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Abstract

This paper studies the large-eddy simulation (LES) of isothermal turbulent chan-
nel flows. We investigate zero-equation algebraic models without wall function or
wall model: functional models, structural models and mixed models. In addition to
models from the literature, new models are proposed and their relevance is examined.
Dynamic versions of each type of model are also analysed. The performance of the
subgrid-scale models is assessed using the same finite difference numerical method
and physical configuration. The friction Reynolds number of the simulations is 180.
Three different mesh resolutions are used. The predictions of large-eddy simulations
are compared to a direct numerical simulation filtered at the resolution of the LES
meshes. The results are more accurate than a simulation without model. The predic-
tions of functional eddy-viscosity models can be improved using constant-parameter
or dynamic tensorial methods.

1 Introduction

This paper addresses the large-eddy simulation (LES) of an isothermal turbulent chan-
nel flow at low Mach number. The large-eddy simulation of a turbulent channel flow is
an important problem as it is one of the key canonical flows to understand wall-bounded
turbulence. A large-eddy simulation only resolves the large-scale motions of turbulence,
generally represented using a low-pass filter. This approach is more practical than direct
numerical simulation (DNS), in which all scales of turbulence must be resolved. However,
the evolution equations of the filtered variables cannot be inferred from the flow governing
equations because the filter does not, in general, commute with multiplication. We consider
the large-eddy simulation of the incompressible Navier–Stokes equations for a Newtonian
fluid using a filter ( · ):

∂Uj
∂xj

= 0, (1)

∂Ui
∂t

= −
∂
(
UjUi + τij

)
∂xj

− 1

ρ

∂P

∂xi
+ ν

∂2Ui
∂xj∂xi

, (2)

with ρ the density, ν the kinematic viscosity, t the time, P the mechanical pressure, Ui the i-
th component of velocity and xi the Cartesian coordinate in i-th direction. The momentum
convection subgrid term or subgrid-scale tensor is defined as τij = UjUi − UjUi. To close
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the system of equations, the subgrid-scale tensor must be modelled using an algorithm
computable in a large-eddy simulation. The addition of the subgrid-scale model should
not violate the symmetry properties of Navier–Stokes equations [70, 52, 56]. In wall-
bounded flows, the subgrid-scale model should be able to preserve the driving mechanisms
of turbulence near the walls [32, 42, 33]. The consistency of the asymptotic near-wall
behaviour of the model with the exact subgrid term is also considered very important
[50, 51]. A review of the physical constraints that the subgrid-scale subgrid-scale model
should satisfy is given in Silvis et al. [65]. Besides, for an application of these methods to
another interesting problem, see references [86, 87].

The modelling of the subgrid-scale tensor has received a lot of attention from the
literature. Algebraic or zero-equation models assume that the small scales are universal
and can be expressed as functions of the resolved flow variables, as opposed to models
requiring the resolution of one or more additional transport equations to compute the
subgrid-scale model [60, 41]. The models can be classified into structural and functional
models [60]. Functional models, also called eddy-viscosity models, make the fundamental
hypothesis that the effect of subgrid scales is analogous to viscous diffusion [11], hence
strictly dissipative. The popularity of this class of model is attributed to its robustness
and low computational complexity [60, 75]. Structural models approximate the effect of
the filter without assumptions on the physical nature of the effect of the subgrid term.
A review is given by Lu and Rutland [41]. In the literature, numerous functional and
structural models have been proposed and investigated in plane channel flows at low or
moderate friction Reynolds numbers: the Smagorinsky and dynamic Smagorinsky models
[26, 78, 34, 28, 6, 15, 35, 59, 53, 57, 75, 58, 84, 31], the approximate deconvolution model [71,
88], the rational model [26], the tensorial anisotropic model [1, 15, 2], the Kobayashi model
[34], the Vreman and dynamic Vreman models [78, 59, 35, 75, 30, 84, 65, 31], the Sigma and
dynamic Sigma models [6, 57, 35, 31], the QR and anisotropic minimum-dissipation (AMD)
models [77, 58], the volumetric strain-stretching (VSS) model and dynamic VSS models [59,
84, 31], the anisotropy-resolving model [53], S3PQR models [75], the modulated gradient
model [23], the vortex-stretching model [65], scale-adaptive models [84] and mixed and
dynamic mixed models [46, 1, 35]. Note also that large-eddy simulation can be combined
with Reynolds-averaged Navier–Stokes modelling, as in detached-eddy simulation [68, 74,
72, 69], in constrained large-eddy simulation [13, 29, 36] or in the linear unified model
[24, 45, 44]. A systematic inspection of the subgrid-scale models would be useful for the
selection of the subgrid-scale model for a particular simulation as well as for future subgrid-
scale modelling developments.

This paper investigates a posteriori the modelling of the subgrid-scale tensor in an
isothermal turbulent channel flow at a friction Reynolds number of 180. We will focus
on the effect of the models on the turbulence statistics. To assess the performance of the
large-eddy simulations, the results are compared to a direct numerical simulation filtered
at the resolution of the large-eddy simulations. This allows the direct comparison of the re-
sults of the large-eddy simulations and of the direct numerical simulations. The analysis is
based on the LES formalism introduced by Leonard [39]. In this paradigm, the large-eddy
simulation aims to provide resolved fields whose statistics correspond to the statistics of a
filtered direct numerical simulation. Note that the comparison with filtered direct numeri-
cal simulation is not systematically carried out in the literature since other approaches are
possible [55]. For practical applications, the knowledge of the filtered variables may not be
sufficient as nonfiltered variables are more relevant. This implies that a reconstruction of
the nonfiltered fields from the results of the large-eddy simulation is required. By compar-
ing large-eddy simulations to filtered DNS data, we separate the subgrid-scale modelling
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from the reconstruction procedure, which may use a different model and can only address
the deviatoric part of the Reynolds stresses for traceless or partially traceless models [82].
We address several functional and structural models from the literature using a common
numerical method and physical configuration. In addition, tensorial eddy-viscosity mod-
els are proposed and investigated in order to explore the relevance of the eddy-viscosity
assumption for each component of the subgrid term and account for the anisotropy of the
flow. Mixed models combining structural and functional or tensorial models and dynamic
versions of these models are also considered. The large-eddy simulations are carried out on
three different meshes to provide an indication of the robustness of the models to variations
of the grid resolution.

We give the subgrid-scale models investigated in section 2. The channel flow configu-
ration and the numerical method are presented in section 3. The results are discussed in
section 4.

2 Subgrid-scale models

Subgrid-scale models express the subgrid-scale tensor as a function of variables resolved
in the large-eddy simulation:

τij ≈ τmod
ij (U ,∆), (3)

where the function τmod
ij (U ,∆) depends on the model. We investigate zero-equation al-

gebraic models without wall function or wall model. This includes functional models,
structural models, tensorial models and tensorial mixed models. Dynamic versions of each
type of modelling are also considered.

2.1 Constant-parameter models

Using functional eddy-viscosity models, the subgrid-scale tensor is modelled by analogy
with molecular diffusion,

τmod
ij (U ,∆) = − 2νmod

e (g,∆)Sij , (4)

with Sij = 1
2 (gij + gji) the rate of deformation tensor and g the velocity gradient, defined

by gij = ∂jUi. The expression of the eddy viscosity depends on the model used. The
eddy-viscosity models investigated are:

Smagorinsky model [67]:

νSmag.
e (g,∆) =

(
CSmag.∆

)2 |S| , (5)

Wall-adapting local eddy-viscosity (WALE) model [50]:

νWALE
e (g,∆) =

(
CWALE∆

)2 (
SdijSdij

)3
2

(SmnSmn)
5
2 + (SdmnSdmn)

5
4

, (6)
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Sigma model [51]:

νSigma
e (g,∆) =

(
CSigma∆

)2 σ3 (σ1 − σ2) (σ2 − σ3)

σ2
1

, (7)

Anisotropic minimum-dissipation (AMD) model [58]:

νAMD
e (g,∆) = CAMD max(0,−GijSij)

gmngmn
, (8)

Kobayashi model [34]:

νKoba.
e (g,∆) = CKoba.∆

2 |Fg|
3
2 (1− Fg) |S| , (9)

where |S| =
√

2SijSij is a norm of S, Sdij = 1
2 (gikgkj + gjkgki) − 1

3gkpgpkδij the trace-
less symmetric part of the squared velocity gradient tensor, σ1 ≥ σ2 ≥ σ3 the three
singular values of g, Gij = ∆

2
kgikgjk the gradient model, IIG = 1

2

(
tr2 (G)− tr

(
G2
))

its
second invariant, Rij = βigjj the volumetric strain-stretching, with β = (S23, S13, S12),
and Fg = (ΩijΩij − SijSij) / (ΩmnΩmn + SmnSmn) the coherent structure function, with
Ωij = 1

2 (gij − gji) the spin tensor or rate of rotation tensor.

Anisotropic eddy-viscosity models involve one length scale per direction instead of a
single length scale. Anisotropic versions of the Smagorinsky, WALE, Sigma and Kobayashi
models can be devised. The AMDmodel are already anisotropic. We define the Anisotropic
Smagorinsky model [18] as,

τAn.Smag.
ij (U ,∆) = − 2νSmag.

e (ga,∆)Saij , (10)

with Saij = 1
2

(
gaij + gaji

)
the scaled rate of deformation tensor and ga the scaled velocity

gradient, defined by gaij = (∆j/∆)∂jUi.

Using the structural gradient model [39], the subgrid-scale tensor is modelled according
to a Taylor series expansion of the filter,

τGrad.
ij (U ,∆) = 1

12C
Grad.Gij(U ,∆) = 1

12C
Grad.∆

2
kgikgjk, (11)

Using the structural scale-similarity model [5], the subgrid-scale tensor is modelled follow-
ing the scale-similarity assumption,

τSimil.
ij (U ,∆) = CSimil.

(
ÛjUi − Ûj Ûi

)
, (12)

where ·̂ is a test filter explicitly computed in the large-eddy simulation. The Taylor series
expansion of the filter ·̂ in (12) leads to

τSimil.
ij (U ,∆) = 1

12C
Simil.Gij(U , ∆̂) = 1

12C
Simil.∆̂2

kgikgjk. (13)

This corresponds to the gradient model associated with the filter lengths ∆̂2
k of the test

filter.

Tensorial eddy-viscosity models can be constructed from any functional model. This
aims to take into account the anisotropy of the flow by weighting of each component of
the subgrid-scale model, following the premise that the relevance of the eddy-viscosity
assumption is not the same for each component of the subgrid term. In general, we may
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construct from any algebraic model τmod
ij (U ,∆), and second-order tensors H(k)

ij tensorial
models τH(k)mod

ij (U ,∆) of the form

τH
(k)mod

ij (U ,∆) = H
(k)
ij τ

mod
ij (U ,∆), (14)

where no implicit summations over i and j are assumed. We define for this purpose
the tensors H(1)

ij = [i 6= j], H(2)
ij =

[
χxyij

]
, H(3)

ij =
[
¬χyyij

]
, H(4)

ij =
[
χxyij ∨ χxzij

]
, H(5)

ij =[
χxyij ∨ χ

yz
ij

]
, H(6)

ij = [i = x ∨ j = x] et H(7)
ij =

[
χxxij ∨ χ

xy
ij

]
, where [ · ] are Iverson brackets,

evaluating to 1 if the proposition within bracket is satisfied and 0 otherwise, ¬ the logical
negation (not), ∧ the logical conjunction (and), ∨ the logical disjunction (or) and with
the notation χabij = (i = a ∧ j = b) ∨ (i = b ∧ j = a). More explicitly, we have

H(1) =

0 1 1
1 0 1
1 1 0

, (15)

H
(2)
ij =

0 1 0
1 0 0
0 0 0

, (16)

H
(3)
ij =

1 1 1
1 0 1
1 1 1

, (17)

H
(4)
ij =

0 1 1
1 0 0
1 0 0

, (18)

H
(5)
ij =

0 1 0
1 0 1
0 1 0

, (19)

H
(6)
ij =

1 1 1
1 0 0
1 0 0

, (20)

H
(7)
ij =

1 1 0
1 0 0
0 0 0

. (21)

Functional and structural models may also be combined to form mixed models. To
be more general, we consider tensorial mixed models, which combine the two models with
a different weighting for each component. This may be used to combine structural and
functional models for each component or to model each component with either a functional
or a structural model. Tensorial mixed models are constructed from two algebraic models
τone
ij (U ,∆) and τ two

ij (U ,∆), and two constant second-order tensors H(k) and H(l),

τ
(1−H(k))one+H(l)two
ij (U ,∆) = (1−H(k)

ij )τone
ij (U ,∆)

+H
(l)
ij τ

two
ij (U ,∆).

(22)

where no implicit summations over i and j are assumed.

Unless stated otherwise, we implicitly use the model parameters CSmag. = 0.10, CWALE =
0.55, CSigma = 1.5, CAMD = 0.3 and CKoba. = 0.045. We compute the filter length scale
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using ∆ = (∆x∆y∆z)
1/3 [14]. The reader may refer to Trias et al. [76] for a review of

alternative definitions.

2.2 Dynamic models

For any constant-parameter algebraic subgrid-scale model, dynamic models may be con-
structed using the approach introduced by Germano et al. [22]. A new model τdyn,mod

ij (U ,∆),
referred to as the dynamic version of the model, can be constructed from any algebraic
model τmod

ij (U ,∆),
τdyn,mod
ij (U ,∆) = Cdynτmod

ij (U ,∆). (23)

Following the approach of Lilly [40], the parameter Cdyn is computed to minimise the
variance of the residual Eij(U ,∆) = Lij(U)− Cdynmij(U ,∆). This leads to

Cdyn =

〈
mij(U ,∆)Lij(U)

〉〈
mmn(U ,∆)mmn(U ,∆)

〉 . (24)

Lij(U) = ÛjUi − Û j Û i, with mij(U ,∆) = τmod
ij (Û , ∆̂)− τmod

ij (U ,∆)
∧

and where ( ·̂ ) is a
test filter. The value of ∆̂ is best approximated as ∆̂ = (∆

2
i + ∆̂2

i )
1/2 for Gaussian and

box filters [21, 80]. Tensorial dynamic methods can extend the dynamic procedure to the
construction of models of the form

τ ten,dyn,mod
ij (U ,∆) = Cdyn

ij τmod
ij (U ,∆), (25)

where no implicit summations over i and j are assumed. As in the (scalar) dynamic
method, the tensorial parameter of the model is computed dynamically to minimise for all
i and j the variance of the residual [1]. This leads to

Cdyn
ij =

〈
mij(U ,∆)Lij(U)

〉〈
mij(U ,∆)mij(U ,∆)

〉 , (26)

where no implicit summations over i and j are assumed.

In addition, dynamic mixed models can be constructed using analogous procedures.
The dynamic mixed model τdyn,one,two

ij (U ,∆) may be expressed from two algebraic models
τone
ij (U ,∆) and τ two

ij (U ,∆) as

τdyn,one,two
ij (U ,∆) = Coneτone

ij (U ,∆) + Ctwoτ two
ij (U ,∆). (27)

Several methods have been suggested to compute the parameters Cone and Ctwo:

• Two-parameter dynamic mixed method: The parameters of the two models are com-
puted dynamically to minimise the variance of the residual Eij = Lij − Conemone

ij −
Ctwomtwo

ij [62, 63, 25, 64]. This leads to

Ctwo =

〈
mone
ij mone

ij

〉 〈
Lklm

two
kl

〉
−
〈
mone
ij mtwo

ij

〉
〈mone

kl Lkl〉

〈mone
mnm

one
mn〉

〈
mtwo
pq m

two
pq

〉
− 〈mone

mnm
two
mn〉

〈
mone
pq m

two
pq

〉 . (28)

with mone
ij (U ,∆) = τone

ij (Û , ∆̂) − τone
ij (U ,∆)
∧

and mtwo
ij (U ,∆) = τ two

ij (Û , ∆̂) −
τ two
ij (U ,∆)
∧

. The parameter Cone may be computed from the permutation of the
exponents “one” and “two” in the above expression.
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• One-parameter dynamic mixed method: The parameter of one of the two models is
arbitrarily set, for instance Cone, then the parameter of the other model is computed
dynamically to minimise the variance of the residual [85, 80]. This leads to

Ctwo =

〈
mtwo
ij

(
Lij − Conemone

ij

)〉
〈mtwo

mnm
two
mn〉

. (29)

The parameter of the first model Cone may be set to a constant. Alternatively, it
may be computed with the classical dynamic method, that is without taking into
consideration the second model. This has been suggested in order to improve the
two-parameter dynamic procedure [3, 46].

A generalisation of dynamic mixed models to an arbitrary number of parameters is given
by Sagaut et al. [61].

The dynamic procedure may be extended to the construction of a model using tensorial
parameters Cone

ij and Ctwo
ij ,

τdyn,one,two
ij (U ,∆) = Cone

ij τone
ij (U ,∆) + Ctwo

ij τ two
ij (U ,∆), (30)

where no implicit summations over i and j are assumed. The dynamic methods (28) and
(29) can be extended to tensorial parameters:

• Tensorial two-parameter dynamic mixed method: As in the (scalar) two-parameter
dynamic mixed method, the parameters of the two models are computed dynamically
to minimise for all i and j the variance of the residual. This leads to

Ctwo
ij =

〈
mone
ij mone

ij

〉〈
Lijm

two
ij

〉
−
〈
mone
ij mtwo

ij

〉〈
mone
ij Lij

〉
〈
mone
ij mone

ij

〉〈
mtwo
ij mtwo

ij

〉
−
〈
mone
ij mtwo

ij

〉〈
mone
ij mtwo

ij

〉 , (31)

where no implicit summations over i and j are assumed. The parameter Cone may
be computed from the permutation of the exponents “one” and “two” in the above
expression.

• Tensorial one-parameter dynamic mixed method: As in the (scalar) one-parameter
dynamic mixed method, the parameters of one of the two models are arbitrarily set,
the parameters of the other model being computed dynamically to minimise for all i
and j the variance of the residual. This leads to

Ctwo
ij =

〈
mtwo
ij

(
Lij − Conemone

ij

)〉
〈
mtwo
ij mtwo

ij

〉 , (32)

where no implicit summations over i and j are assumed. The parameter of the first
model Cone either be set to a constant or computed using the classical tensorial
dynamic method.

For each dynamic procedure, the average 〈 · 〉 can be computed as a plane average, that is
over the homogeneous directions, or as a global average [54, 83, 37, 7, 66], that is over the
volume of the channel. The parameter of plane-average dynamic procedures is a function of
time and the wall-normal coordinate. The parameter of global-average dynamic procedures
is a function of time.
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Reτ Name Number of grid points Dimension of the domain Cell sizes in wall units Mesh dilatation parameter
Nx ×Ny ×Nz Lx × Ly × Lz ∆+

x ; ∆+
y (0)–∆+

y (h); ∆+
z a

180 48B 48× 50× 48 4πh× 2h× 2πh 68 ; 0.50 – 25 ; 34 0.981
180 36C 36× 40× 36 4πh× 2h× 2πh 91 ; 2.0 – 22 ; 45 0.910
180 24C 24× 28× 24 4πh× 2h× 2πh 136 ; 2.0 – 35 ; 68 0.949

180 DNS 384× 266× 384 4πh× 2h× 2πh 5.8 ; 0.085 – 2.9 ; 2.9 0.971

Table 1 – Computational domain and grid spacing of the DNS mesh and the three LES
meshes. The cell sizes in wall units are computed using the friction velocity of the direct
numerical simulation.

3 Numerical study configuration

3.1 Channel flow configuration

We investigate the large-eddy simulation of a fully developed three-dimensional turbu-
lent channel flow. The channel is periodic in the streamwise (x) and spanwise (z) directions
and enclosed by two plane walls in the wall-normal direction (y). The flow is isothermal
and incompressible. The mean friction Reynolds number is Reτ = 180. The domain size is
4πh× 2h× 2πh. To analyse the results, we use a direct numerical simulation of the same
channel presented in Dupuy et al. [17], and validated against the reference data of Moser
et al. [48], Bolotnov et al. [10], Vreman and Kuerten [79] and Lee and Moser [38].

3.2 Numerical settings

The channel flow presented in section 3.1 is simulated using three meshes, referred to
as “48B”, “36C” and “24C”. The meshes are rectilinear. The grid spacing is uniform in the
homogeneous directions (x and z) and follows a hyperbolic tangent law in the wall-normal
coordinate direction (y),

yk = Ly

(
1 +

1

a
tanh

[(
k − 1

Ny − 1
− 1

)
tanh−1(a)

])
, (33)

with a the mesh dilatation parameter and Ny the number of grid points in the wall-normal
direction. The domain size and grid spacing of the simulations are given in table 1. We use
a finite difference method in a staggered grid system [47, 49] with a fourth-order centred
momentum convection scheme, a second-order centred diffusion scheme and a third-order
Runge–Kutta time scheme [81]. If present, the eddy viscosity is computed and discretised
at the center of control volumes in the same way as molecular viscosity and the operators
∂j(µgij) and ∂j(µgji) are discretised directly using second-order centred schemes. The
simulations are performed using the TrioCFD software [12]. This software has been used
in many numerical simulations of fluid flows [73, 4, 19].

The direct numerical simulations use the same numerical method as the large-eddy
simulations and have the same domain size.
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3.3 Filtering process

In order to allow the direct comparison of the results of the large-eddy simulations and
of the direct numerical simulations, we filter the instantaneous DNS data at the resolution
of the LES meshes. We use a top-hat filter to perform this filtering. To carry out the box
filter, we first interpolate the DNS data using a cubic spline then compute the filter from
the interpolated data, as in [16, 18]. The cubic spline interpolation allows the computation
of the filter with an arbitrary filter length and without mesh restrictions. The spline
interpolation adds an additional filtering to the box filter. However, this additional filter
is small compared to the box filter with the DNS mesh used and can be neglected.

Filtering is also required to compute the test filter involved in some subgrid-scale mod-
els. These filters are computed using other methods because the spline interpolation is
too computationally expensive to be used in a large-eddy simulation. The test filter of
dynamic methods, referred to as “filter A” is computed as an average over three cells in
the three directions. This approximates a top-hat filter whose width is thrice as large as
the LES mesh. The test filter of the scale-similarity model has been computed using the
filter A and another filter. The second filter, referred to as “filter T”, uses the Taylor series
expansion of the box filter using the local cell size as the filter width.

4 Results and discussion

The large-eddy simulations are used to study the relevance of models for the subgrid-
scale tensor. Before proceeding to the comparison of the subgrid-scale models, we briefly
discuss the simulation of the channel without subgrid-scale model. To analyse the results,
we use two types of scaling. With the wall scaling (+), all quantities are scaled using a
combination of the friction velocity Uτ and the kinematic viscosity ν, y+ = yUτ/ν and
U+ = U/Uτ . With the scaling (◦), all quantities are scaled using a combination of the
channel half-height and the kinematic viscosity ν, y◦ = y/h and U◦ = Uh/ν.

4.1 Simulation without subgrid-scale models

Simulations without subgrid-scale model are carried out with the meshes 24C, 36C and
48B. These simulations aim to provide reference data without any subgrid-scale modelling.
Although no explicit subgrid-scale models are used, the approach differs from implicit
large-eddy simulation, which is usually based on the use of the dissipative properties of
specific numerical schemes to model the small-scale motions [60], as our numerical method
is intended to cause minimal dissipation. The mass flow rate of the simulations is imposed
using a control loop to adjust the streamwise volume force f . The targeted mass flow
rate is the same as in the direct numerical simulations. Accordingly, the simulations have
the same mass flow rate than the direct numerical simulations but predict a different wall
shear stress. With the mesh 48B, the error on the friction velocity is 2%. Imposing a
constant streamwise volume force would maintain the wall shear stress at the same level as
the direct numerical simulations, but results in an error of 2% on the mass flow rate. The
results of simulations with constant mass flow rate and constant streamwise volume force
are compared in figure 1. The scaling of the profiles takes into account the differences of
mass flow rate. Nevertheless, the two approaches are not completely equivalent because the
Reynolds number differences between the two methods may induce low Reynolds number
effects.
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Figure 1 – Comparison of simulations with no subgrid-scale model with constant mass flow
rate and constant streamwise volume force for the profiles of the mean streamwise velocity
〈Ux〉 (left) and the covariance of streamwise and wall-normal velocity 〈u′xu′y〉 (right) with
the mesh 48B.
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Figure 2 – Comparison of simulations with no subgrid-scale model with the meshes 24C,
36C and 48B for the profiles of the mean streamwise velocity 〈Ux〉 (a, b), the covariance
of streamwise and wall-normal velocity 〈u′xu′y〉 (c), the standard deviation of streamwise
velocity

√
〈u′2x 〉 (d), wall-normal velocity

√
〈u′2y 〉 (e) and spanwise velocity

√
〈u′2z 〉 (f).
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The results of the simulations without subgrid-scale model with the meshes 24C, 36C
and 48B are compared in figure 2. The profiles of the turbulence statistics are compared
to direct numerical simulations filtered at the resolution of the simulation meshes. The
mean nonfiltered and filtered streamwise velocity are almost identical, because the filtered
field has sufficient spectral content [82]. Nevertheless, the simulation with the mesh 24C
underestimates significantly the friction velocity, and thus the mean streamwise velocity
near the wall. The mean streamwise velocity is without scaling satisfactory at the center
of the channel for all simulations (figure 2).

The filtering of the DNS data decreases significantly the maximum value of the co-
variance of streamwise and wall-normal velocity and the standard deviation of velocity
components. The decrease is larger for a larger filter width. The decrease ranges from
around 10% with the mesh 48B to around 30% with the mesh 24C. However, the simu-
lations without model lead with the three meshes to a similar covariance of streamwise
and wall-normal velocity and standard deviation of spanwise velocity, while the standard
deviation of streamwise velocity increases with mesh derefinement (figure 2). The inter-
pretation of these results should take into account the effect of the classical scaling, as the
underestimation of the wall shear stress in the coarser simulations offsets a slight decrease
of the covariance of streamwise and wall-normal velocity and the standard deviation of
spanwise velocity without scaling.

The error on the friction velocity is 9% with the mesh 24C, 6% with the mesh 36C and
2% with the mesh 48B. The relative accuracy of the wall shear stress with the mesh 48B is
partly due to its non-monotonous convergence of the prediction with mesh refinement. As
identified by Meyers and Sagaut [43], the non-monotonous convergence allows the existence
of a grid-resolution line where the error on the wall shear stress is zero. The simulation
of the channel with a finer 72 × 68 × 72 mesh leads to an error of 4% for the wall shear
stress. This is less accurate than with the mesh 48B, confirming that the mesh 48B is close
to Meyers’ no error line. Due to this non-monotonous convergence of the wall shear stress
and the turbulence statistics, it is important to verify the robustness of the subgrid-scale
models to a range of grid resolutions.

Thus, while the mean streamwise velocity is fairly well represented by the simulations
without model, more complex turbulence statistics, such as the Reynolds stresses, are less
accurate. In the following, we will study the simulation of the channel with subgrid-scale
models, that is its large-eddy simulation, and examine whether the addition of a subgrid-
scale model can improve these results. To study the modelling of the subgrid-scale tensor,
we carry out large-eddy simulations with several functional models, structural models,
tensorial models and tensorial mixed models.

4.2 Functional modelling

In this section, we investigate the functional modelling of the subgrid-scale tensor. The
functional models investigated are the Smagorinsky, WALE, Sigma, AMD, Kobayashi and
Anisotropic Smagorinsky models, as well as dynamic versions of these models. The results
of large-eddy simulations with these models are compared in figure 3 with the mesh 48B. As
consistently found in the literature [see e.g. 78], the Smagorinsky model does not perform
well in shear flow and considerably deteriorates the profiles of the turbulence statistics.
The Anisotropic Smagorinsky model improves significantly the predictions compared to the
Smagorinsky model, providing similar results to the WALE, Sigma and AMD models. The
WALE, Sigma, AMD, Kobayashi and Anisotropic Smagorinsky models underestimate the
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Figure 3 – Comparison of large-eddy simulations with the Smagorinsky, WALE, Sigma,
AMD, Kobayashi and Anisotropic Smagorinsky models for the profiles of the mean stream-
wise velocity 〈Ux〉 (a, b), the covariance of streamwise and wall-normal velocity 〈u′xu′y〉 (c),
the standard deviation of streamwise velocity

√
〈u′2x 〉 (d), wall-normal velocity

√
〈u′2y 〉 (e)

and spanwise velocity
√
〈u′2z 〉 (f) with the mesh 48B.

wall shear stress, thus do not lead to a good representation of the scaled mean streamwise
velocity. The additional dissipation provided by the model is able to decrease the maximum
value of the standard deviation of wall-normal and spanwise velocity, but the standard
deviation of streamwise velocity is increased further away from the filtered DNS profile.
The no-model simulation yields a better prediction of the friction Reynolds number, the
mean streamwise velocity and the standard deviation of velocity components than the
large-eddy simulations with functional models. The points discussed above are also valid
for the meshes 24C and 36C. The larger filter widths amplify the reduction of the standard
deviation of wall-normal and spanwise velocity following approximately the same behaviour
as the filtered direct numerical simulation (figure 4). On the other hand, the standard
deviation of streamwise velocity is even with the 24C mesh not reduced compared to the
no-model simulation, further enhancing the discrepancy with the filtered direct numerical
simulation. The predictions of the large-eddy simulations depend on the amplitude of the
subgrid-scale viscosity. In our simulations, a lower subgrid-scale viscosity is obtained with
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Figure 4 – Comparison of large-eddy simulations with the Smagorinsky, WALE, Sigma,
AMD, Kobayashi and Anisotropic Smagorinsky models with the meshes 24C (left) and
36C (right) for the profiles of the standard deviation of streamwise velocity

√
〈u′2x 〉 (a, b),

wall-normal velocity
√
〈u′2y 〉 (c, d) and spanwise velocity

√
〈u′2z 〉 (e, f).

the Kobayashi model (figure 6(a)). This leads to more accurate results with the meshes
and numerical method of this study.

Dynamic models provide a less arbitrary comparison of functional models in the sense
that it is not complicated by the choice of the model parameter. We study plane-average,
global-average, tensorial plane-average and tensorial global-average dynamic methods. The
main purpose of the plane-average dynamic method is the local adaptation of the model
parameter, which may compensate an unsatisfactory asymptotic near-wall behaviour of the
model [65]. This is particularly well-suited to the Smagorinsky model. The plane-average
dynamic Smagorinsky model (figure 5) gives similar results to the non-dynamic WALE and
Sigma models. With the plane-average dynamic procedure, the Anisotropic Smagorinsky
model deteriorates the predictions of the Smagorinsky model. Large-eddy simulations with
the plane-average dynamic WALE, Sigma, AMD and Kobayashi models are not stable.
This is consistent with the observation by Baya Toda et al. [6] that the plane-average
dynamic method might degrade subgrid-scale models with a proper asymptotic near-wall
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Figure 5 – Comparison of large-eddy simulations with the plane-average, tensorial plane-
average and tensorial global-average dynamic Smagorinsky model and the plane-average
dynamic Anisotropic Smagorinsky model for the profiles of the mean streamwise velocity
〈Ux〉 (a, b), the covariance of streamwise and wall-normal velocity 〈u′xu′y〉 (c), the standard
deviation of streamwise velocity
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Figure 6 – Comparison of simulations with the constant-parameters and global-average dy-
namic Smagorinsky, WALE, Sigma, AMD, Kobayashi and Anisotropic Smagorinsky models
for the profiles of the subgrid-scale viscosity with the mesh 48B.
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Average of the dynamic parameter (standard deviation),〈
Cmod

〉
(
√
〈(Cmod)2〉 − 〈Cmod〉2)

Mesh 24C Mesh 36C Mesh 48 B

Smag. 0.009 (0.001) 0.016 (0.001) 0.033 (0.001)
WALE 1.337 (0.554) 0.591 (0.073) 0.494 (0.038)
Sigma 1.723 (0.263) 1.182 (0.083) 0.982 (0.046)
AMD — — 0.455 (0.019)
Kobayashi — — 1.151 (0.088)
An. Smag. 0.694 (0.080) 1.008 (0.075) 1.544 (0.101)

Gradient — — 2.593 (0.053)

Table 2 – Average and normalised standard deviation of the dynamic parameter of the large-
eddy simulations with the global-average dynamic Smagorinsky, WALE, Sigma, AMD,
Kobayashi and Anisotropic Smagorinsky models with the meshes 24C, 36C and 48B.

Average of the dynamic parameter (standard deviation),〈
Cmod

〉
(
√
〈(Cmod)2〉 − 〈Cmod〉2)

xx xy xz yy zy zz

Smag. 6.755 (0.434) 0.028 (0.001) 0.073 (0.049) 0.269 (0.025) −0.011 (0.005) −0.266 (0.036)
WALE −0.732 (0.159) 1.463 (0.093) 0.432 (0.041) 0.225 (0.066) −0.035 (0.023) 0.418 (0.056)
Sigma 1.664 (0.267) 1.662 (0.077) 0.617 (0.069) 0.155 (0.058) 0.002 (0.030) 0.160 (0.050)
AMD 0.624 (0.097) 0.750 (0.035) 0.245 (0.038) 0.001 (0.034) 0.035 (0.022) −0.064 (0.026)
Kobayashi 2.546 (0.274) 2.719 (0.175) 0.785 (0.133) −0.145 (0.081) 0.048 (0.046) −0.030 (0.067)
An. Smag. 5.435 (0.480) 1.618 (0.148) 0.275 (0.094) 1.531 (0.259) −0.236 (0.086) −0.323 (0.078)

Gradient 2.587 (0.061) 2.404 (0.039) 1.379 (0.039) 2.928 (0.067) 1.566 (0.041) 1.949 (0.031)

Table 3 – Average and normalised standard deviation of the dynamic parameters of the
large-eddy simulations with the tensorial global-average dynamic Smagorinsky, WALE,
Sigma, AMD, Kobayashi and Anisotropic Smagorinsky models with the mesh 48B.

behaviour and lead to numerical instabilities.

The global-average dynamic method multiplies the subgrid-scale models by a time-
dependent function without modifying the local behaviour of the model. The average and
standard deviation of the dynamic parameters are given in table 2. The global-average
dynamic procedure increases the subgrid-scale viscosity of the Kobayashi and Anisotropic
Smagorinsky models but reduces the subgrid-scale viscosity of the WALE and AMD mod-
els, except with the mesh 24C. The Smagorinsky model is made negligible to prevent its
detrimental near-wall influence (figure 6(b)). The global-average dynamic WALE, AMD
and Kobayashi models lead to a good prediction of the standard deviation of wall-normal
and spanwise velocity, but the standard deviation of streamwise velocity is not improved
compared to the no-model simulation (figure 7). The Sigma and Anisotropic Smagorinsky
models do not provide good results with the global-average dynamic procedure.

The tensorial global-average dynamic method alters the relative contribution of each
component of the subgrid-scale models. Excluding the Anisotropic Smagorinky model, the
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Figure 7 – Comparison of large-eddy simulations with the global-average dynamic
Smagorinsky, WALE, Sigma, AMD, Kobayashi and Anisotropic Smagorinsky models for
the profiles of the mean streamwise velocity 〈Ux〉 (a, b), the covariance of streamwise and
wall-normal velocity 〈u′xu′y〉 (c), the standard deviation of streamwise velocity

√
〈u′2x 〉 (d),

wall-normal velocity
√
〈u′2y 〉 (e) and spanwise velocity

√
〈u′2z 〉 (f) with the mesh 48B.

tensorial global-average dynamic procedure decreases heavily the relative amplitude of the
“yy”, “yz” and “zz” components, moderately decreases the “xz” component and amplifies
the “xy” (table 3). The effect of the tensorial global-average dynamic procedure on the
“xx” component is strongly dependent of the model. Depending on the model and the
component, negative average parameters are obtained. In other words, the models are
not purely dissipative. The Sigma model is the only functional model investigated with
only positive parameters. The “xy” and “xz” are positive for all models while the “zz”
component is negative for most models. The tensorial global-average dynamic Smagorin-
sky model decreases the standard deviation of wall-normal and spanwise velocity without
increasing the standard deviation of streamwise velocity (figure 5). Similar results are
obtained with the tensorial global-average dynamic WALE, AMD and Kobayashi models
(figure 8). This is an improvement compared to the global-average dynamic procedure.
The tensorial global-average dynamic AMD model is able to decrease the maximum value
of the standard deviation of streamwise velocity, improving the results compared to the
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Figure 8 – Comparison of large-eddy simulations with the tensorial global-average dynamic
Smagorinsky, WALE, Sigma, AMD, Kobayashi and Anisotropic Smagorinsky models for
the profiles of the mean streamwise velocity 〈Ux〉 (a, b), the covariance of streamwise and
wall-normal velocity 〈u′xu′y〉 (c), the standard deviation of streamwise velocity

√
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wall-normal velocity
√
〈u′2y 〉 (e) and spanwise velocity

√
〈u′2z 〉 (f) with the mesh 48B.

no-model simulation. It is the only investigated functional model with this property.

4.3 Structural modelling

In this section, we investigate the structural modelling of the subgrid-scale tensor. The
structural models investigated are the gradient and scale-similarity models, as well as the
dynamic versions of the gradient model. We give the results of large-eddy simulations
with the gradient and scale-similarity models in figure 9 with the mesh 48B. The classical
gradient model (CGrad. = 1) improves slightly the standard deviation of streamwise ve-
locity compared to the no-model simulation, but deteriorates the profiles of the standard
deviation of wall-normal and spanwise velocity near the wall and the prediction of the wall
shear stress. Nonetheless, the effects of the gradient model on the flow are rather small.
To amplify the effects, we investigate gradient models with a parameter CGrad. larger than
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one. The simulations are not stable using large multiplicative parameters. The filtering of
the gradient model improves the stability of the simulation. The resulting filtered gradient
model may be seen as an alternative formulation of the rational model proposed by Galdi
and Layton [20][see also 8, 26, 27, 9],

τGrad,filtered
ij (U ,∆) = τGrad.

ij (U ,∆)
∧

= 1
12C

Grad.∆
2
kgikgjk

∧

. (34)

The test filter ·̂ is computed using filter A. The filtering alters the results of the simulation
since with CGrad. = 2, the predicted wall shear stress is significantly different for the
nonfiltered and filtered gradient models (figure 9). With CGrad. = 9, the filtered gradient
model leads to a standard deviation of streamwise velocity at the level of the filtered direct
numerical simulation. However, the covariance of streamwise and wall-normal velocity and
the standard deviation of wall-normal and spanwise velocity are underestimated. Hence,
there is no Pareto improvement compared to the classical gradient model.

The plane-average and global-average dynamic gradient models give nearly identical
results because the plane-average dynamic parameter does not strongly depend on the wall-
normal coordinate (figure 10). They amplify on average the gradient model (table 2) and
provide similar results to the constant-parameter simulations. The tensorial plane-average
or global-average dynamic gradient model amplify each component of the gradient model
but increase in particular the relative amplitude of the “xx”, “xy” and “yy” components
(table 3). The tensorial dynamic gradient models, and the plane-average dynamic gradient
model in particular, provide a more accurate prediction of the wall shear stress and the
near-wall profile of the standard deviation of wall-normal and spanwise velocity (figure 10).

The results of the large-eddy simulations with the scale-similarity model depend on
the filter used (figure 9). Using filter A, the scale-similarity model is tied to the gradient
model with CGrad. = 9 according to the Taylor series expansion (13) of the test filter in
the scale-similarity model with ∆̂2

k ≈ 3∆k. Using filter T, the scale-similarity model is
tied to the gradient model with CGrad. = 1 since ∆̂2

k ≈ ∆k. However, the predictions with
the scale-similarity and gradient model are not the same, suggesting that the higher-order
terms are relevant. With the filter A, the scale-similarity model has with the mesh 48B
an excessive impact on the flow and deteriorates the profiles of the turbulence statistics.
With the filter T, the model is more similar to the original model of Bardina et al. [5].
The prediction of all turbulence statistics is with the mesh 48B improved compared to the
no-model simulation. In particular, the covariance of streamwise and wall-normal velocity
and the standard deviation of wall-normal and spanwise velocity are in agreement with the
filtered direct numerical simulation. The standard deviation of wall-normal and spanwise
velocity remains overestimated but is decreased compared to the no-model simulation.
These satisfactory results do not generalise very well to the 24C and 36C meshes. Indeed,
the effects of the scale-similarity model on the turbulence statistics is similar for the three
meshes and does not seem to correctly take into account the variations of filter width. As
a result, the covariance of streamwise and wall-normal velocity and the standard deviation
of velocity components are overestimated with the meshes 24C and 36C (figure 11).

4.4 Tensorial models and tensorial mixed models

In this section, we investigate the modelling of the subgrid-scale tensor with tensorial,
mixed and tensorial mixed models, as well as the dynamic versions of these models. We
focus in particular on models based on the AMD model. The results of large-eddy simula-
tions with various tensorial AMD models is compared in figure 12 with the mesh 48B. The
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models based on the H(4) (equation 18) tensor leads to the best prediction of the wall shear
stress while those based on the H(2) (equation 16), H(3) (equation 17) and H(6) (equation
20) tensors heavily underestimate or overestimate the wall shear stress. Compared to the
classical AMD model, the tensorial AMD models based on the H(2) (equation 16), H(4)

(equation 18) and H(5) (equation 19) tensors give better predictions of the covariance of
streamwise and wall-normal velocity and of the standard deviation of velocity components.
Besides, while functional models were found unable to decrease the maximum value of the
standard deviation of streamwise velocity compared to the no-model simulation (figure 3),
all tensorial AMD models investigated verify this property. The behaviour of the tenso-
rial AMD models upon mesh derefinement is as the scale-similarity model not satisfactory
for the covariance of streamwise and wall-normal velocity and the standard deviation of
streamwise velocity. Indeed, the reduction of the maximum amplitude is not sufficiently
enhanced with the coarser meshes (figure 15). It is however more acceptable for the stan-
dard deviation of wall-normal and spanwise velocity in the sense that the profiles undergo
the expected decrease of maximum amplitude with increased filter width.

Contrary to tensorial AMD models, the tensorial models based on the Smagorinsky,
WALE or Sigma model do not decrease the maximum value standard deviation of stream-
wise velocity with the mesh 48B (figure 14). A decrease is also obtained using a tensorial
Anistropic Smagorinsky model, but the effect is smaller than with the AMD model. While
the underlying explication is not known, this is to some extent consistent with the results
of tensorial global-average dynamic models (figure 8), in which the AMD model led to a
stronger decrease of the standard deviation of streamwise velocity.

Tensorial gradient-AMD mixed models complement tensorial AMD models using the
gradient model to close the components of the subgrid term not modelled by the AMD
model. The addition of the gradient model to the AMD model has only a small effect on
the turbulence statistics (figure 13). It decreases the estimated wall shear stress, providing
an improvement for the classical AMD model and the tensorial AMD models based on the
H(1) (equation 15), H(3) (equation 17), H(4) (equation 18) and H(6) (equation 20) tensors,
which overestimate the wall shear stress, and a degradation for the tensorial AMD models
based on the H(2) (equation 16) and H(5) (equation 19) tensors, which underestimate the
wall shear stress.

We investigated various dynamic versions of gradient-AMD mixed models. Dynamic
gradient-AMD mixed models may be based on a plane average, a global average, a tenso-
rial plane average or a tensorial global average. Some dynamic procedures are not stable.
The stability of the dynamic procedures investigated is reported in table 4. Plane-average
dynamic methods are only stable if the AMD-related part of the model is not dynamic.
Global-average dynamic methods are more stable. All dynamic procedures investigated
are stable if the negative values of the dynamic parameters of the AMD model are clipped.
However, this makes the AMD model negligible using a global average (table 5) or a tenso-
rial global average (table 6). If the dynamic procedure is not tensorial, the one-parameter
dynamic method based on the prior computation of the AMD model with the classi-
cal dynamic procedure (P1Grad+PDAMD or G1Grad+GDAMD) and the two-parameter
dynamic method (P2(Grad+AMD) or G2(Grad+AMD)) give similar results. The one-
parameter dynamic method based on the prior computation of the gradient model with
the classical dynamic method (PDGrad+P1AMD or GDGrad+G1AMD) and the use of
the classical dynamic method for the gradient and AMD models (PDGrad+PDAMD or
GDGrad+GDAMD) also give similar results. We compare in figure 16 a selection of the
best-performing models for each type of dynamic procedure. The dynamic gradient-AMD
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Type of Dynamic method of each model
averaging Gradient AMD Stability

P1Grad+AMD Plane-average One-parameter Not dynamic Stable
PDGrad+PDAMD Plane-average Classical Classical Not stable
PDGrad+P1AMD Plane-average Classical One-parameter Not stable
P1Grad+PDAMD Plane-average One-parameter Classical Not stable
P2(Grad+AMD) Plane-average Two-parameter Two-parameter Not stable
TP1Grad+AMD Tensorial plane-average One-parameter Not dynamic Stable
TPDGrad+TPDAMD Tensorial plane-average Classical Classical Not stable
TPDGrad+TP1AMD Tensorial plane-average Classical One-parameter Not stable
TP1Grad+TPDAMD Tensorial plane-average One-parameter Classical Not stable
TP2(Grad+AMD) Tensorial plane-average Two-parameter Two-parameter Not stable

G1Grad+AMD Global-average One-parameter Not dynamic Stable
GDGrad+GDAMD Global-average Classical Classical Stable
GDGrad+G1AMD Global-average Classical One-parameter Stable
G1Grad+GDAMD Global-average One-parameter Classical Not stable
G2(Grad+AMD) Global-average Two-parameter Two-parameter Not stable
TG1Grad+AMD Tensorial global-average One-parameter Not dynamic Stable
TGDGrad+TGDAMD Tensorial global-average Classical Classical Stable
TGDGrad+TG1AMD Tensorial global-average Classical One-parameter Not stable
TG1Grad+TGDAMD Tensorial global-average One-parameter Classical Stable
TG2(Grad+AMD) Tensorial global-average Two-parameter Two-parameter Not stable

Table 4 – Stability of the large-eddy simulations with plane-average, global-average, tenso-
rial plane-average and tensorial global-average dynamic methods for gradient-AMD mixed
models with the mesh 48B. The clipping only concerns the negative dynamic parameters
of the AMD model.

mixed models do not provide significant improvements over the constant-parameter ten-
sorial gradient-AMD mixed models. The best results are achieved with tensorial dynamic
procedures.

All in all, while none of the models investigated is able to properly reproduce the
effect of the subgrid-scale tensor on the flow, some models improves the predictions of the
simulation compared to the no-model case. We recommend the use of the scale-similarity
model and the constant-parameter or dynamic tensorial AMD model, which provide the
most promising results.

5 Conclusion

Subgrid-scale models are investigated using large-eddy simulations of a fully developed
turbulent channel flow. The large-eddy simulations implementing the models are carried
out using a finite method in a staggered grid system with a third-order Runge–Kutta time
scheme. To examine the influence of the modelling, the large-eddy simulations are com-
pared to a filtered direct numerical simulation. The modelling of the subgrid-scale tensor
governs the wall shear stress and the turbulence anisotropy. The gradient model is not
sufficiently impactful in a large-eddy simulation and must be filtered and amplified to al-
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Average of the dynamic parameter (standard deviation),〈
Cmod

〉
(
√
〈(Cmod)2〉 − 〈Cmod〉2)

AMD-related Gradient-related

G1Grad+AMD — 1.760 (0.047)
GDGrad+GDAMD 0.424 (0.017) 2.245 (0.054)
GDGrad+G1AMD 0.424 (0.017) 2.208 (0.053)
G1Grad+GDAMD* 0.003 (0.007) 2.587 (0.053)
G2(Grad+AMD)* 0.003 (0.008) 2.589 (0.054)

Table 5 – Average and normalised standard deviation of the AMD-related and gradient-
related dynamic parameters of the large-eddy simulations with global-average dynamic
gradient-AMD mixed models with the mesh 48B. An asterisk (*) indicates the clipping of
the AMD-related part.

Average of the dynamic parameter (standard deviation),〈
Cmod

〉
(
√
〈(Cmod)2〉 − 〈Cmod〉2)

xx xy xz yy zy zz

TG1Grad+AMD — — — — — —
TGDGrad+TGDAMD 0.634 (0.080) 0.761 (0.031) 0.255 (0.037) −0.020 (0.033) 0.049 (0.021) −0.076 (0.025)
TGDGrad+TG1AMD* 0.000 (0.000) 0.213 (0.019) 0.125 (0.022) 0.100 (0.022) 0.003 (0.005) 0.000 (0.000)
TG1Grad+TGDAMD 0.584 (0.076) 0.799 (0.033) 0.258 (0.038) −0.008 (0.034) 0.050 (0.021) −0.073 (0.025)
TG2(Grad+AMD)* 0.000 (0.000) 0.327 (0.030) 0.121 (0.022) 0.101 (0.023) 0.003 (0.005) 0.000 (0.000)

(a) AMD-related dynamic parameters

Average of the dynamic parameter (standard deviation),〈
Cmod

〉
(
√
〈(Cmod)2〉 − 〈Cmod〉2)

xx xy xz yy zy zz

TG1Grad+AMD 1.818 (0.051) 0.465 (0.070) 1.244 (0.053) 2.326 (0.077) 1.466 (0.060) 1.668 (0.049)
TGDGrad+TGDAMD 2.280 (0.053) 2.271 (0.060) 1.422 (0.034) 2.681 (0.067) 1.598 (0.034) 1.853 (0.030)
TGDGrad+TG1AMD* 2.473 (0.056) 2.359 (0.060) 1.408 (0.037) 2.840 (0.066) 1.599 (0.038) 1.933 (0.030)
TG1Grad+TGDAMD 2.311 (0.055) 1.302 (0.048) 1.388 (0.035) 2.727 (0.068) 1.587 (0.035) 1.875 (0.029)
TG2(Grad+AMD)* 2.486 (0.057) 1.962 (0.061) 1.399 (0.037) 2.863 (0.067) 1.601 (0.039) 1.940 (0.031)

(b) Gradient-related dynamic parameters

Table 6 – Average and normalised standard deviation of the AMD-related and gradient-
related dynamic parameters of the large-eddy simulations with tensorial global-average
dynamic gradient-AMD mixed models with the mesh 48B. An asterisk (*) indicates the
clipping of the AMD-related part.
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ters significantly the flow. Functional eddy-viscosity models do not accurately represent
the turbulence anisotropy as the standard deviation of streamwise velocity is insufficiently
decreased compared to the wall-normal and spanwise components. Scalar dynamic proce-
dures avoid the need for an arbitrary model parameter but does not improve significantly
the prediction of models with a proper asymptotic near-wall behaviour. On the other
hand, tensorial eddy-viscosity models can provide more accurate predictions of the wall
shear stress and the turbulence anisotropy than scalar eddy-viscosity models using either a
constant tensorial coefficient or a tensorial dynamic procedure. The effects are particularly
salient with the AMD model.
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Figure 9 – Comparison of large-eddy simulations with the gradient model using CGrad. = 1
and CGrad. = 2 and the filtered gradient model using CGrad. = 2 and CGrad. = 9 and with
the scale-similarity model using filter T and filter A for the profiles of the mean streamwise
velocity 〈Ux〉 (a, b), the covariance of streamwise and wall-normal velocity 〈u′xu′y〉 (c), the
standard deviation of streamwise velocity

√
〈u′2x 〉 (d), wall-normal velocity

√
〈u′2y 〉 (e) and

spanwise velocity
√
〈u′2z 〉 (f) with the mesh 48B. The filtered gradient model uses the filter
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Figure 10 – Comparison of large-eddy simulations with the plane-average, global-average,
tensorial plane-average and tensorial global-average dynamic gradient models for the pro-
files of the mean streamwise velocity 〈Ux〉 (a, b), the covariance of streamwise and wall-
normal velocity 〈u′xu′y〉 (c), the standard deviation of streamwise velocity

√
〈u′2x 〉 (d), wall-

normal velocity
√
〈u′2y 〉 (e) and spanwise velocity

√
〈u′2z 〉 (f) with the mesh 48B.
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Figure 11 – Comparison of large-eddy simulations with the scale-similarity model using
filter T with the meshes 24C, 36C and 48B for the profiles of the mean streamwise velocity
〈Ux〉 (a, b), the covariance of streamwise and wall-normal velocity 〈u′xu′y〉 (c), the standard
deviation of streamwise velocity

√
〈u′2x 〉 (d), wall-normal velocity

√
〈u′2y 〉 (e) and spanwise
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〈u′2z 〉 (f).
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Figure 12 – Comparison of large-eddy simulations with tensorial AMD models for the
profiles of the mean streamwise velocity 〈Ux〉 (a, b), the covariance of streamwise and
wall-normal velocity 〈u′xu′y〉 (c), the standard deviation of streamwise velocity

√
〈u′2x 〉 (d),

wall-normal velocity
√
〈u′2y 〉 (e) and spanwise velocity

√
〈u′2z 〉 (f) with the mesh 48B.
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Figure 13 – Comparison of large-eddy simulations with the gradient-AMD mixed model
and tensorial gradient-AMD mixed models for the profiles of the mean streamwise velocity
〈Ux〉 (a, b), the covariance of streamwise and wall-normal velocity 〈u′xu′y〉 (c), the standard
deviation of streamwise velocity

√
〈u′2x 〉 (d), wall-normal velocity

√
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Figure 14 – Comparison of large-eddy simulations with tensorial gradient-Smagorinsky,
gradient-WALE, gradient-Sigma, gradient-AMD and gradient-Anisotropic-Smagorinsky
mixed models for the profiles of the mean streamwise velocity 〈Ux〉 (a, b), the covariance
of streamwise and wall-normal velocity 〈u′xu′y〉 (c), the standard deviation of streamwise
velocity

√
〈u′2x 〉 (d), wall-normal velocity

√
〈u′2y 〉 (e) and spanwise velocity

√
〈u′2z 〉 (f) with

the mesh 48B.
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Figure 15 – Comparison of large-eddy simulations with the tensorial gradient-AMD mixed
model based on the H(4) (equation 18) tensor with the meshes 24C, 36C and 48B for
the profiles of the mean streamwise velocity 〈Ux〉 (a, b), the covariance of streamwise and
wall-normal velocity 〈u′xu′y〉 (c), the standard deviation of streamwise velocity

√
〈u′2x 〉 (d),

wall-normal velocity
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Figure 16 – Comparison of large-eddy simulations with dynamic gradient-AMDmixed mod-
els for the profiles of the mean streamwise velocity 〈Ux〉 (a, b), the covariance of streamwise
and wall-normal velocity 〈u′xu′y〉 (c), the standard deviation of streamwise velocity

√
〈u′2x 〉

(d), wall-normal velocity
√
〈u′2y 〉 (e) and spanwise velocity

√
〈u′2z 〉 (f) with the mesh 48B.

An asterisk (*) indicates the clipping of the AMD-related part.
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