line 17).

Algorithm 2 Unlimited-Use Snapshot UnLimSnapshot, code for process i

Shared objects:
for each internal node u of a balanced binary tree with n leaves:

u .MA UB-MaxArray, initially (0, 0) ▷ Unbounded 2-component max array (Algorithm 1)

u .views[0...] unbounded array, initially [⊥, . . .] ▷ Each entry is intended to store a partial snapshot

u .parent, u .left, u .right ▷ Parent, left and right child of node u
for each leaf u :

u .views[0...] unbounded array, initially [⊥, . . .]

u .parent ▷ Parent node of node u
root ▷ The root of the tree

root.MR: UnboundedMaxRegn2 register, initially 0 ▷ Unbounded max register [12] associated with the root of the tree

Persistent local variables for process i :
counti : integer, initially 0 ▷ Number of Updates performed by i
leafi : (constant) unique leaf of the tree associated with process i

1: function Update(v )
2: counti ← counti + 1 ▷ Keep track of the number of Updates by process i
3: u ← leafi ▷ Dedicated leaf for process i
4: ptr ← counti ; u .view[count ] ← v ; ▷ Store input in a fresh entry

5: while u , root do ▷ Loop until root is reached

6: Let side ∈ {left, right } be s.t. u .parent.side = u ▷ Identify on which side of the parent the current node is

7: u ← u .parent ▷ Climb to parent node

8: MaxUpdate(u .MA, side, ptr ) ▷ Report the index of the most recent partial snapshot

9: (lptr , rptr ) ← MaxScan(u .MA) ▷ Get the indexes of the most recent partial snapshot stored at the children

10: lview ← u .left.views[lptr ] ▷ Read partial snapshot from left child

11: rview ← u .right.views[rptr ] ▷ Read partial snapshot from right child

12: ptr ← lptr + rptr ▷ New index

13: u .views[ptr ] ← lview ◦ rview ▷ Concatenate left and right child partial snapshots

14: WriteMax(root.MR, ptr ) ▷ Report index of last fully propagated snapshot

15: function Scan( )

16: ptr ← ReadMax(root.MR) ▷ Get index of most recent full snapshot

17: return root .views[ptr ] ▷ Return most recent full snapshot

4.1 Correctness and complexity Analysis

We first prove that every execution E of Algorithm 2 is n-bounded increment for all the unbounded max registers used

by the algorithm, i.e., the components of the unbounded max-array and the unbounded max register at the root.

Lemma 4.1. Let u be an internal node in the tree and h ≥ 1 denote its height. The 2-component max register u .MA is

accessed by at most 2
h
processes, and for each side, increments of the unbounded max register of u .MA of that side are

2
h−1

-bounded.

Proof. For the first part of the lemma, we note that the only processes that perform MaxUpdate or MaxScan

operations on u .MA are those processes whose associated leaf is in the tree rooted at u. There are at most 2
h
such leafs.

The proof of the second part is by induction on the height of the nodes. For the base case, let u be a node whose

height is 1. Let side ∈ {left, right}. Since the height of u is 1, there is only a single process i that performs instances
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of MaxUpdate(u .MA, side,v) operations. In each of these instances, the value written is the initial value of the local

variable ptr when the loop starts (line 5). Initially, ptr is set to the value of the persistent local variable counti (line 4),

which is incremented by 1 in each invocation of MaxUpdate(u .MA, side,v) by i (line 2). Therefore, increments on the

components of the 2-component max array u .MA are 1-bounded.

For the induction case, let h ≥ 1 and suppose that the lemma holds for every node whose height is at most h. Let x

be a node whose height is h + 1. Let us consider a MaxUpdate instance with input v on the left side of x .MA (the proof

for the right side is similar). We denote by insx this instance. We first introduce some notations:

• For a node u of the tree, let Tu be the tree rooted at u.

• Given a node u of tree, let P(u) be the set of processes i whose associated leaf leafi is a leaf of Tu .

• For each process j ∈ P(x .left), let Cj the be set of instances of Update operations performed by process j that

have completed before insx starts.

We establish the following claims:

(1) v ≤
∑
j ∈P (x .left) |Cj | + 2

h−1
.

(2) There is a value v ′, such that

∑
j ∈P (x .left) |Cj | ≤ v

′
and v ′ was written to the left side of x .MA before insx starts.

From these claims, v − 2h−1 ≤ v ′ follows. If in addition v ′ < v or v ≤ 2
h−1

, increments on the left side of x .MA are

2
h−1

-bounded. Otherwise, letW denote the set of valuesw ≥ v that were written to the left side of x .MA before insx

starts. Among these values, letw∗ be the value whose write starts first.w∗ is well-defined sinceW , ∅. By applying

claims (1) and (2) to w∗, there exists a value w∗′ such that w∗ − 2h−1 ≤ w∗′ and whose write to the left side of x .MA

precedes the write of w∗. Hence, w∗′ <W . Therefore, as v ≤ w∗, we have v − 2h−1 ≤ w∗ − 2h−1 ≤ w∗′ < v , from

which it follows that increments of left side of x .MA are 2
h−1

-bounded.

We observe that, for every non-root node u in Tx , the Lemma follows from IH. Hence, for every such node u, u .MA is

a linearizable 2-component max array. We can thus consider each instance of MaxScan or MaxUpdate performed on

it as atomic. To prove claim (1), we note that it follows from the code that v is at most the sum of the values of the

countj variables when insx starts, for all processes j that are associated with a leaf of the tree rooted at x .left. For

each such j, countj is at most the number of Update instances by j that have completed before insx starts, together

with possibly a single on-going instance. Hence, v ≤
∑
j ∈P (x .left) countj ≤

∑
j ∈P (x .left) |Cj | + 2

h−1
.

To prove claim (2), let C =
⋃
j ∈P (x .left) Cj and let I denote the set of MaxUpdate instances performed in an

Update instance belonging to C on a 2-component max array u .MA where u is a non-root node in Tx . Finally, for any

non-root node u of Tx , let (Lu ,Ru ) be the value of u .MA immediately after the last MaxUpdate instance on u .MA in I.

Claim 5. For any non-root node u of Tx ,
∑
j ∈P (u .left) |Cj | ≤ Lu and

∑
j ∈P (u .right) ≤ Ru .

Proof. The proof is by induction on the height of the node.

• Base case. Let u be a non-root node in Tx whose height is 1. Let iℓ and ir be the processes associated with its left

and right child, respectively. After the last MaxUpdate instance in I on u .MA, by iℓ , the value stored in the left

side is |Ciℓ |. Similarly, the value stored in the right side after the last instance in I of MaxUpdate on u .MA is

|Cir |. Hence, as the value stored on each side never decreases, |Ciℓ | ≤ Lu and |Cir | ≤ Ru .

• Induction step. Let u be a non-root node in Tx whose height is h ≥ 1. We show that

∑
j ∈P (u .left) |Cj | ≤ Lu .

The proof for the right side is similar. Let u ′ denote the left child of u, and let w ′
ℓ
and w ′r be respectively the

last instance in I of MaxUpdate performed on the left and right side of u ′.MA, respectively. Assume that w ′r

occurs afterw ′
ℓ
(the other case is symmetric). By definition of I,w ′r is performed in an instance of Update that
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completes. Hence, it is followed by an instance of MaxScan (at line 9), and in the following iteration of the loop

(lines 12 and line 8) the sum s of the values in the scan is written to the left side of u .MA. As the instance of

MaxScan follows the last instance of MaxUpdate in I performed on u ′.MA, s ≥ Lu′ + Ru′ . Therefore, by the

induction hypothesis, s ≥
∑
j ∈P (u′ .left) |Cj | +

∑
j ∈P (u′ .right) |Cj | =

∑
j ∈P (u .left) |Cj |. As the values stored on

the left side of u .MA never decrease, it follows that Lu ≥
∑
j ∈P (u .left) |Cj |. □

Letw ∈ I be the last MaxUpdate instance performed on x .left.MA. Asw is performed in an Update instance that

terminates before insx starts, it is followed by a MaxScan instance on x .left.MA, and the sum σ of the pair of values

returned by the scan is then written to the left side of x .MA. From Claim 5, σ = Lx .left + Rx .left ≥
∑
j ∈P (x .left) |Cj |.

Moreover, the write of σ on the left side of x .MA terminates before insx starts, as it is performed in an Update instance

that terminates before insx starts. Taking v ′ = σ completes the proof of claim (2). □

Lemma 4.2. The increments of the max register root.MR are n-bounded.

Proof. Consider the implementation of Algorithm 2 for 2n processes. Suppose that only processes 1, . . . ,n perform

instances of Update and Scan. In the 2n-processes implementation, the values written on the left side on the 2-

component max array at the root are sums of values of scans of the max array of the left child. By applying Lemma 4.1

to the max array at the root, increments of the left side are n-bounded.

The root of the n-process implementation can be identified with the left child of the root of the 2n-processes

implementation. In the n-processes implementation, values written to the max-register are sums of values of scans

of the max array at the root. Hence, they are the same values written to the left side of max array at the root of the

2n-processes implementation. It thus follows that increments of the max register root.MR are n-bounded as well in the

n-processes implementation. □

Lemma 4.3. The UnLimSnapshot implementation of Algorithm 2 has amortized step complexity of O(log3 n) in any

finite execution E.

Proof. Our goal is to bound:

AmtSteps(E) =

∑
ops ∈Ops(E) nsteps(ops, E)

|Ops(E)|
,

where Ops(E) is the set of instances of Update and Scan operations that appear in E, and for each operation instance

op, nsteps(op, E) is the number of steps taken in this instance.

We partition Ops(E) as follows:

Ops(E) = S ∪
⋃

1≤i≤n
Ui ,

where S is the set of instances of Scan and, for each i, 1 ≤ i ≤ n,Ui is the set of Update instances initiated by process i .

Given an object X, we denote by nsteps(X) the total number of steps taken by all the instances of operations on X. We

thus have: ∑
ops ∈Ops(E)

nsteps(ops, E) = nsteps(root.MR) +
∑

u : node of the tree

nsteps(u .MA) + nsteps(u .views). (8)

From Lemma 4.2, increments of the max register root.MR are n-bounded. The max register implementation in [12]

has O(logn) amortized complexity in n-bounded-increment executions. Since in each instance of Update or Scan at

most a single instance of an operation on root.MR is performed (at line 14 or at line 16), we have:

nsteps(root.MR) = O(|Ops(E)| logn). (9)
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Let u be a non-leaf node in the tree, and let hu denote its height. Recall that P(u) is the set of processes i whose

associated leaf leafi is in the tree rooted in u. From the pseudo-code, each process i ∈ P(u) performs a constant

number of operation instances on u .MA in each instance of Update. By Lemma 4.1, for each side, increments of u .MA

are 2
hu−1

bounded. Since the max register implementation of Algorithm 1 has O(log2 n) amortized complexity in

n-bounded-increment executions (Lemma 3.6), we have:

nsteps(u .MA) = O
©­«
�� ⋃
i ∈P (u)

Ui
��
log

2 n
ª®¬

Therefore, ∑
u : node of the tree

nsteps(u .MA) = O
©­«

∑
1≤h≤logn

∑
u :hu=h

�� ⋃
i ∈P (u)

Ui
��
log

2 n
ª®¬

= O

(�� ⋃
1≤i≤n

Ui
��
log

3 n

)
. (10)

In each Update instance by process i , for each visited node u in the tree, a constant number of accesses to the array

u .views are made by process i . In a Scan instance, only the array views associated with the root is accessed. Hence, as

each Update instance visits O(logn) nodes:∑
u : node of the tree

nsteps(u .views) = O

(�� ⋃
1≤i≤n

Ui
��
logn + |S |

)
. (11)

It thus follows from equations (9), (10) and (11) that∑
op∈Ops(E)

nsteps(op, E) = nsteps(root.MR) +
∑

u : node of the tree

nsteps(u .views) + nsteps(u .MA)

= O

(
(|S | +

�� ⋃
1≤i≤n

Ui
��)(logn + log3 n)) .

Therefore,

AmtSteps(E) = O(log3 n).

□

Theorem 4.4. The UnLimSnapshot implementation of Algorithm 2 is an unlimited-use, wait-free and linearizable

implementation of a single-writer snapshot with O(log3 n) amortized step complexity.

Proof. Lemmas 4.1-4.2 show that in any execution of Algorithm 2, increments to each side of each 2-max array

or to the max register root.MR are n-bounded. Hence, the unbounded max register implementation of [12] and the

unbounded 2-max array implementation of Algorithm 1 are linearizable when used by Algorithm 2. The correctness

proof of the limited-use single-writer snapshot algorithm of [4] (Section 4.1) does not rely on the fact that the max

registers and max arrays it uses are bounded and thus holds also for Algorithm 2, where they are unbounded. Thus,

Algorithm 2 is a linearizable implementation of an unbounded single-writer snapshot. The implementation is also

wait-free, since each base object it uses is wait-free and each instance of Scan or Update accesses a bounded number

of such objects. Finally, the amortized complexity follows from Lemma 4.3. □



18 A. Baïg, D. Hendler, A. Milani, and C. Travers

5 DISCUSSION

We presented an n-process deterministic wait-free single-writer snapshot algorithm from reads and writes. We proved

that the algorithm is linearizable and has O(log3 n) amortized step-complexity. This is the first deterministic non-

blocking read/write snapshot algorithm with sub-linear amortized step complexity in all executions. Since Ω(logn) is

a lower bound on the amortized complexity of counters [10, 12], and as counters can be easily implemented using a

single-writer snapshot object, Ω(logn) is also a lower bound on the amortized complexity of snapshot. Closing the gap

between the lower and the upper bounds is an open question for future research.
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