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LONG TIME DYNAMICS FOR GENERALIZED KORTEWEG-DE
VRIES AND BENJAMIN-ONO EQUATIONS

JOACKIM BERNIER AND BENOIT GREBERT

ABsTRACT. We provide an accurate description of the long time dynamics of the solu-
tions of the generalized Korteweg-De Vries (gKdV) and Benjamin-Ono (gBO) equations
on the one dimension torus, without external parameters, and that are issued from al-
most any (in probability and in density) small and smooth initial data. We stress out
that these two equations have unbounded nonlinearities.

In particular, we prove a long-time stability result in Sobolev norm: given a large con-
stant r and a sufficiently small parameter €, for generic initial datum «(0) of size e, we
control the Sobolev norm of the solution u(t) for times of order e™". These results are
obtained by putting the system in rational normal form : we conjugate, up to some high
order remainder terms, the vector fields of these equations to integrable ones on large
open sets surrounding the origin in high Sobolev regularity.
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During the last decades remarkable advances have been realized in the perturbation
theory of Hamiltonian partial differential equations. On the one hand, some extensions of
the KAM theory succeed to prove the existence of plenty of invariant tori for many systems
(let us cite the pioneering works [Kuk87, Way90|, the works concerning Korteweg-De Vries
|[KP03] and Benjamin-Ono equations [JY11]| and a recent review paper [Ber19]); but these
invariant tori correspond to exceptional initial data and, most of time, they are only finite
dimensional. On the other hand, considering only solutions in neighborhoods of elliptic
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2 JOACKIM BERNIER AND BENOIT GREBERT

equilibrium points, some extensions of the Birkhoff normal form theory enable a quite
precise description of the dynamics (typically that it behaves like an integrable system)
or, at least, some properties of stability for very long times (¢~" where ¢ < 1 is the size
of the perturbation and r > 1 can be chosen arbitrarily large). These techniques have
been designed for many kinds of models (see e.g. [Bam03, BG06, BDGS07, GIP09, Dell12,
FGL13, BD17, FI19, BMP20, F120]) but, by nature, the system has to be non-resonant (i.e.
the eigenvalues of the linearized systems have to satisfy some kind diophantine conditions).

For resonant systems, the dynamics can be much more complex. For example, some mi-
grations of the energy to arbitrarily small spacial scales have been exhibited (for the non-
linear wave equation on the one dimensional torus [Bou96|, for the nonlinear Schrédinger’s
equation on the two dimensional torus [CKSTT10, CF12, GK15], for the half-wave equa-
tion [GG12]) but also some energy exchanges (for a cubic nonlinear Schrodinger’s equation
on the circle [GV11], for a quintic nonlinear Schrodinger’s equation on the one dimensional
torus [GT12, HP17]).

However a large class of resonant Hamiltonian systems (among them the nonlinear
Schrédinger equation, the Korteweg-De Vries equation and the Benjamin-Ono equation
on the one dimensional torus) enjoy a special property: they have no third order resonant
term and the fourth order resonant terms are integrable. In that case, after two steps
of resonant normal form, the new Hamiltonian system is integrable up to order four. It
turns out that this fact can be used to obtain stability results for non trivial times (see
e.g. |BFP20] and perhaps less obviously [BFF20]). But an other consequence interests us
even more in this article: the integrable terms of order four provide a nonlinear correction
to the linear frequencies and thus the initial data can be used as parameters to make the
system become non-resonant. Taking advantage of this property, in [KP96|, Kuksin and
Po6schel proved, using a KAM approach, the existence of quasi-periodic solutions to the
nonlinear Schrédinger equation on the one dimensional torus T = R/Z

(NLS) 10 = —02u + o(|ul*)u,

where ¢ € C*°(R;R) is an analytic function on a neighborhood of the origin satisfying
¢'(0) # 0. But as we said before, these solutions are exceptional, actually they correspond
to finite dimensional invariant tori. Yet these nonlinear corrections to the frequencies has
also be used by several authors to study the dynamics and the stability of the solutions of
(NLS) living outside of these invariant tori. First, in [Bam99|, with a geometrical approach,
Bambusi proved the stability in H! (the energy space), on exponentially long times, of the
odd solutions of (NLS) essentially finitely supported in Fourier. Then Bourgain, in [Bou00],
proved the stability of the small generic solutions of (NLS) in H*, s > 1. His proof relies
on a very local normal form construction: somehow, he linearized the system around
some non-resonant initial data (i.e. making the system become non-resonant). Finally,
in [BFG18], introducing a new normal form process based on rational Hamiltonians, and
called rational normal form, up to some high order remainder term, we conjugate (NLS)
to an integrable system on large open set surrounding the origin. It provides a more
uniform stability result than [Bou00] and it enables an accurate description of the typical
dynamics of (NLS). To the best of our knowledge, the nonlinear Schrédinger equations on
T constitute the only family of equations for which this kind of result have been established
(the Schrodinger-Poisson equation on T is also considered in [BFG18]).
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In this paper, extending our technic of rational normal forms, we make this kind of
result available for two other important classes of dispersive partial differential equations:
the generalized Korteweg-de-Vries equation on T =R/Z

(gKdV) Oru = Op(—03u + f(u))
and the generalized Benjamin-Ono equations on T
(sBO) Ou = 0y (|0x|u + f(u))

where f € C*®(R;R) is a smooth function, analytic in a neighborhood of the origin, and

u(t) : T — R satisfies!
/u(t,x) dz = 0.
-

For these two classes of PDEs, as a dynamical consequence of our construction of rational
normal form we obtain, not only a stability result in Sobolev norm, but a fairly accurate
description of the dynamics for long times and for almost any (in a sense to be defined)
small initial datum. Note that it answers (partially) to the problem Problem 5.18. of the
survey paper of Guan and Kuksin on KdV [GuK14].

Let us introduce some notations to state the result that we prove in this article for
(gKdV) and (gBO).

With a given function u € L?(T) of zero average, we associate the Fourier coefficients
(tq)acz+ € £? defined by

g :/u(x)e_zi”kmdx.
T

In the remainder of the paper we identify the function with its sequence of Fourier coeffi-
cients u = (ug)rez+, and we consider the Sobolev spaces (s > 0)

(1) H* = {u=(up)rez € L(T) | Julfy. := D [kl < +oo}.
kezZ*

Let F be the primitive of f vanishing in 0 and denote by (am,)m>3 the sequence of the
Taylor coefficients of F' at the origin :

(2) F(y) ij Z amy™.
m=3

To prove that the set of functions we describe in this paper is not empty, we need the
following non degeneracy assumptions on the nonlinearly.

Assumption. To deal with gKdV, we have to assume that

(Agkav) Vi e N*, 47 k?as+ a2 #0
whereas to deal with gBO, we just have to assume that
(Agpo) as # 0.

IThis assumption is usual for both KdV and BO. equations but it is not really necessary: we can work
in a moving frame to avoid it.
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Our main result gives an approximation of the flows of gBO and gKdV during very long
times, for initial datum in open subsets of H® surrounding the origin.

Theorem 1. Let £ € {gBO,gKdV} and assume Ag. For allr > 0, there exists sg = so(r)
and for all s > sy there exists an open set VES C H* such that for all u € V¢

s, while

It| < ||uHI_{’;, the solution of £ initially equals to u, and denoted ®f (u), ewists and satisfies

&
(3) 195 (W)l 7o < 2llull g
and there exist C* functions 0y, : Ry — R, k € Z*, satisfying the following estimates
(4) 19 (u) — >~ upe ek < [l
kezZ*
(5) Wk € Z", 18(t) — wf (u)] < [kl
where wfk = —w,f and if k >0
gKdV, \ _ 3 2 2,2 2, 6Jug[?
wp o (u) = (27k)° + 121 kag ||ul|f. — (477 k% as + ag)?
— k
BO 2 2 2 2 2
WO (u) = (27k)? + 121 kay ||u|22 — 24 7k aqlug|* — 36a3; Ww ,
Moreover, the open set Vis is invariant by translation of the angles
(6) Z uk€2i7rkz c V,‘Es Z ’uk’62iwkx € Visv
keZ* kezZ*
is asymptotically dense, i.e.
. V|| s
(1) Fers > 00 € I, ol Sens = Fue Vs, flo—ully <
’ [ log ||v| |

and asymptotically of full measure : if u € H® is a random function with real Fourier
coefficients, i.e.

u(zx) :=2 Z VI, cos(2mkx),
k=1

whose actions, denoted Iy, are independent and uniformly distributed in (8,1) k=277,
where B € [0,1/2] and 1 < v <9, then there exists €, 5, > 0 such that

(8) Ve < &5y, Pleu € Vrg’s) >1— 35,

We comment this result and in particular the relevance of the explicit constants, in
section 2.3.

The defocusing cubic nonlinear Schrodinger equation ((NLS) with ¢ = 1), the Korteweg-
De Vries and modified Korteweg-De Vries equation ((gKdV) with respectively f(z) = 322
and f(x) = 223) and the Benjamin-Ono equation ((gBO) with f(z) = 2?) are certainly
the most celebrated examples of integrable PDEs. Moreover they are all integrable in
the strongest possible sense: they admit global Birkhoff coordinates on the space L?(T)
(see [KPO3] for KdV, [KST08| for mKdV, [GrK14] for NLS and [GK19] for BO). These are
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coordinates which allow to integrate the corresponding PDE by quadrature in the manner of
a generalized Fourier transform. In particular for these integrable versions the H®-norm is
almost conserved by the flow for all time and without restriction on the initial datum. Thus
our result can be interpreted as a reminiscence of this integrability. Besides, we will make
crucial use of the fact that the generalized equations (NLS), (gKdV) and (gBO) are still
integrable up to order four (see Lemma 3.12). We notice that, surprisingly, our assumption
(Ago) does not allow us to include the integrable version of the Benjamin-Ono equation
in our Theorem. In fact, we will see that the resonant normal form of the Benjamin-
Ono equation contains no 6th-order integrable terms and these play an important role in
our construction?. In any case, we are not claiming that our assumptions are necessary
to obtain the dynamical consequences described in the Theorem 1. Rather, let us say
that we need some non-degeneracy of the resonant normal form and that different sets of
assumptions may suffice, of which (Agkqv) and (AzBo) are the most natural.

Before ending this introduction, note that the result for (gKdV) and (gBO) is not a
simple transposition of the method developed in [BFG18]. We encounter here two new
major problems:

e the symplectism generates vector fields which are unbounded (in (9) there is an
extra 0,) and it is therefore all the more difficult to control the dynamics they
generate.

e the odd order terms in the nonlinearity (especially those associated with ag and
as) generate new kinds of nonlinear interactions (a large part of the technicalities
of this paper are devoted to control them).

For more details on the new difficulties we have had to face, the reader can refer to
sections 2.2.1 and 2.2.3.

Acknowledgments. This work was initiated after a discussion between one of us (J.B.)
and P. Gérard. It seemed improbable at that time to be able to overcome all the prob-
lems we could imagine, but this discussion convinced us to insist. J.B. also thanks J.F.
Coulombel for pointing out some relevant references. Finally both of us give special thanks
to E. Faou for many enthusiastic discussions at the beginning of this work.

During the preparation of this work, J.B. was supported by ANR project "NABUCO",
ANR-17-CE40-0025 and B.G benefited from the support of the Centre Henri Lebesgue
ANR-11-LABX-0020-0 and was supported by ANR-15-CE40-0001-02 "BEKAM" and ANR-
16-CE40-0013 "ISDEEC" of the Agence Nationale de la Recherche.

Some computations in this paper were performed by using Maple™.

2. STRATEGY OF PROOF AND OVERVIEW OF DIFFICULTIES

Our result is based on a normal form approach. After a commented statement of the
normal form result in section 2.1, we detail in section 2.2 some of the difficulties we had
to face in the proofs and we finish in section 2.3 with technical comments on Theorem 1.

2In fact the results of [GK19] suggest that the normal form of the Benjamin-Ono equation is equal to
its development of order 4 without remainder



6 JOACKIM BERNIER AND BENOIT GREBERT

2.1. Hamiltonian setting and normal form result. .
The phase space H® (see 1) is equipped with the Poisson bracket

) (P.Q}w = [ VPw2,YQ() da

which reads in Fourier variables

(10) {P,Q}(u) = > (0u_, P)(2imk) (04, Q)
kez*

Equations (gKdV) and (gBO) are Hamiltonian systems associated with the following
Hamiltonians

1
Hng\/(u) = /T2u(—a§)u + Fou dx

1

Hgpo(u) = / 5“‘8:v’u + Fou dzx
T

where F' is the primitive of f vanishing in 0. Recalling that (ax)r>3 are the Taylor coeffi-

cients of F' at the origin (see (2)) and that by assumption f is analytic in a neighborhood

of the origin, the Hamiltonian Hg writes on a neighborhood of the origin in H*

(11) He(w) = ZED) + 3 am /T(u(x))m du.

m>3
where Iy = |ug|?, k € Z* and
2mk|*¢
(12) =y P,
kezZ*
with
(13) QgBO = 1 and QgKdV = 2.

We obtain Theorem 1 as a dynamical consequence of a normal form result saying that
the Hamiltonian system associated to (gKdV) (resp. (gBO)) is integrable up to remainder
terms. We now give an informal version of our normal form result that allow us to explain
our strategy. A more precise version (but more technical!) is given in Theorem 3.

Informal Theorem. Let H equals Hyay (resp. Hgpo), assume (Agkav) (resp. (AgBo)
and let > 7. For all s > so(r) = O(r?), for all N > Ny(r,s) and for all 0 < v < ~yo(r, s)
there exists a large open set CﬁsmN and T a symplectic change of variable close to the

identity, defined on Cf’smN and taking values in H®, that puts H in normal form up to
order r:

Hor(u) = Z5(I) + RS (u) + RS (u)
where ZE(I) is a smooth function of the actions and RE (u) = Rf (u)+ RS (u) is a remainder
term in the following sense there exist universal positive constant p,v such that

(14) {H . ”?{saRf}(u) SS,T NHT(N—S+VT + HUH;{tl)

(15) 10:VuRE ()| o1 Soor N (N7 4 [[ullf.);
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there exist universal positive constant u',v’' such that
1.2
(16) 105 VuRS (W)l o Ssr N7 |l

(This statement is informal in the sense that (15) is in fact valid only for a part of Rf
and that we do not precise the meaning of large open set and of close to the identity.)

In this Theorem, and in all the paper, N is a troncation parameter in Fourier modes:
we remove all the monomials of order greater than 5 containing® at least three indices of
size greater than N. The remainder term, as already noticed, see for instance [Bam03,
Bou00, BG06, Gré07], has thus a vector field of order N _S||u|];1.15. This justifies the term

N~%1in (14), (15) and will lead us to chose N ~ HuH;IE The parameter ~ is related to the

control of the so called small divisors and thus measures the size of the set Cf, sy, N- The
set V¢ of Theorem 1 will be essentially (but not exactly!) constructed as the union over
N > Ny(r,s) and over 0 < v < yo(r,s) of nysmN.

The informal Theorem distinguishes two types of remainders: R‘lg will be generated by the
resonant normal form while RS will be the product of the rational normal form ( see section
2.2.2 just below). We notice that (16), saying that the Hamiltonian vector field of R§ is
controlled in H*-norm, implies the control of |{]| - ||§IS,R§}(U)\ and [0,V RS (u)|| go-1-
The estimate of |{]| - HES,R‘g}(uﬂ will be used to obtain the stability result (3) while the
estimate of |0,V RE (u)|| 51 will be used to obtain the leading terms of the dynamics,
i.e. (4) and (5) with wf = 0y, (Z§ + Z§) where Z{ is the homogeneous part of degree 4 (in
u) of Z and is given by (22), (23).

2.2. Overview of difficulties. As we said in the introduction, after getting a normal-
form result for (NLS), it was logical to want to extend it to (gKdV) and (gBO) which are,
like (NLS), hamiltonian perturbations of integrable nonlinear PDEs. In this section, we
want to recall the main steps of such an undertaking, but above all we want to emphasize
the new problems we have encountered in their implementation for these two equations.

2.2.1. A first obstruction to bypass: the vector fields are unbounded. Before even tackling
the generalization of rational normal form, we are faced with a major problem: (NLS)
is a semi-linear equation while (gKdV) and (gBO) are not. In particular the vectorfield
9,V P(u) of a smooth Hamiltonian P is not bounded as a map from H*® to H*, even when
P is a polynomials. Under these conditions, how can we define the Lie transforms and
thus construct our changes of variable? So let’s start by explaining how we deal with this
problem:

e First we see, using a commutator Lemma (a bit in the spirit of pseudo-differential
calculus: the commutator gains one derivative), that even if the vector field of a
regular polynomial does not send H* into H*, it generates a flow that preserves
the H® norm. This can be seen in the Proposition 3.3 and in particular in (35).

e Then our changes of variable are Lie transforms associated with very particular
Hamiltonians y: solutions of homological equations. This particularity means that

3The exact truncation we use is in fact more complicated: it is given by Definition 41 which in turn is
related to the third largest index by Corrolary 3.8.
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all the monomials u*, k € (Z*)", appearing in x are divided by a so called small
divisor that reads here Dy, = k1|k1|*€ +- - -+ ky|kr|*€. But it turns out that a small
divisor is not always smalll In fact we show in the Lemma 3.7 that either Dy is
large with respect to the largest index of k or the third largest index (i.e. the third
largest number among |ki|,--- ,|k,|) is large. This crucial Lemma, which will be
reused many times, is the key that led us to tie ourselves up in this work. The
first consequence is the Lemma 3.6 that ensures that our Lie transforms are well

defined.

2.2.2. The principle of rational normal forms inherited from |BFG18|. We will be rather
brief in this paragraph since this is an approach that has already been implemented for
(NLS) in [BFG18]. We note! that the idea of using rational normal forms rather than
polynomials goes back to Moser [Mos60] and Glimm [Gli64] in finite dimensional context.
The purpose of a Birkhoff normal form is to iteratively kill all the non-integrable terms
in the non-linear part of the Hamiltonian. To do this we first average the Hamiltonian
along the linear flow generated by Z25 . This is the resonant normal form step (resonant
because unfortunately the linear frequencies, 27k|k|*¢, k € Z*, are resonant). Despite
these linear resonances, this step allows us to get rid of degree three terms and to keep
order four terms only those that are integrable, i.e. depending only on actions. This last
point is crucial in order to continue the procedure: the resonant terms of degree 4 must be
integrable terms. This was true for (NLS) and it is still true for (gKdV) or (gBO), we can
see it as a consequence of the fact that these three equations are perturbations of integrable
equations. So after two steps of resonant normal form we end up with a Hamiltonian in
the form

Z5(I) + Z5 (1) + O(ud).
Of course we still have terms of degree 5 and more which are resonant but not integrable.
The idea then is to average, not along the flow of Z§, but along the flow of Z§ + Z¢.
This approach is similar to the one used by Kuksin-Poschel in [KP96]: we use the integrable
part of the nonlinearity to destroy the linear resonances by modulating linear frequencies
with terms dependent on actions and thus directly related to the initial conditions. In this
sense it is a fundamentally different approach from earlier work on Birkhoff’s normal forms
where external parameters were used to get rid of linear resonances. Here we use internal
parameters: the initial datum.
This approach has a high cost: this time the small divisors, which are derivatives with
respect to actions of Zzg +7Z jf , are linear functions of the actions and the new Hamiltonians
are no longer polynomials but rational fractions. It is thus a question of justifying their
existence by controlling very precisely the cancellation places of these small divisors and
by following step by step the type of rational fractions we generate. This step is similar
to the one we implemented in [BFG18] although here we have a somewhat more natural
presentation (see section 5). As in this previous work, it turns out that Zj is not enough to
solve all our problems. In fact the small divisor of the monomials u*, k € (Z*)", associated
with Z, is too degenerate: it is controlled by fimin(k)?* where fimin (k) denotes the smallest
number among |k1|,--- , |k,|. So the averaging step costs potentially 2s derivatives which
of course is not acceptable. And even if we try to compensate this denominator by the

4This was brought to our attention by R. De La Llave.
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smallness of the numerator, for some combinations, involving various small divisors, that
appear from order 10 of the process, we can no longer control the Hamiltonian in H*. So,
as in [BFG18], we have to go and look for the integrable terms of degree 6. Fortunately
it turns out that the small divisor associated with Z§ is less degenerate and so we can
complete the normal form procedure in H*®. The reader can get an idea of the open sets
on which we control the rational Hamiltonians in the Definition 4.6.

2.2.3. Complications specific to (gKdV) and (gBO). In this paragraph we want to highlight
the technical difficulties (but not only!) that are specific to the case of (gKdV) and (gBO).
Their resolution required new ideas. The first major obstruction is described in section
2.2.1, here is a (non exhaustive) list of the other novelties:

The reader who is somewhat familiar with normal forms may be surprised by the
length of the section devoted to the resonant normal form. The normal form at
order 6 for (gKdV) is already well known (see [KP03| ). This said, this calculation
was only formal and here we need to control very precisely the remainders to
obtain the dynamical consequences we are looking for. This is what is obtained in
the Proposition 3.3 and is of course related to the problems of unbounded vector
fields mentioned in the section 2.2.1.

The second problem related to the resonant normal form lies in the explicit calcu-
lation of the terms of order 6 within the framework of the generalized equations.
Already in [KP03| the formal computation of Zg in a more restricted framework
(the integrable KdV equation), leads to an appendix of nine pages. Here in the
more general context (and including (gBO)) a by hand calculation would require
many more pages. This naturally led us to use a computer software (in this case we
have chosen Maple) but also to use graphs to describe the computation and allow
to follow the details more easily (see section 3.3).

In Section 2, probability estimates are based on relatively basic lemmas, in par-
ticular Lemme 4.16. Nevertheless, to deal with the more degenerate cases, some
refinements were required. For example, in the case of (gBO), if a3/(ray) is a
Liouville number (i.e. is not diophantine), the continued fraction theory must be
used (see Lemme 4.18).

We mention that, as in [BFG18], the truncation in Fourier modes is particularly
important to have non resonance conditions that are stable when actions are slightly
moving (see section 4.1).

We have already mentioned above the difficulty of the formal computation of Zg. In
fact in Theorem 2 we do not calculate all the terms of Zg, it would be tedious and
fortunately useless. For example the resolution of terms of order 5 leads to terms of
order 6 which are certainly integrable but not polynomial. These terms are grouped
under the notation Z (see (127)) and were not present in [BFG18]. We consider
these terms as remainder terms and therefore we do not include them in the Zg
we use to average (otherwise it would generate too complicated rational fractions).
But because of this, at each step of the normal form to the order » > 7, which
is supposed to kill the non-integrable terms of order r, these terms will make new
terms of order 7 appear. It seems then that we are at an impasse. Yet it turns out
that the averaging step is in a certain sense regularizing. It is this phenomenon,
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well known to specialists (the resolution of a homological equation gives a little
extra regularity), that allows us in section 6.3.3 to get rid of these new terms by
a transmutation procedure in which the Lemma 3.6 again plays a crucial role (see
section 6.3.3 to understand this unusual procedure quite difficult to explain in the
introduction).

2.3. Comments on Theorem 1. For simplicity and to make disappear many irrelevant
constants, we did not try to optimized many of the explicit constants in Theorem 1.

e In order to have estimates quite uniform in v in the proof, we choose arbitrarily
to fix the upper bound v < 9. Nevertheless, we could have fixed any other upper
bound of the type 1 < v < 1.

e The denominator |log||v|| ;.| in (7) is not optimal. Following the proof, for any
fixed 7 > 0, it could be replaced by |log ||v|| ;.|" (&r,s would depend on 7).

e The exponent in 1/35 in (8) is not optimal. It seems possible to improve it paying
more attention to the exponents of .

e It is proven that sy can be chosen equal to 25- 107 72. Of course, we did not try to
optimized this huge constant. It is only relevant to note that in this construction,
the minimal value of s growths at least like 2.

e The exponent 3/2 (resp. 5/2) in (4) (resp. (5)) could be chosen arbitrarily close to
2 (resp. 3) nevertheless the exponent 1/35 in (8) would become arbitrarily small.

2.4. Outline of the work. In Section 3, we put gBO and gKdV in resonant normal form:
we remove the terms of Hg that do not commute with Zzg . In Section 4, we define the
small divisors we will need to kill the non-integrable resonant terms, we introduce some
open sets where they are under control and we prove that these open sets are large. In
Section 5, we introduce a class of rational Hamiltonians, we prove its stability by Poisson
bracket and we develop some tools to control them. In Section 6, we put gBO and gKdV
in rational normal form : expanding the Hamiltonian in the previous class, we remove the
non-integrable resonant terms. Finally, as a corollary of this normal form result, in Section
7 we prove the Theorem 1.

2.5. Notations. We introduce some convenient notations to work with Fourier coeflicients
and multi-indices.

* Monomials. As explained in introduction, we always identify functions in L?(T) with
their sequence of Fourier coefficients, i.e. if u € L*(T) then

u = (up)kez+ Wwhere wuyp = / U(I)e*%wkxdx.
T

Note that since w is real valued, we always have
U_f = U.

If ¢ € (Z*)", for some n > 1, is a multi-index and v € L?(T) then the monomial u’ is
defined by

ul = ylbotn) = Upy - Uy

n*
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If £ € Z* is an integer then I denotes the action of index k. It is the monomial defined
by

I, =u_pu, = ]uk]2
We extend the multi-index notation for the actions : if £ € (Z*)" then I = I, ... 1,

« Norms. If S is a set and 1 < p < 0o, we equip C® with the usual /2 norm :
1
(DIl if p < oc,
VS, Vb € C¥, [|bllw =<  jes

sup |b;| ifp = oc.
jes

Sometimes, we also use the following shortcut
[l =1 e

Similarly, we endow the real valued measurable functions on T with the usual Lebesgue
norms denoted ||-||z». Note that, since we identify the functions in L? with their sequences
of Fourier coefficients, their /7 norms refer to the norms of their Fourier coefficients. In
particular, by Parseval we have

Vu e LA(T), [lullze = [lulle.

x Sets of multi-indices. In all this paper we consider the following sets of indices :
Dp={ke )" [l = =1knl}, Zrrn={keDyn|Vje[lin—-1], kj # —kj11}

My ={ke@Z) | ki+-4ko=0}, RE={kecM,|ki|ki|% + -+ kn|kn|% = 0}.
where n > 0, £ € {gBO,gKdV} and we denote
M=JM,., D=D.  RE=|JRE  Irr=|]JZrr.
n>3 n>2 n>2 n>0

Being given k € (Z*)", for some n > 1, the irreducible part of k, denoted Zrr(k), is
the element of Zrr such that there exists ¢ € (N*)™, for some m > 0, such that, for all
u € L%(T), we have

uk — IZqu'r(k).

To handle efficiently multi-indices, we introduce some natural but quite unusual notations.

e If S is a set then with a small abuse of notation we denote by () the element of S°.
In other words, every O-tuple is denoted ().

e To avoid the use of two many parentheses, very often, we identify naturally sets
of the form (592)58 with sets of the form S72*%. In other words, if e € (572)%,
sp € Sz and s3 € S3 then (ey,)s, and ey, s, denote the same thing.

e If Sisaset, n >0 and x € S™ then #x denotes the length of x, i.e.

#r =n.

e If Sisaset,n>1 and x € S™ then x),5; denotes the last coordinate of x, i.e.

Llast = Tn = Lz
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o If Sisaset,n>1and z € S”, ss(x) denotes the set of its subsequences, i.e. y €
ss(x) if and only if there exists an increasing sequence 1 < o1 < - -+ < g, < n such
that y = (z4,...,%s,,). Furthermore, ss,,(x) denotes the set of the subsequences
of x of length m.

x A specific set of multi-indices. To estimate the probability to draw a non-resonant initial
datum (i.e. such that the dynamical consequences of Theorem 1 hold) it is crucial to take
into account the multiplicities of the irreducible multi-indices. However, the set we have
defined just before is not well suited to manage them. Consequently, in Section 4 (and
exceptionally in Section 7), we use the following set of multi-indices

(17) MZIpu = [ J{(m. k) € (Z)" xN" |m k=0, k1 >+ >k, >0 and |m|; > 5}.

n>2

If £ € Zrr, " M is an irreducible multi-index of length n > 5, then there exists an unique
(m, k) € MZy1 such that we have

(18) Yu € LA(T), u* = H uZ;j H u:kmjj

mj>0 mj<0

This relation provides a correspondance between the elements of Zrr N M and those of

MImult .

Remark 2.1. We warn the reader that in Section 4, we define many objects (e.g. the small
divisors) indexed by multi-indices in MZ ;11 but in the other sections they are indexed by
multi-indices in Zrr N M. Implicitly, if an object is indexed by an element ¢ of Zrr N M,
it just refer to the same object indexed by the multi-index (m, k) given by (18).

x Other notations. If P is a property then 1p = 1 if P is true while 1p = 0 if P is false.
Similarly, if S is a set 1 denotes the characteristic function of S : 1g(x) =1 if z € S and
1g(z) = 0 else.

If p is a parameter or a list of parameters and x,y € R then we denote x <, y if there
exists a constant ¢(p), depending continuously on p, such that z < ¢(p)y. Similarly, we
denote z 2, yify Sprand v~ yif o Spy Sp .

3. THE RESONANT NORMAL FORM

In this section, being given r > 0, we put our Hamiltonian systems in resonant normal
form up to order r. In particular, we compute explicitly the integrable terms of order 4
and partially those of order 6. Furthermore, we expand analytically the remainder terms.

Before stating the main Theorem of this section. Let us precise how we ensure that our
Hamiltonian are real valued and that our entire series converge.

Definition 3.1 (reality condition). If S C M is symmetric, i.e. —S = S, then a family
b € CS satisfies the reality condition if

Vk €S, by = b_y.
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Lemma 3.2. Let s > 1, M >0 and b € CM. If (by M~ #*)crq is bounded and b satisfies
the reality condition then the entire series

(19) Pu) =) b

keM

converges and define a smooth real valued function on Bg(0, cslM)’ the ball centered at the

. 1
qi us —L in HS = 1y«
origin and radius 7 in H* where cs = (Zjez* j2s) < Ve

Proof. By Cauchy-Schwarz, the homogeneous polynomials Pp,(u) = D pcay. bpuF satisfies

|Po(u)| S Mn( Z

1
‘S‘J‘S‘Uj‘)n < (esM|lullz.)"
JEZ*

J
O

The following Theorem is the main result of this section. In the first subsection below,
we justify that the remainder terms are small (which is not so obvious a priori). Somehow
we prove that they do not contribute to the growth of the H®*-norm. Then, in the second
subsection, we put the system in resonant normal form without paying attention to the
explicit expression of the fourth and sixth order integrable terms while the last subsection
is devoted to their algebraic computation and to the conclusion of the proof of the following
theorem.

Theorem 2 (Resonant normal form). Being given £ € {gKdV,gBO}, r > 6, s > 1,
N 2,1 and g9 Sps N=3, there exist two symplectic maps, 70,7 preserving the L?
norm, making the following diagram to commute

7(0) (1) .
(20) B,(0,20) ———— B,(0, 2e9) — H5(T)
id s
and close to the identity
(21) Vo € {0,1}, flullzs <2720 = |7 (u) = ul o S NP|JullF,.

such that, on B4(0,2¢eq), Hg o ) writes
Hg o 7—(1) — ZS" + Zf + Zg<N3 _|_ ReS§N3 + R(H‘3>N) + R(I>N3) + R(OT)

where 225 is given by (12), ij is an integrable Hamiltonian of order 4 given by the formulas

KdV = 3a3
4 3 2
(22) 750 = 3ol ~ (60t 52503 )
BO = 92 18 a2
(23) Z5°°(I) =3 ag |ullf> =Y (6 as + ﬂj) =Y Tq?’IpIq,
k=1 0<p<q
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Z65<N3 is an integrable Hamiltonian that can be written
(24) Z5 ()= > & (OLII with | (0)] S0
0<p<g<t<N3

and cqu(ﬁ) eR. If0 < 2p < g, the coefficient cf)’p(q) is explicitly given by

ngv( ) = 180 3aj 2403 ay 48 p? a3 60 a3 as

c = 180ag — - - -

pp 4 7 T2 — 22 (2 — 22 12(p2 — )2 T2p2

eBO/ N 288 (p — q) aj 360azas (p+q) 108 (p> +6pq—64¢%) ,

cpp (q) =180as — — 5 5 a304.
m(p+2q) Bp—2q) TPq ™p(p—a)q

The four remaining Hamiltonians are some analytic functions with coefficients satisfying
the reality condition and are of the form

(25) Res(<nsy(u) = Z cruf with |cgp| Spp N30,
kEREND
5<#k<r
|k1|<N®
Irr(k)#£0 if #k=6
(26) R(3>N) (y) = Z cru® with |ep| Spp N3#F9)
keMND

A<#Ek<Zr
ks>N

oo

(27) RU>n3) (y) = Z Z cop Tpu® with |cop] Swr NBG#k+2)=9,

{=N34+1 keMnND

3<Hk<r—2
(28) ROw) = > epuf with [ < p*"N#¥2 and p <, 1.
keM

#Hk>r+1
3.1. Analysis of the remainder terms. We would like to control directly the vector field
generated by the remainder terms of the Theorem 2 (i.e. R®s>N) RU>n3) and R(").
Unfortunately, due to the symplectic structure that imposes a lost of one derivative, in
general their vector field X := 0, VR does not map H* into H®. Nevertheless, we can
control the H*®-norm of the flow generated by such a Hamiltonian, this is the purpose of the
Proposition 3.3. Actually, we prove a result even stronger, if these remainder Hamiltonians
are composed with a symplectic change of coordinates then their Poisson brackets with the

H*-norm are small (such a refinement will be crucial to prove Theorem 1, see subsection
7.1.2).

Proposition 3.3. Let s > 2. We assume that T is a symplectic change of variable defined
on an open set included in the ball Bs(0,1), taking values in H* and that there exists iy > 1
such that

(AL [l (u)ll s < s llull g

(A2) [|(dr(w)) " g ze) < ir-

(A3) Yk € Z*, |k| > N = 7(u)p = ug
Then
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(1) Let R=3" 5,112 pem, bruF, with r > 1, be a analytic Hamiltonian of order r 41
with coefficients b satisfying the estimate |byy| < M#* for some M > 0 then
Il 1% Ro THw)| Sorer N(M|lull )™ for ull g < (2krcoM) ™

where ¢y 18 a universal constant.
(ii) Let P, be a homogeneous polynomials of degree n of the form

k
E bru”,
keM,
ps(k)>K

where us(k) denotes the third largest number among |kil, -, |kn|, K < N and b
are some bounded coefficients then

[ s P o T3] Ssmne NE 772l oo ]|

(iii) Let Pyy2 be a homogeneous polynomzals of degree n + 2 of the form

Prya(u Z b(J, Jk)I“

keMy,
jzN

where b are some bounded coefficients then

I 1% Prte 0 THW)| S N2V 0]l oo [l 552,
Proof. We recall that the Poisson bracket of two Hamiltonians ' and G reads
{F,G}(u) = (VF,0,VG) = Y (0u_,P)(2imk) (0, Q)
kezZ*

where (-, -) denotes the canonical scalar product on L?: (u,v) = [fuvdz = 3, 7. u_vp.
Then we note that, since 7 is symplectic, we have

{1, Qo m(w)} = (VI 3. (), 0V(Q o 7)(w) = (V| - I3, (w), 8x(d7 () *VQ(7 (w)))
= (VI 1. (), (d7(u)) ' 0:VQ(7 (w)).

Consequently, since V| - [|%.(u) = 2(2m)~2%|0,|**u, it follows of the Cauchy Schwarz in-
equality and the assumption [A2| that

(29) I 10 @ o T(w)H < 265 lull 7. 10V QT (w)) | .

First, we focus on (ii) and we consider

Z bkuk.

keMy,
ws(k)=K
We decompose P in n + 1 parts,
(30) P= P7(LO) 4 Pél) 44 P7(L“)

where

keM, ps(k)>K
i | 1kj|>nN}=i
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We begin with the control of PY + PV First we notice that when #{j | |kj| >nN} =1
and k € M,, we have max(|ki|, -, |kn|) < (n—1)nN and thus the operator 9, is controlled

by 2mn?N when applied to V(P(O) + P(l)). Thus using (29), we get
{1 (B0 + PY) o ()} < mrdmn® Nl 7. |V (P + BV (7 ()] -

By symmetry on the estimate of by we have

10, (PR” + PV)| < Bl = > LT R (T

ke(z*)n!
(&k)Ean ,U'3(kv£)2K

and thus, ordering the two first indices of k (second inequality) and using the zero momen-
tum condition (third inequality), we get successively

s 2
V(P + P, < (nllblle=)? Y €] > gy |- T,y |

tez* ke(z !
(Evk)Ean ﬂ3(k7£)2K

< (nllblle=)? Y €25 |n? > g, |- - Jug, ||

tez* ke(ze)n!
(LE)EMy, k1|, |k2|>K

< (nBlle=)?nt 2 S | 3 B |* gy | - - - g, ||

[ez* k}E(Z*)"71
(e)k)ean ‘kl |7|k2|ZK

= (nflblle=)*n 2 Jow v 72
where in the last line the functions v, w and v are respectively defined through their Fourier
coefficients by v; = |ug|, w; = |j|*|uj|1>x and vj = |u;[1;>x for j € Z*. Consequently,
since || - ||gee < || - |2 we have

low "=l pe < Jlwll 2 [VIF2 vl < Hlull gellvlle I < a2 K lull !

where we used that [|[v[n < collull o and 3255k [ug] < co K |ull s (with ¢p < %)
Therefore we conclude

I 1% (P 4+ PY) o m(w)}] S, 0PN K™ [bllgoe || 7(w) |-
and then using assumption [Al]

(31) I 13 (P + PIV) o r(u)}] Sy n™H NE ™ bllgoe (o)™ ] .-

Now let us estimate {|| - ||HS, J2I0NS 7(u)} for i > 2. We have

-1 PP or@ = I - e ) er(w)™}

kEMn, ps(k)>K
87 | |kj[>nN}=i

=l 1%, > b7 (1)}

keMan, pz(k)>K
ko (i) |>nN>1kq, (ig1)
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where oy, is a permutation that makes the modulus of the indices k1, - - - , k, become non-
increasing :

k(D] = -+ = [ox(n)].
Then using assumption [A3] we decompose this sum in two parts:

(32) - 130 P o ()} < S0+

where

S ol Bt T m@ao)]

keEMy, ps(k)>K  j=1 j=it1

op ()| >NN >Nk, (41l

3 =|[blle= > [T 7@yl HIL 1 TT wonian}
j=1

kEMn, ps(k)>K  j=i+l
ko (i) [>nN>1kg, (i11)]

X1

|k

To estimate 31 we notice that by ordering the first indices of k we have

S SR | (I ) e TT )

[E1l,- ki | >nN j=1 |kig1 |, |kn|<nN j=i+1
kip14Akp=—k1——k;

Then, as in the control of {|| - || P 4+ pit )) 7(u)}, we use again (29) to get

S (P

i
Si<nt Y0 [ ek lamsenNull .
[k1], | ki >nN j=1

N

< fblleem—i) | S )3 (Wi | 1@y |

M|§7LN |ki+1|7“'7|kn—1‘§nN
kip1+-thkn—1=—L—k1——k;

We observe that by Jensen and symmetry we have

Z 628‘ Z ’uki-‘—l‘ e |ukn,1|’2

[eI<nN - kipal],lkn—1|<nN
kit1t+-thkn_1=—C—k1——k;

< Z 528‘ Z |uki+1’.”‘uknfl|‘2

ez kiv1++kn_1=—4

2
S n—1— 23 Z ‘ Z ’ki+1|2s|uki+1’""ukn—lu

lezZ* k‘i+1 +etky_1=—4

< (0|l e lull 7 72)%
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Using that || - || < cof - || ;75 where co < 7/+/3 and the assumption [A1], we get

[
51 S Iblleeoch ™ Rmnt TNl > T T sy
[k1l,-|ki|>nN j=1

”bHéooCgﬁzns-i-i—i—ZN(nN)—(s—l)i

NK/T

where we used that 3 i |u;] < co K |ul| 5. So since s > 2 and i > 2 we conclude

(33) 21 Sy [blleecn®2RENT2ED a7
We now estimate >o, we have:
Yo < 27|[b]|gee > | B () Ko (1) + -+ 4 Koy ()| ko (1) 129 |7 ()}

keMn, pz(k)>K
‘kak(i)‘>nN2|kak(i+1)|

< 27[|b]| g’ > ([kalkal® + kealkal**] + (i = 2)lks|** ) 7 ()|

k€EMo, |k1],|ka|>nN, |k3|>K
[k1|>1k2|> ks |>|kal, | kn]

Then we notice that applying the Young inequality, we have
(34) > 1l e | < e ull .
LeMs,
Consequently, to estimate Y9, we just have to control each term by (34) and [A1].

e Since we have
|k3|23+1 < ‘k3‘5—1’k2’s’k1’2 < N_s+2|k1|s|ki2|s|k:3|s_l,
by (34) and [Al], we get

> s 25 | r ()] < N5 22k .

k’EM'ru |k1|7|k2‘ZnN
|k1|>k2|> k3| >kal, | knl

o If k1ko > 0 then, by the zero momentum condition,
|k1], [k2| < nlks| and |k1| < n|ks|
and thus
]k:1|k:1|28 n k2’k2’25| < 25 e [ [ 2 < 203 N2 o s
Then as above, by (34) and [Al], we get

S [kalkr [+ Ealko*| |7 (w)F] < 20 N7 2R w1

keEM,y,, |k1|,|k2|2nN k1ko>0
|k1|> k2| > k3| >kal, | kn]

o If k1ky < 0 then, since 9, (x|z|?*) = (25 + 1)|z|?*, by the mean value inequality we
get

[k [ + kalko|*| < (25 + 1)|lko| = [kol[[k1[** < (25 + 1) |k1|*n® ko[ *n| k3|
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where we used the zero momentum condition. Consequently, we have
Kot K12 + Eolko| 2| < (25 + 1)K =5 koy |* oo es |5
and so by (34) and [A1], we get
(35)

> e[| + kool koo) 2| |7 (w)*] < KT (25 + 1)Ll 2 67 Jul|,..

kEMny ‘kleQ'Z”N’ |k3‘ZK7 k1k2<0
|k1|> k2| >3 | >|kal, | kon]

Combining these three estimates yields for K < N and 1 < ¢y < 7/ V3

(36) 2o o [Iblle K20 g w7 |ul ..

Inserting (33), (36) in (32) we get

B7) Wl 3 P o m(w)}] S K20 Jbll g (corr) "l for i > 2.
Finally inserting (37) and (31) in (30) yields

(38) I 1o Pro TH)| Ssin, N2 K52 [b] oo (coror || )"

Using (38) we can now easily prove the different assertions of the Proposition:
e To prove assertion (i) we take K = 1 in (38) and we get for cor M |lul/ . < %
(where we recall that by assumption |by,| < M#F)
Il 10 Romh(w)| Sewer N D 0% (comr M| |ull )"
n>r+1
N (o Ml ).

~S,KRr,T
e Assertion (ii) is a direct consequence of (38).
e To prove (iii) we just notice that {|| - ||%[S,Ijuk} =L{| - ||i15,uk} and
I < 57 |ullf. < N72lullF..
U

3.2. The resonant normal form process. In this subsection, we aim at putting gKdV
and gBO in resonant normal without paying attention to the explicit expression of the
fourth and sixth order integrable terms.

In order to realize this process, we will have to solve some homological equations of the
form

(39) 0625+ ) b =0
ke M, \RE

A natural solution is obtained by observing that if £ € M then

(40) {u*, 25} = —i Qe (k) u®

where Qg (k) is given by the following definition.

Definition 3.4 (Denominators ¢). If £ € {gBO,gKdV} and k € M, we set
Qe (k) = 271(2m) T8 (ky|k1 | + - - + Krase|Frast |9).
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In view of (40), a natural solution of the homological equation (39) is

x(u) = Z .bk i

keM,\RE ZQg(k)

Following the classical strategy to put our system in resonant normal form (see for instance
[Bam03, BG06, Gré07, BFG18]), we will have to consider the change of variable induced
by the Hamiltonian flow generated by x at time ¢ = 1. However, a priori, the Hamiltonian
vector field generated by x, Xy := 9.V, does not map H* into H®. Consequently, a
priori this flow does not make sense. To overcome this issue, we only solve homological
equations of the form (39) where the coefficients by are supported in the following sets of
indices.

Definition 3.5 (J¢ y sets). If N > 2 and n > 3, we set

max(|k1],- -+, [knl)
41 v i={ke M,\RE x|k, -, < N}.
( ) L777,7]\/' { \ n| k’l|k’1|a£ ++kn|kn|a£ — }
As usual, we also set j]f, = ln23 jﬁN.

As stated in the following Lemma, if the coefficients by are supported in these sets of
indices, the Lie transforms are well defined.

Lemma 3.6. Let N > 2, n>3, s > 1. If x is an homogeneous polynomial of degree n of
the form

(12) W= 3 s

keTE

where b is bounded and satisfies the reality condition then its vector field X, := 0,V x maps
H? into itself and, for all w € H®, we have

[ X (W]l s Sn HngooNHuH’;I_sl,

1
As a consequence, there exists €9 Zn,s [IN||b||lee] »=2 such that x generates a Hamiltonian
flow @; on Bs(0,e9), for 0 < t < 1, that is close to the identity: if u € Bs(0,e9) and
0 <t <1 we have

(43) 195 () = ull e Sns (Dl N Jull

Proof. First, note that since b satisfies the reality condition, {2¢ is odd and thanks to the
i denominator in (42), x is real valued.
By symmetry on the estimate of b, we have

|uk'1‘ e |ukn71’

O x|(u) < nflbllee > Qe (k)]

keTE y
(=k,
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Consequently, we have

X ()10 = 472 Y 11742100, x (w)|?

lezZx*
|y | - - |k, |2

DI I DI e T

tez* keTf ¢

=k,
(41 2,2 2 2 2 2
e (S S Tl D SN (11 PR TS
EGZ* kE(Z*)n71

kit tkn_1=—¢
Observing that by Jensen
[° = Tk + -+ ka1 < (0= 17 (R o (R ])

and applying the Young convolutional inequality and the Cauchy-Schwarz inequality, we
get
2
2 2. 25421112 AT2||. (12 2(n—2 2. 25422112 A2, 12(n=1) T \n—2

B O L e Y G

Now we turn to the Lie transform @’;. Noticing that X, (u) is an homogeneous polyno-
mial, the previous estimates natural yield

2

< A2 b B N2l 20 (S )2,

4%, (u) ,

2

Therefore the vector field X, (u) is locally Lipschitz in H* and we deduce from the
Cauchy-Lipschitz Theorem that the flow <I>§< is locally well defined on H?®. Furthermore as
long as || @ ()| 7. < 2[|ul| ;7. We have

t
195, (1) — | e < '/0 X (3 () edt] < himstllb]l o Nl 7"

where k, s is a constant depending only on n and s. Thus we conclude by a bootstrap

argument that, if [ju|| ;. < (I{mSHngooN)ﬁ =: g0 then ®! (u) is well defined for 0 <t <1
and satisfies (43). O

A priori we could fear that the unsolved terms (i.e. those associated with indices in
M\j;f ) contribute to the dynamics and will have to be solved by an other way. Hopefully,
the folfowing Lemma and its corollary prove that they are remainder terms in the sense of
Proposition 3.3.

Lemma 3.7. If £ € {gBO,gKdV} and k € M,, with n > 3 and satisfies ki + ko # 0 then
we have

a 1+a g «a |k‘11|04‘g
max | (n—2)%|ks|" e 1> " kylky|°f| | > R

=1
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Proof. Without loss of generality, we assume that k; is positive.
First, let us observe that if ko is positive then, since k € M,,, we have

ki <ki+ko=—(kzs+-+ky) < (n—2)ks|.

Now, if ko is negative we have

ag
kR %8 + Kalko|® = k1€ — (k|0 = (ky + ko) ) RS |kal).
=0

But, by assumption, we have k1 + ko # 0. As a consequence, we have
n
Re =Y kjlky|| = kalka | + kalko|*® — (n = 2)[ks|'T® > kS — (n — 2)|ks|' T2
j=1

As a consequence, if Re < k¢ /2, we have (n — 2)|ks|tTe > k€ /2.

Corollary 3.8. Let k € D, N (M,, \ RE) for some n > 3. If N > 2 is such that

k1
44 >N
( ) k1’k1’a5+,,_+kn|kn|a8 -
then there exists k' € M,,_a such that
(45) u* = I,u* where a > N
or

Nee

4 kg|ttoe > ——

Proof. By assumption, k is non-resonant, i.e. kyi|k1|* +---+kp|k,|*¢ € Z*. Consequently,
by (44), we have |k;| > N.

If ky + ko = 0 then v is of the form u* = I u(*3-Fn)  Consequently, (45) is satisfied.
Else if, k1 + ko # 0, since N > 2, applying Lemma 3.7, we have (46). O

In the Birkhoff normal form process, naturally, we generate Hamiltonians obtained by
computing Poisson brackets with the Hamiltonian y we used to generate the change of
coordinates (see (42)) . A priori, due to the unbounded operator 9, in the Poisson bracket,
the coefficients of these new Hamiltonians may be unbounded. However, since the coeffi-
cients of y are supported in some sets jng N> We can prove in the following Lemma that,
up to a factor IV, they are still bounded. 7

Lemma 3.9. Let N > 2, r > 3, n > 3. If P,x are homogeneous polynomials of degree n
(resp. r) of the form

P(u) = Z cpuf  and  y(u) = Z Zﬂik(k)uk

keMy, kEJTiN
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where ¢ and b are bounded and satisfy the reality condition then {x, P} is an homogeneous
polynomial of the form

(47) PYu) = > dput
kEMpir_2
where d satisfies the reality condition and is bounded :
(48) [dlleee < 2(27) =% N[ goo [|]] o~
Proof. We note that y writes
x(u) = Z bl

keM,
where b, = 0 if k ¢ Jf:N and by = by,/iQ¢ (k) else. Consequently, {x, P} is of the form
(47), where

n T
dk = QZWK z : E :Ckl"‘kiflyfgvkiv"‘7kn—1bkn"'kn+i/_zye’kn+i/_17"'7kn+r—2'

i=14'=1
where { = k1 + -+ kp—1 = —kp, — -+ — kyyn—o. Thus, by definition of jrgN, using that
by =0if k ¢ JE \ we get that d satisfies the estimate (48). O

In the following proposition, we realize the Birkhoff normal form process. In particular,
we pay lot of attention to the estimate of the coefficients of the Hamiltonian. The proof
of the Theorem 2 (in the next subsection) will rely on this proposition and its proof.

Proposition 3.10. Being given € € {gKdV,gBO},r >2,s>1, N >, 1 andey s N73,
there exist two symplectic maps, 70, 7D preserving the L? norm, making the diagram
(20) to commute and close to the identity (i.e. satisfying (21)), such that, on Bs(0,2¢),
H¢ o 7 writes

(49) HeorW = Z£ + Z cru®.
keM
where ¢ satisfies the reality condition and is such that
i) cy=0if3<#k<r andk € Tiys
i) |ep| Sur N3 if 3 < #k <7 and k ¢ Tiys
i) |cp| < p#EN3#E=9 for k € M and some p <, 1.
The index 3N3 in jggNs will be crucial in the formal computation of the sixth order

integrable term Z¢ ., (we refer to Remark 3.14 for a more detailed explanation). Before

6,N3
proving this proposition, let us explain in details where does the exponent 3#k — 9 come
from (we will often use similar technics to get some explicit exponent, nevertheless we will

not explain anymore how we get them, we will just check that they work).

Remark 3.11. Somehow the bound |c;| Sy N3#%79 is natural to get a class of Hamil-
tonian stable by the changes of coordinates of the Birkhoff normal form process. Indeed,
it will generates new terms of the form

{ Z Z_Qc(kk)uk,chuk}: Z cpul.

kEJ,ngS keMy, kEMptr—2
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By Lemma 3.9, we know that the coefficients ¢ satisfy the estimate
& S N2l (cr)grmrllese | (ch) gehmnllee S NENTTINZT0,
Consequently, since #k = n + r — 2, we deduce that
& <k N3(n+r—2)—9 oy, N3#RO
which is the same estimate we had for ¢ : the class is stable.

Now let us explain how we got this bound. Assume that we are looking for a bound a
the form [cp| Sur No#k=B with «, 8 > 0 such that the bound is satisfied by Hg and it is
stable by the Birkhoff normal form process (i.e. ¢ satisfies the same bound).

The coefficients of Hg are independent of IV, consequently a priori the best estimate we

know is |ci| Sur 1. Consequently, o and 3 have to satisfy an— > 0 for n > 3. Of course,
since o > 0, it is enough that it is satisfied for n = 3, i.e. to have

(50) 3a—p£2>0.
Now, if we want ¢, to satisfy the same estimate as ¢, o and S have to be such that
N3Nor=Byon—F < yolrin=2)=F
Consequently, they have to satisfy the estimate
3+ar—fF+an—pF<alr+n—-2)—p4
which is equivalent to
(51) 200 — p < 3.
Finally, we observe that = 3 and 8 = —9 is the sharpest possible choice to ensure that

both (50) and (51) are satisfied.

Proof of Proposition 3.10. We prove this Proposition by induction on 7.
First, we note if r = 2 (i.e. initially) it is satisfied. Indeed, we have assumed that the
nonlinearity f is analytic. Consequently, Hg is of the form

He = Zés + Z cru®
keM
where ¢, = ay, € R satisfies |ci| S p#* for some p > 0 depending only on f. A fortiori, ¢
also satisfies the reality condition and |cg| < N3#F=9 for k € M.
Now, we assume that the result of Proposition 3.10 holds at the index r — 1 > 2 and we

aim at proving that it holds at the index r. For n > 3, we denote by P, the homogeneous
term of degree n of the nonlinearity :

(52) P, = Z cput.
ke My,

Following the general strategy of Birkhoff normal forms (see for instance [Bam03, BGOG,
Gré07, BEG18]), we aim at killing the non-resonant terms of P,.. Consequently, in view of
(40), we set

(53) Xr = Z Ch_ ok

r3N3
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Roughly speaking x, is the solution of the homological equation
{xr, Z5} + P, = (resonant terms) + (remainder terms).

We refer the reader to the proof of Theorem 2 in the next section for details about this
decomposition and to Remark 3.14 for choice of 3N? (it is crucial in the formal computation
of the sixth order integrable term Zg y3). Here, more precisely, x, is the solution of the
homological equation

(54) {xr, Zg} + P = Z Ckuk = R,.
keMT\j?fSN?’

Using the induction hypothesis we have N3||(cg)gr=r|leo Sr N3N ~, N3(=2) and, so
applying Lemma 3.6, provided that ¢( satisfies an estimates of the form ¢y S, 6 IV 3 —xr
generates an Hamiltonian flow ® , 0 <t <1 mapping B, (0, (3/2)eo) into By(0,20) and
close to the identity :

vt € (0,1), |BL,, (w)—ull o Srs N2 (er)sppmrlle [ullt Srs N2 a7 < N3 a3,

Similarly, x, generates an Hamiltonian flow (I);w 0 <t < 1 mapping B;s(0,2¢p) into
B;(0,30) and close to the identity, i.e. [[®! (u) — ulz. < N?[|ull%,. Note that by
construction, ®! and ®  are symplectic and ®! o ®" (u) = u. Furthermore, since
jfg 3 C M;, x commutes with || - H%Q Consequently, applying the Noether’s theorem,
@ir and (I)t—xr preserve the L? norm.

Provided that e satisfies an estimates of the form gy <, s N3, since 70 and 7(1) are
close to the identity (i.e. they satisfy (21)), without loss of generality, we can assume that
7 maps B,(0,e0) into Bs(0,(3/2)eg) and 7Y maps Bi(0,3¢0) into H* (and that the
decomposition (49) holds on B (0,3¢p)). Thus it makes sense to consider 7(1) o P! and
oL, o 7 and we have 7Y o Pl od o 70 (u) = u. Note that of course 7(1) o @} and
(I)t—xr o 7(9 are symplectic, preserve the L? norm and are close to the identity (see (21)).

Consequently, now, we only have to focus on the Taylor expansion of Hg o Mo <I>>1<.
First, we recall that, since <I>§< is a Hamiltonian flow, for any j > 2, we have on B;(0, 2¢()

j . .
1 11—ty
(55) Heo T(l) °© q)ch = Eadf(r (H5 o T(l)) + / #adg (Hg o 7'(1)) o CI);dt
=0 " 0 J:
where ad,, = {x,,-}. We aim at proving that the remainder term goes to 0 as j goes

to +00 and to control the convergence of the entire series. Recalling that by induction
hypothesis Hg o 7)) = Z§ + > n>3 Pn (see (52)), we have to estimate the coefficients of

%adf(TPn.

x Estimation of %adir P,,. Considering the definition of P, in (52) and x, in (53), applying
iteratively the Lemma 3.9 we deduce that (E!)*ladf(TPn is an homogeneous polynomial of
degree n + £(r — 2) of the form

1
adl Po= Y dp(n,0)ut

(56) 7
kEM'nA»Z(er)
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where d(n, £) € CMn+t—2) satisfies the reality condition and the estimate

| —

V4
(c) sehmn e (N?7]|(ci) sehmrllee) T [ o+ (G = 1) (r = 2).
i=1

[d(n, )l <

IS

Consequently, using the induction hypothesis and recalling that n + ¢(r — 2) is the degree
of (E!)_ladirpn, we have

¢ :
|d(n, €)= < pnNSan(prN(iier)N?))ErZ H n+(i— .1)(7“ —2)

1

i=1
J4 .
ooy nsylr—2) o T (= 1) (r—2)
= N N .
(rp”)"(pN”) ZHI -
Then let us estimate the product. For £ > n we write
ﬁn+(i—1)(r—2) _ﬁn+(i—1)(r—2) ﬁ n+(i—1)(r—2)
: i - i , i
=1 =1 i=n+1
“n 1—1 n'"
<(r —1)" w 1 L—n — e
r—=0"]] ;=T 1T s
=1 1=n+1

while for ¢ < n we have

¢ . B .
Hn+(2 Dir 2)§(r—1)£HZ<,~€7L'
~ ? Ll n!
i=1 =1
Therefore using that %T < e L for n > 1, (it results of an elementary Maclaurin—Cauchy
test), we get
(57) ld(n, )l < " (rp)* (pN?)HE2INT,

x Estimation of %adir 7§ . Recalling that by construction (see (54)), we have

{xrs ZZS} == Z 1kejf3N3ckuk-
keM, )

The previous analysis proves that adfcr Zg is an homogeneous polynomial of degree ¢(r —
2) + 2 of the form
L v e TN ok
A, 25 = Y dOu
keEMyr—2)12

where d(¢) satisfies the reality condition and the estimate
(58) H(%HZOO < gflerfl(rp)2(£—1)(pNs)rJr(sz(r,g)N,g'

« Convergence of the remainder term. We recall that by induction hypothesis, Hg o 7(1)
writes on B;(0, 3¢q)

HeorW =25+ > et =25+ P,
kemM n>3
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Here implicitly, 3sg < (cspN3)™1, with ¢s < 7/v/3 to ensure that the above entire series is
absolutely convergent (see Lemma 3.2). Consequently, on Bs(0,2¢(), the remainder term
of the Taylor expansion (55) writes

Rem(]):/o (j!)adg;rl(HgOT(l))o@g(dt:/o (j!)(ad?:lZQS)o@;dt

(a1 P,) 0 D dt = R + 37 RY)
n>3 n>3

We aim at proving that provided N3¢ is small enough then for u € B,(0, 2¢q), RemU )(0)
goes to 0 as j goes to +o0. '
By definition of d(n,j 4+ 1) (see (56)), for u € H*, we have

1 .
’ ad’t1 P, (u)

. k . n+(G+1)(r—2
TR = 3D e+ u] < im0 e el )OO

keMopi(11)(r—2)

(57) . :
< ¢ )0 e ull o pN) DA

Consequently, since <I>tr maps Bs(0,2ep) in Bs(0,3¢g¢), for u € By(0,2¢0), we have

|R(J

dJ—HP )(@;(u))dt’ < en_l(Tp)Q(j_H)(3CS€0pN3)n+(j+1)(r_2)N_g.

Therefore, provided that €3 csegpN? < 1 and (rp)£3 cseopN? < 1, for u € By(0,2¢0) the
()

series ), ~5 Iy’ (u) is absolutely convergent and goes to 0 as j goes to +oo.
Similarly, using the estimate (58) of d(¢), for u € By(0,2z0), we have

RS ()] < (j + 1) "Le" 1 (rp) ¥ (3 coeopN?) H =2 N9,

Consequently, provided that (rp)£3 cseopN?3 < 1, for u € By(0,2¢0), jo)(u) goes to 0
as j goes to 4o00.

x Description and convergence of the series. We have proven that, provided that eg N3 is
small enough with respect to 7~%, on Bg(0, 2¢¢), the remainder term of the Taylor expansion
(55) goes to 0 as j goes to +oo. Consequently, if u € Bg(0,2¢p), we have

+o00 400 1

1
HeorM o <I>)1<(u) = EadZ (Hg o 7MWY () = Eadg )+ Z Z —ade
£=0 £=0 (=0 n>3 f

First, to order the terms of these series as we want, let us check that they are absolutely
convergent. Indeed, realizing the same kind of estimates we did to control the remainder
terms, for u € B(0,2¢q), we have

1
‘ﬂade ( ) < N_9(266550pN3)n(205 (rp)ﬁsopNS)f(r—m
1
‘(£+ 1)ua 1 Za(w)| < N72(2ecoeopN?) (24 (rp)éeopNS)é(T—Q).
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2
Consequently, provided that 2ecsegpN® < 1 and 2 (rp)™2csegpN> < 1, the series are
absolutely convergent. Therefore, defining, for m > 3, a homogeneous polynomial of
degree m, denoted @, by

B 1, In—r 011 _ Sk
Qm(u) - Z Ea’d)(rpn(u) + (E + 1)!adxw- ZQ(U) - Z Crt
n+l(r—2)=m keMm
where
Ek = Z d(n, g) + 1n=kd<€)7
n+L(r—2)=#k

we have on Bg(0, 2¢)
HgOT(I)OCI>>1<:Z25—|— ZQm
m>3
Finally, let us check the properties i), ) and 7).

e If m < r then the only solution of the equation n + ¢(r —2) = m is n = m and
¢ = 0. Consequently, we have Q,,, = P, and so ¢ = ¢ if 3 < #k < r. Therefore
i) and i) are satisfied if 3 < #k < r.

e If m = r then the only solution of the equation n 4+ ¢(r — 2) = m is n = r and
¢ = 0. Consequently, we have Q, = P, + {xr, ZQ‘S }. Therefore, by construction of
Xr (see (53) and (54)), if #k = r, we have ¢ = lk¢*7£3N3 ¢k and so i) and i) are

satisfied.
e Finally, we have to establish the general control iii) on ¢;. Using the estimate (57)

(resp. of (58)) of d(n, ) (resp. d(¥)), we have

’Ek| <2 Z enfl(y-p)%(pN?’)#kN*g < N*Q(e pN3)#k Z (T2p2e277ﬂ)£

n—‘rf('l‘—Q):#k 0<< i’;

< N79(pN?)7

1
where p = em2 pmax(r?p?, e) (we have used that the number of terms of the sum

Atk
above is smaller than or equal to e7=2).

0

3.3. Proof of Theorem 2 and formal computations. This section is devoted to the
proof of Theorem 2 and more particularly to the computation of the fourth order integrable
terms and some of the sixth order integrable terms of the resonant normal form.

Nevertheless, before entering into this proof let us introduce two preparatory lemmas.
First, let us prove that the third and fourth order resonant terms are integrable.

Lemma 3.12. For all £ € {gBO, gKdV}, we have R = 0 and if k € R§ then Irr(k) = 0.
Proof. Let k € RE with n € {3,4}, i.e. k € (Z*)" satisfies

{ ki+ -4k, =0,

(59) Ty |k | + -+ + ko |Kn | = 0.
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We aim at proving that n = 4 and Zrr k = (). We note that if & is solution of (59) then —k
is solution of (59) and it is clear that Zrr k = 0 if and only if Zrr(—k) = (). Consequently,
without loss of generality, we assume that

(60) #1{J |k; > 0} > #{j |k; < 0}
Furthermore since k1 + - - - + k,, = 0, there exists 4, j such that k; < 0 < k;. Consequently,
we deduce that #{j | k; < 0} € {1,2}.
e First, let us prove by contradiction that #{j | k; < 0} # 1. By symmetry of (59) by
permutation of the coordinates, without loss of generality, we assume that k, < 0 and
kla---akn—l > 0.

Therefore, since —k, = k1 + --- + k,_1, we have

1
lkrer + -+ kn_1en—1ll14ae = (ki-i-ag S kqlli‘?S)‘Hag =k 4+ kypq
= ||k1€1||1+ag +-+ Hkn—16n—1\|1+ag

where (eq,...,e, 1) denotes the canonical basis of R®~!. As a consequence, the vectors
(kjej)j=1..n—1 satisfy the equality case of the Minkowski inequality. Consequently, they
should be all collinear which is impossible since, by assumption, k; # 0 for all j € [1,n].
e We have proven that #{j | k; < 0} = 2. Consequently, we deduce of (60) that n # 3 and
so n = 4. Without loss of generality, we assume that k;, ks > 0 and we denote h = (k1, k2)
and ¢ = —(ks, ks). Consequently, (59) writes

{ hi + ha = 0+l

(61) h%-i-ag_i_hé-&-ozg _ g%-&-ag +£§+a5

To prove that Zrrk = (), we just have to prove that if (h,¢) is solution of (61) then h = ¢
or h = (@2,@1) = f5ym,

If (h,¢) is a solution of (61) such that k3 = ko and ¢; = ¢ then by the equation, we
deduce that k1 = ¢1 and so h = ¢.

Consequently, by symmetry, without loss of generality, we assume that ¢ is fixed, that
it satisfies 1 # f2 and we consider h as the unknown of the system (61). First, we observe
that h = ¢ and h = £*Y™ are two distinct triviales solutions of (61). Then, we observe that
the solution of (61) belong to the intersection between a straight line and a sphere for the

| - |l1+ae norm. Consequently, since by Minkowski, the norm || - ||14q, is strictly convex on
R?, the number of solution of (61) is not larger than 2. Therefore, h = £ and h = {%™ are
the only solutions of (61). O

Now let us prove that Mg = \73“’:1, i.e. that we have killed all the cubic terms in the
resonant normal form process.

Lemma 3.13. If k € M3 and £ € {gBO,gKdV} then
\ :
kilki]|*e + kalka|*e + k3|kg|*e

Proof. Since k € M3, we have k1 = —(ka + k3). Then, up to some natural symmetries, we
just have to deal with the following cases.

B ko+k — _ 1
o [f £ = ngV then kg+k‘gi(k23+k3)3 — 3lkaks]| S

1
3
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— ko+k 1 1

o If £ = gBO and k2 > 0, k3 >0 then k§+k§i(k23+k3)2 = %y + s S 1.
— ko+k 1 1

o If £ =gBO and k3 > —k3 > 0 then ‘kgfkgi(k;rkg)?‘ == <35

O

Now, we focus on the proof of Theorem 2. Naturally, it relies on Proposition 3.10 and
its proof, where we have realized the Birkhoff normal form process.

Proof of Theorem 2. Until the last step, to get convenient notations, we omit the index £.
We adopt the same notations as in the proof of Proposition 3.10. Furthermore, during this
proof, if k € M, we denote by p,(k) the n'!' largest index among k1, .. ., |Klast|-

e Step 1 : Identification of the non integrable terms. In this proposition, we have proven
that on B(0,2¢g) we have the decomposition

HorM = 225 + Z Ckuk + Z Ckuk

ke M\ J. keM
L #h=ri1

where ¢ satisfies i) and 4ii). Naturally, we just have to set

R (y) := Z cpuk.
keM
#Ek>r+1

By applying Lemma 3.13, we know that J33y3 = M3, consequently there are no third
order terms in the resonant Hamiltonian, i.e.

T S

ke M\ T3N3 kEM\ T, 3
#k<r 4<#k<r

By applying Corollary 3.8, for n > 4, we get a partition of M, \ J,, sy3
M\ Tpans = PV UPP U PS)

where the sets P,gj ) are symmetric (i.e. P,gj ) = —quj )) and satisfy

o if k€ R, then k e PV,

o if k€ My \ Tyane and pi(k) > (S225)5) % then k € P,

o if k € (My\ Thsns) \ (P,sl) U P7(l2)) and —/, ¢ are two coordinates of k for some
¢ >3N3 then k € P\,

Then, observe that if & € P®) then #k > 5. Indeed, if k € P4(3) then using the zero
momentum condition, we deduce that «” is integrable and so k should belong to P4(1). Now,
we denote by P(13) the set of the indices k € P such that —¢, ¢ are two coordinates of
k for some ¢ > N3.

Consequently, we set

RU>n3) () = Z cpuk.

ke P®Iup:3)
5<H#k<r
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Note that in Theorem 2, we assume that the indices of the coefficients of the polynomi-
als Res<N3,R(“3>N),R(I>N3) are ordered (i.e. they belong to D). Here we do not pay
attention to this property because due to the symmetry of k — u* by permutation, up
to multiplication of the coefficients by a factor like #k!, the indices can always be easily
ordered.

We denote by P(1?) the set of the indices k € P()\ P(13) such that (k) > N°. Note
that, since P13 0 PL2) = ¢ if k € P2 then |(Zrrk);| > N® (by construction an
irreducible part is ordered). Consequently, applying Lemma 3.7 to Zrr k, we deduce that

1

we have us(k) > (%)Ha.
Finally, observing that if IV is large enough with respect to » we have (ﬂ)ﬁ >N

2(n—2)« =
R(H3>N) (u) — Z Ckuk

keP@yupi2)
A<#k<r

for n € [4,r], we set

and

Res(< sy (u) 1= Z cpul.

ke P\ (P12 yp(1.3))
5<#k<r
Irr(k)#£0 if #k=6

Consequently, since by Lemma 3.12 the fourth order resonant terms are integrable, we
have proven that

HorW = Zy+ Zy + Zg <ys + Rescys + RW>N) 4 RUsna) 4 Rlo7)

where Z; and Zg < s are two integrable Hamiltonians such that Z4 contains all the fourth
order integrable terms of H o 7() and Zg <3 contains all the sixth order integrable terms

of H o 71 associated with monomials of indices smaller than or equal to N3. The rest of
the proof is devoted to the explicit computation of Z; and (a part of) Zg <s.

e Step 2 : Setting of the formal computations. We recall that, in the proof the Proposition
3.10, the change of coordinate generated by x, (to kill the " order term associated with
indices in J, 3,y3) preserves the lower order terms. Consequently, Z, contains all the fourth
order integrable terms of H o <I>>1(3 and Zg < s contains all the sixth order integrable terms
of Ho <I>)1< 4 O @i L © <I>§<5 associated with monomials of indices smaller than or equal to N3.
Actually, by an elementary argument of degree, we observe that the sixth order terms of
Ho®) o® o® and Ho®) o®] arethesame. Consequently, Zg <ys contains all the
sixth order integrable terms of H o <I>)1<3 o (I>>1< , associated with monomials of indices smaller

than or equal to N3.
First, we have to determine x3 and x4 explicitly. To get convenient notations, we denote

L (u) ::/um dz = Z uF
T keMm,
in such a way that, on a neighborhood of the origin, we have

H=2Zy(I)+ Y amLm.

m>3
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We recall that formally, we have
11
1 _ Sk
Hod\(u) = > o adi H (u).
k=0
Consequently, we have

1
Hod,, ujOZ2 +az L3+ {x3, Z2} +as L4+ {x3,a3 L3} + §{X3, {x3,Z2}}
1
+ Ps(u) + as L + {x3,a5 L5} + §{X3, {x3,a4 L4}}

+ 0 D D03 £33+ 50 D (s s 2211+ O

where Ps5 is a homogeneous polynomial of degree 5. Since, by Lemma 3.13, J3 353 = M3,
by construction x3 is the solution of the homological equation

(H3) az L3+ {xs3, 22} =0,

1.e.
k

X3 = as Z .;;(k).

1
k1+ko+k3=0

Consequently, we have

1
Ho (I)>1(3 uiOZQ + a4 L4+ 5{)(3, as Eg} + P5(u) + ag Le + {Xg, as £5}

200 D as L4} + 5 s, D (s, 05 £33} 1) + O,

Therefore, Z; is the integrable part (i.e. depending only on the actions) of a4 L4 +

{3 a3 L3}
Then, x4 is constructed to solve a homological equation restricted to indices in Jy 3n3
as explained in the proof of Proposition 3.10 :

1
(Ha) 117, s laa Lo+ 5{)(3, az L3} + {x4, Z2} = 0.
Moreover, by a straightforward calculation, we have

27['(k‘1 + k‘g)

62 L3} =942 ¥ wh = :
( ) {X37a3 3} a3 Z Ckyi,ko W WNETE Cpy ko Q(k‘l,kg,—kl—kz)

k1+ko+k3+ks=0
k1+ko#0

Consequently, following the construction of the Proposition 3.10, we have

B 2a4+9a§ck1’k2 i
=) 2:0(k)

k€T 5n3

Therefore the sixth order term of H o <I>)1<3 o <I>)1<4, denoted Fg, is

1
(63) Ps=aesLs+ {x3,a5Ls} + 5{)(3, {x3,04 L4}}

1 1 1
+ g{X:a, {x3,{x3,a3L3}}} + §{X4,a4 L4+ §{X3, az L3} + Zy}.
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Note that there are three kinds of terms in Py : the original terms coming from ag Lg,
those that come from the composition by the Lie transformation <I>)1<3 and those that come
from the composition by the Lie transformation (I>>1< "

We recall that Zg <3 is just the integrable part of Fs projected on actions with index
smaller than N3 and we can write

(64) Zoens(D) = > & (OLLIL
0<p<Lg<L<SN3

Finally, we also notice that in view of Lemma 3.13, the three terms in (63) involving
Poisson brackets with y3 cannot be responsable of the growth of ¢, ,(¢) with respect to
£. So the only contributing term to this growth in (64) is the last one which involves a
Poisson bracket with xg4.

e Step 3 : Computation of Z4. We recall that, by construction, it is the integrable part (i.e.
depending only on the actions) of ag L4 + %{Xg, a3z L3}. To determine it from the explicit
expression of £4 and {x3,a3 L3} (computed just above), we use the Poincaré’s formula:
2avpue = 2at2pt 20~ Xpne T 20na ~ 2aanB T 2 anpne: For example, it is
clear that the integrable terms of £4 = > kEMy u” are obtained when ky = —ky or k; = —ks
or k1 = —k4. All these cases being symmetric, by the Poincaré’s formula, we know that
the integrable terms of £, contains three times the terms such that k; = —ko minus three
times those such that k; = —ko = —ks plus those such that ky = —ky = —ks = —k4.
Observing that since k1 + ko + k3 + k4 = 0 there does not exist any term of this last kind,
we deduce that the integrable part of L4 is

Bas Y Inlk,—3as » I}
k1,ko€Z* kez*
Proceeding similarly to determine the integrable part of {x3,as L3}, we deduce that

18a3 9
Z4(I):3a4 Z Ik1[k2—3a4 Z I]%—I— 5 3 Z Ckl,k’2]k1lk’2_§a§ Z Ck,JCI]?
k1,koeZ* keZ* k1+4k27#0 kezZ*

o0
=3ayfull>+3> (Bajcrr —2aa) T +9a3 D> chypy Iy Iy
k=1 e |#[ |

Taking into account the symmetries of ¢, i.e. ¢g, g, = Ciyky = C—k;,—ko, We deduce that

Zy(I) =3as||ul}> +3 ) (3a3crr —204) IR +36a3 D (Chyky + C—ohe) Thy Iy
k=1 0<ky<ks

Consequently, to get the formula (22) (resp. (23)) for Zdev (resp. ZEBO), we just have
to compute ¢y, g, + Ck;,—k, When 0 < k1 < ko.

* Case & = gKdV. We have

k +k k +k 1 1
_27r2(ck17k2—|—07k1’k2) — ( 1 2) . ( 1 2) _

— =0.
(kl + k2>3 — k% — k?% (k‘l — k‘g)?’ — k% + ]{3% 3k1ko  3ki1ks
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* Case &€ =gBO. We have

2(k1 + kQ) Q(kl — kg) 1 1 1 1
9 B _ _ 1 t,1_ 1
(ki ka) A2 — (4 k) -2t (b —h)? ki ki k

e Step 4 : Computation of the brackets in (63).

x Step 4.1 0 {x4,a4 L4 + %{Xg, a3 L3} + Zy}.
First, we notice that, since a Poisson bracket between an irreducible monomial and a
polynomial in the actions cannot be a polynomial in the actions, the polynomials

1
{X47a4£4+ 5{){3,&3 £3}+Z4} and X4, Z hk‘l,kguk
k1+ka+ks+ks=0

have the same integrable part where, by formula (62), we have set

2 .
hk‘l,kz - { a4 + (9/2) a3 Ck’l,kjg lf ]{1 7& k2

0 else

Consequently, since we are only interested in the computation of the integrable terms
of {x4,a4 L4+ %{Xg, as L3} + Z4}, we only compute {X4, Z hkh,@uk}.
k1+ko+k3+ks=0

Remark 3.14. At this stage we can justify our choice to restrict the resolution of the
homological equation (H4) to Jy3ns, i.e. why we took 3N3. We have to remember that
we want to compute Zg <3 so we have to be sure to consider all the integrable terms of
order six with indices smaller than N3 in

2a4 +9d2¢
D SR R B ol T

k1+ko+k3+ks=0 k€T, 3n3 k1+ko+k3z+ks=0

2a4 +9 a% Chy k
= 207 1,72 h u® + other terms.
2 %imj > 2iQ) (k1. k2, k3, J) 2 Ik
JEZ* (k1,k2,k3,5)€T, 353 ka+ks+ke+35=0

Now the point is that the restriction (k1, k2, k3,7) € Jy 3ns has to allow max(|k1], [k2|, |k3])
N3. In the worst case |j| > max(|k1], |kz|, |k3|) but in that case 3 max(|k1], |kal, [ks|) > |1
by the zero momentum condition. On the other hand (ki,ks,k3,j) € Jy3ns means
l7] < 3N3Q(k1, ks, k3, ) and since Q(kq, ko, ks,j) > 1 we are sure to consider all the
|7] up to 3N?3 and thus all the k with max(|k1], |ks|, |k3|) < N3.

Now we are sure that we are not missing terms for Zg < ys and thus, instead of computing

{x4, Z hkl,kQuk}, we can just compute {4, Z hkl’;@uk} where
k1+ko+k3z+ks=0 k1+ko+k3+ks=0

5 2a4+9a20k k hi: &
Z 3 1’2uk: Z ,1’2uk

X = 2i0(k)

iQ (k)
k€M4\R4 keEMsNZrr

and then to restrict the integrable part to indices smaller than N3. Note that we have
used that the quartic resonant terms are integrable (see Lemma 3.12). Consequently, this
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sum only holds on indices k € My such that k;, + k;, # 0 for all ji # jo.
By a straightforward calculation, we get

~ k k
X Y Py oy ™ o = > br u
k1+ko+kz+ks=0 k1+ko+ks+ka+ks+ke=0
k1+ko+k3#0
k1+k’2750
k1+k’3750
k:2+k’3750

where
271'(]{31 + k?z + ]C5)
Q(k1, ko, k3, —k1 — ko — k3)’

b = 4 dpy kg ks Wky iy kg ks =

Wg = hk1,k2hk‘4yk5 + hkly—kl—kZ—thkzlykS + hkl,k2 L h’kly_kl_kZ_kShk47_k4_k35_k‘6'
Step 4.2: Computation of {xs,as Ls}. By a straightforward calculation, we have

{x3,a5 L5} = 15azas Z Chy ko uk.
Fr 4+ kg =0
k1+k27£0

Step 4.8 : Computation of {xs,{xs,{x3,a3Ls}}}. This computation is elementary but
quite heavy, especially to take into account the symmetries and to count the multiplicities.
To help the reader, we provide the diagrams we have realized to follow and check it. We
could make these diagram computations become rigorous but, since they are quite natural
and not fundamental, we believe that it would be uselessly heavy.

First, let us present informally what are our diagram and how we compute their Poisson
brackets.

We represent L, by a regular simplex. Their vertices, represented by crosses, refer to the
indices of the modes whereas its simple edges refer to the zero momentum condition. To
denote that, furthermore, we have solved an homological equation with Zs and excluded
the resonant terms, we draw some double edges. For example, we denote

L3 = X/;\X and 3 =as X/;\X .

To compute the Poisson bracket of two diagrams A and B, we just add the diagrams we
get by connecting A and B by replacing a cross of A and a cross of B by a circle with a
dark face on the A side. Somehow, the circles refer to the old indices and the dark face
are just a way to remember which diagram was on which side of the Poisson bracket. For
example, we have

(65) az'{xs, L3} :{ /:\ , L\ }Z 3-3 ‘><H .

The factors 3 come from the fact that for each diagram, we have 3 choices of crosses and
that all of them are equivalent.

Now let us explain informally how we get the expression of a polynomial Hamiltonian
from its diagram and to highlight this process on the elementary example of {x3, L3} whose
diagram is given by (65).
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» First, we index the crosses of the diagram (for example, from the top to the bottom and
from the left to the right). Consequently, we get a polynomial of the form

(66) > Bt

ke(zZx)n

where n is the number of vertices and (5 are some coefficients we have to determined. For
example, for {x3, L3}, we have n = 4.

» We index the circle and denote by m the number of circles. If j € [[1,m] is the index of
a circles, n 4 25 is the index of its dark face while n + 25 — 1 is the index of its white face.
We extend k into a vector of length n + 2m, denoted ¢ (i.e. k; = ¢;) and we write the
zero momentum conditions we read on the simplexes : if (ji,...,/jp) are the indices of the
vertices of a simplexe we write

G+, =0.
Furthermore, we write the expression coming from the connections :
Vje[1,m], lny2j—1 = —lnyaj.

From all these equation, we deduce that ¢ is a linear function of k denoted ¢(k) and that
the sum (66) can be restricted to k € My. For example, for {xs3, L3}, we have the system

bs = —lg, L1 +0l4+05=0, fl3+04+45=0
which is equivalent to
le = —(k1+ ko), C5=—(ks+ka), Kki+hka+ks+ks=0,

» Then we restrict the sum (66) to ensure that the coefficients of ¢ do no vanish (because
they are old indices of modes). Consequently the sum (66) becomes

(67) > Bt
keMy,

Vi, £;(k)#0
For example, for {xs, L3}, we just add the restriction k; + ko # 0.
» Let denote by S the set of the double simplexes. More precisely, {ji,...,jp} € S if
Ji,...,Jp are the indices of the vertices of a simplexe represented by double edges. To
ensure the non-resonance conditions, we restrict the sum (67) to the indices k such that if
s={j1,...,Jp} €S then Qs(k) := Q(¢;,(k),...,£;,(k)) # 0. Consequently (67) becomes

(68) S Gk
keM,,

Vj, £j(k)#0

vsv Qs(k)7£0
For {x3, L3}, we have S = {{3,4,5}}. However, since there are no cubic resonances (see
Lemma 3.12) the condition Qs(k) # 0 is trivial.
» Then, we determine the coefficient 8. We have to take into account the coeflicients
2iml coming from the Poisson brackets and the denominators coming from the resolution
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of the homological equation. Consequently, naturally, we set

m —1
B = H(—QiﬂfnJer) (H ZQS(k)> :

7j=1 SES
For {xs, L3}, we have

—2imlg (k) B 27 (k1 + k2)
QR), - ls(R)) kg, ks —Fg — Fa)

» Finally, we recombine the denominators coming from the homological equations and
the coefficients coming from Poisson brackets (to get coefficients like ¢y, x,). For example,
for {xs3, L3}, we have B, = cpyr,. Consequently, we get the same result as in (62). No-
tice that, since, in practice, we only compute Poisson brackets with xs, this last step is
straightforward (actually, we skip the previous step).

Br =

Now, we are going to apply this technic to deal with more intricate terms. For example
a direct computation leads to

2 k 2 k
{X37 {X37 ‘63}} =54 as Z Ck1,koChy ks U + 54 as Z Cky,k2 Ck1+ko ks U

k1+--+ks=0 k1+-+ks=0
k1+k27#0 k1+ko#£0
kq+ks#0 k1+ko+k3#0

which is highlighted through the following graphical computation

{xs, {x3,L3}} /\ \O/W P S P
e AN R B 2 VA Rl e wANE

X X

X,

X X

<]

Finally, an elementary computation leads to

_ 3
(69) {X3> {X?n {X37 £3}}} = 162 as E Ck1,kaCks kg (Ck’s,ke + Ck1+k2,k3+k4) u
k1+kot+ks+katks+ke=0
k1+k27#0
k3+ks7#0
ks+ke#0
3
+324 as E Cky k2 Ch1+ko k3 (Ck1 +ko+ka, ks T 3 Ck57k6) U
k1+ko+k3z+ka+ks+ke=0
k1+ko+k3#0
k1+ko#£0
ks—+ke#0

which is highlighted through the following graphical computations

igfpo { A o<} A D)

54 a%

X

>(

with

VANVANES
< >

VA

N, A

(Y

NN

>
\/

/
<

~

AN



38 JOACKIM BERNIER AND BENOIT GREBERT

and

VANIVAN

1 A N e N e
SEAN v L R e

X, X

Step 4.4: Computation of {x3,{x3,a4 L4}}. To follow and check more easily the formal
computation of {xs,{xs,as4 L4}}, we use the same technique as before. Here, to highlight
its symmetries, L4 is represented by a tetrahedron.

First, we have

{Xg,a4 ,64}} =12 asz g Z Ckl,kguk

ki+-+k5=0
k1+ko#0

which is highlighted through the following graphical computation

{X3’£4} { AW \\\/‘ }z 12 >/\\\‘ .

X X

Then, we get
2 k 2
{X37 {X37 Qa4 £4}} = 108 as a4 E , Chy ko Chs kg W T 72 a3 a4 § : Ck1,ko Cky+ko ks U
K+t =0 K+t g =0
k1+k2#0 k1+ko+ks#£0
ks+ks#0 k1+k2#£0

which is highlighted through the following graphical computation

{,E} X X, \
T ANl B>

X

\°/W

AN/ +6 >0\//\\\X/ .

Step 5: Specialization. At the previous steps, we have computed explicitly the terms of
the expansion (63) of Ps. Now, in order to determine theirs terms associated with the
monomials Iglq, 0 < 2p < q (e cpp(q), see (64)), we use a formal computation software
(here Maple 2019). Just below, in Algorithm 1, we exhibit the Maple source code we have
implemented to compute the projection® of {xs, {x3, {X3,a3 £3}}} (whose explicit formula
is given in (69)). It is straightforward to modify this source code to compute the projections

of the other terms, consequently we do not detail the other scripts we have implemented.
O

4. CONTROL OF THE SMALL DIVISORS

To deal with the small divisors of the rational normal form process, we have to introduce
some relevant quantities.

In order to take into account the multiplicity of the multi-indices, in this section we do
not consider multi-indices in Zrr N M but in MZ,y (defined in (17)). However, using
the correspondance (18) all the objects we define also make sense if they are indexed by
elements of Zrr N M. See Remark 2.1 for details.

5i.e. the coefficients ¢, ,(q) associated with the monomials I21,,0 < 2p < g (see (64)).
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Algorithm 1 Projection of {xs, {x3, {x3,a3 L3}}} for gBO with Maple 2019

with (combinat ):
E::permUte([pv p, =b, =P, 4, _Q]):
assume(0 < p, 0 < q, 0 < q— 2:p):

a:=1:
b1+ 4o
c:=(l ly) — 2-(2-m)"@ :
(1 2) ( ) €1|€1|a+£2’€2|a_(€1 +£2)|£1+€2’a
b:=0:

for K in E do
=K|[1]; ko:=K|[2]; k3:=K|[3]; ka:=K|[4]; ks:=K[5]; ke¢:=K[6];
if k1 +k2#0 and ks + kg #0 then
b:=b+324- a% . C(kl,kg) . C(kl + ko, kg) . (C(k1 + ko + k3,k4) +3- C(kg,,k@));
if ks+ ks #0 then
b:=b+162- CL%L . C(kl, k‘g) . C(k‘g, k‘4) . (C(k?g,, ]{36) + C(k‘l + ko, k3 + k?4)) ;
end if;
end if;
end do:
b:=simplify (b):

Using the explicit formulas given by the Theorem 2, we define the small divisors associ-
ated with Z4.

Definition 4.1 (Small divisors associated with Z4). If (m, k) € MZ 1 we set

4
ASVE) ka%am S 6l
j=1 p=1
where
KdV 3a}
(70) 5g = Z mJ j 12a4 + ) ]{22 1k =p>
gBO = 18 a3
(71) (5m,k )p =—-12 a4 ij ]{Zj 1kj=p Z m; + - Z m]
Jj=1 k;j>p k <p

Remark 4.2. Note that, since (k, m) satisfies the zero momentum condition (i.e. k-m = 0),

(4) £

the expansion associated with A /™ is finite :

(72) Vp > k1, (05, Kp =0
Definition 4.3 (Smallest effective index). We denote Hm,k the smallest index p such that
Afs?,’f really depends on I, :

K,y = inf{p € N | (65, 1), # 0} € N*.
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Remark 4.4. It is clear that this infimum is a minimum. In other word, we have /{fn <

+o0o. Indeed, this is clear for gKdV and, since (k, m) satisfies the zero momentum condition
(i.e. k-m =0) and since for gBO, a4 # 0, we have

(73) (652 ky = —12agmy ky # 0.
In the following lemma, proven in Appendix 8.1, we establish a better upper bound on
&
Kom-

Lemma 4.5. We have k8 = kiast and if a3 =0 or m1 + - -+ + myast = 0 then we have

mk

/ii]i,? = kiagt else we have /ﬁ;m’k < 2#k — 1.

Now we are focusing on the small divisors associated with Z{; <n- Following the notations
of Theorem 2 we write for all N > 0

(74) Z§ n(I) = Z & J(OI,11,.

0<p<q<U<N

For (m, k) € MZyt, we introduce the small divisors associated with Zg <N

#k
£
(75) ADED) =m0, ZE n ().
j=1

which are homogeneous polynomials of degree 2. We are also introducing a second type of
small divisors of degree 2 that are not homogeneous

(76) AUOS(T) = ADE(I) + ADE (D).

In this section, we aim at studying the following open subsets of Hs.

Definition 4.6 (Open subsets). Ug’]f,’r = UME A UEOES here

s ’YNT v, N
4),€, : 4).€ - 2 (& \-2
ule = (N {ue B AT Dl > NNl (65, 072 )
(mvk)EMZmult
5<Im|1<r
ki<N
y40Es _ 5| IA N2Lmh 2 £ \—2s 2
=N ue H” || mk;N( )| > [ull7s max((ky, ) ™% yllull ) ¢ -
(mzk)EMImult
5<|m[1<r
k1 <N

In the first subsection, we prove that Z/[g N are stable by a small relative perturbation of

the actions in the A5 ! topology while in the second subsection we estimate the probability
to draw a function in 4%’ Nr
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4.1. Stability by perturbations. In this subsection, we aim at proving the following
proposition (its proof is done in the subsection 4.1.2).

Proposition 4.7. Let & € {gBO,gKdV}, A€ (0,1),s>1,1>v>0,7>1, N 2, 1y
1. For all u,u' € H®, if
(77 N llge < 2lullge and Ve N, I = L7 < 4%(1 = N2 ||u3,,
then
ueu NT = EL{MNT
We recall that the coefficients cp7q(£) of Zg,SN(I) (see (74)) satisfy (see Theorem 2)

(78) 5,0 S e

For (m, k) € MZyt, we introduce the polynomials

6 5
(79) o) Zm] ST k),

0<pSQ<klast
Note that, roughly speaking, if k; < N then Afs),’f is just the main part of the natural
expansion of AS)IfN (defined by (75)).

4.1.1. Some preliminary Lemma. First, we introduce some elementary preliminary lemma
about the size and the variations of the small denominators.

Lemma 4.8. For all u € H®, all (m, k) € My, we have

()€ s o
A S 105,007 (a1, ).

Proof. In view of the formula giving explicitly 5fn i in Definition 4.1, it is clear that
(6% 1)p Sim p. Furthermore, we know that if p > k; then (6¢ ,), = 0 (see Remark 4.2).

Finally, by definition of K . and AWE e have

m,k
4),E — s—
EDI=1 3D Gl S 3 ol S b0 (a2, ).
p=rf p=rf
m,k m,k

O

Lemma 4.9. For all v € H*, all (m, k) € MZu, all N 2y, s 2 such that ky < N we

have

6),& 6),& _os
(80) ADE () = ADE(D] < NO(E, )7 ulld..

Proof. First note that Agj?’fN(I) - Afg?,’f(l) can be decomposed as
(81)

#k
> mjk; > G OLL+ Y L OLL+ Y (k)
j=1

0<k;<q<I<N 0<p<k;<l<N 0<p<q<k;
qzklast
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As a consequence, since k; < N and |c§7q(€)] < ¢ (see (78)), we have
(6),& 6).6
AN D) = AL (D] S N3l

Furthermore, by using Lemma 4.5, we know that an,k <imn klast- Consequently, if N is
large enough with respect to |m|; and s we get (80). O

The following lemma is a straightforward corollary of the proof of Lemma 4.9.
Lemma 4.10. For all u € H*, all (m, k) € MZyie, all N > 2 such that k1 < N, we have
6),E
AN (D] S Nl

As a corollary of the explicit decomposition (81), we also control the variations of A )ng

Lemma 4.11. For all u,u’ € H®, all N > 2, all (m, k) € MZp, such that k1 < N we
have

6),& 6
AGE (1) = ADE (I S NI = Il (I 1o + 17| o).

4.1.2. Proof of Proposition 4.7. Let A € (0,1) and u € L(ji,r, (m, k) € MZyt be such

that |m|; < r and k; < N. We consider v’ € H® such that ||| s < 2|Jull g« and we aim
at establishing an uniform upper bound on p?*=2|I,, — I | to have v’ € Uff N

First, we focus on an upper bound to ensure that v’ € L{/(w)]f]i Since Ag)l’f is a linear
function of the actions, applying Lemma 4.8, we get

AL = AR D] = 1A (1 - 1)
> NIl (8,0 = O 0 (s 21, - 1))
’ p
where C,. > 0 is a constant depending only on r. Consequently, if
(82) Vp e N*, p* 2T, — I)| < y(1 = A)C ' N~ jul)%,

then we have |A(4) 8([’)\ > yAN~ 5|m|1HuH2 (K

Now, we aim at establishing some an upper bounds to ensure that u’ € Ll;\ ’6)’i’s Re-

-2 (4),€
mk) B le u’ eu)ﬂ]\lr

4
7N,
calling that |[u'[| 5. < 2|Jul|z. and applying the triangle inequality, Lemma 4.8, Lemma
4.11, we get a constant K, depending only on 7 such that

£ £ £
AU > [AYDED) — 1aWE @) - AW ()] - 1a8E (1) - APE ()]
4,6), —2s 5—
> AR = KoV 5,07 (e 211, ~ 1))
— K N2 T = T'|| 1o

Consequently, if each one of the two last terms of the last estimate are controlled by

(1= NIAEDE(D)1/2, we have ALY ()] > AL ()] and thus, since u € U

'er ’
4.6),E
we have u/ GL{/(\W\)MS.
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To ensure these two controls it is clearly enough to have

(1=

(83) wpe N 221, - gt < e U A
1—X
(84) vpeN*, |1, — 1) < ) a ety

Finally, we notice that the conditions (82),(83),(84) are clearly satisfied if N is large
enough with respect to r and (1 — A\)~! and if (77) is satisfied, i.e.

¥p € N, p*2|L, — | < 7*(1 = NNT2"|lulf3,..

4.2. Probability estimates. In this subsection (Ix)ren+ denotes a sequence of random
variables called actions. We assume that

e the actions are independent
e I}, is uniformly distributed in J; + o(0, k=257Y)

where v € (1,9] is a given constant, J; > 0 and o > 0. In this section we take care to get
uniform estimates with respect to v, J and o. Note that the assumption v > 1 only ensures
that almost surely we have u € H® where the random function w is naturally defined by

(85) u= Z 2v/I; cos(2mkz).
k=1

In this subsection, we aim at establishing the following proposition (that is proven in
the subsection 4.2.4).
Proposition 4.12. For all v € (0,1), £ € {gKdV,gBO}, r > 2, A € (0,1), 0 Spson 1,

if

o
(86) lull e 7 = 2D Julkl* +20¢(v) < d0¢(v)
k=1
P (1 Srow N < (lull 2V = wetly, ) 21-2
where Z/l,yg’]‘i,r is defined in Definition 4.6.

This subsection is divided in 4 parts. First, we introduce some stochastic and diophan-
(4),€,s

tine preparatory lemmas. Then, we estimate the probability that u € LLY N - The two
last parts are devoted to estimate the probability that u € Z/l£4j\§)1jg’s and to realize the proof

of Proposition 4.12.
(4),€ A(G),S A(4,6),5

From now on, in this section, to avoid any possible confusion, Am,k A A W'

denote the random variables defined by

AU = ALEm, ALE = AL wa AU = AU + A

m,k

6Here ¢ denotes the Riemann zeta function.
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4.2.1. Some preparatory lemmas. First, we recall some elementary lemmas we also intro-

duced in [BFG18|.

Definition 4.13. If a random variable X has a density with respect to the Lebesgue
measure, we denote fx its density, i.e.

Vg e CIR), Elg(X)] = /R o(@) fx(2) de

Lemma 4.14. If a random variable X has a density and € > 0 then €X has a density
giwen by fox = e 1 fx(-/e).
Lemma 4.15. Let X,Y be some real independent random variables. If X has a density,
then for all v > 0

P(IX + Y| <) <27 fxllze-

Proof. By Tonelli theorem, we have

Y+vy
PUX +¥] <9) = E [lpvrvier) =€ [ [ x@)as] <291 xlum
-

O

Lemma 4.16. Let X be a random variable uniformly distributed in (0,1). If a,b,c € R
are some real coefficients such that a # 0, then we have

Vy >0, P(laX? +bX +¢c| <) <4, /ﬁ
a
Remark 4.17. As a direct corollary, note that this result also holds if b, ¢ are some random
variables independent of X.

Proof of Lemma 4.16. Without loss of generality, we assume that a > 0. Acting by trans-
lation and dilatation, we have

1
PaX*#5X ] <) = [ Bz sserecade < [

[e.9]

)
-1
1|az2+bz+c\<7dx = \/6 / 1\m2761<'ydl'
—00

where ¢ could be computed explicitly as a function of (a, b, c). Then we consider 2 cases.
e Case |c| < 3v. Here we observe that if [z —¢| < ~ then |z| < 2,/7. Consequently, we

have P(|aX? + bX +¢| <7) < \/5_14\ﬁ.

e Case ¢ > 3v. Here we observe that if |[#2 — ¢ < 7 then \/c—~v < |z| < /c+7.
Consequently, by the mean value inequality, we have

P(laX? +bX 4 ¢| <7) <2va '(Vety— Ve—7) %ﬁ1§\/2yﬁl

The following lemma is no more about probability but diophantine approximation.

Lemma 4.18. Let n > 1 and P,Q € Z,[X] be two polynomials, with integer coefficients,
of degrees n or less. If P and Q are not collinear and if there exists J € N* such that
J > 2n and

Vi € [1,J], [QU)| < 255"
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then, for all B € R there exists j, € [1,J] such that

) . 1
[P(jx) = BRI = 06T

Proof. In this proof, M denote the upper bound on |Q|, i.e. M = 2351, Let B be the set
of the best rational approximations of 8 by rational numbers :

* P 1
B={xe€Q]3(pq) € ZxN7 zz;and |ﬁ—x|<2—q2}.
Let Hps be the set of the rational numbers with denominators no larger than M
Hy ={x€Q]| 3Ip,q) €ZxN*, :z:gand lq| < M}.

Let ¥ be defined by
) [1,J] — Ha U{oco}
e {0 R

where, by convention if Q(j) = 0 then ¥(j) = oo (even if P(j) = 0).

With these notations, to prove the lemma, we just have to prove that the image of W is
not included in BNH s U{oo}. We are going to proceed by a cardinality argument proving
that

(87) #Im U > #(B N Har U {oo)}).

On the one hand, we prove an upper bound on the cardinal of B N Hys. Indeed, it is
known (by applying, for example, the Theorem 19 of [Khi|) that B is only composed of
convergents of the number §, i.e. the rational numbers obtained truncating the continued
fraction expansion of B. As a consequence, by applying the Theorem 12 of [Khi], we know
there exists two sequences (pg, q¢) € (Z x N*)N" such that

=1

Ve>1, peANq=1, q>272 and B C {ps/qe | £ > 1}.
As a consequence, observing that by construction M > 1, we have
#(BNHa) <1+ 2logy M.

On the other hand, since P and @ are not collinear and their degrees are no larger than
n, the cardinal of each fiber of W is not larger than n. As a consequence, we have

J
# Im ¥ Z )
n
Consequently, since M has been chosen such that
24+ 2logg M = z,
n

the cardinality estimate (87) is satisfied, which concludes the proof. O
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4.2.2. Genericity of the first non resonance condition. In this subsection, we estimate the
probablhty that eu € Ll (4) 5 . We refer the reader to the definition 4.3 for the definition
of /-cm  and to the deﬁnltlon 4.1 for the definition of 5m i

The following lemma provides a lower bound for the non-vanishing coefficient of Afs);f

associated with the smallest index.

Lemma 4.19. The following lower bound holds
|(5fn,k)mfn’k’ Zm (/f}%@,k)gfhg-

Proof. We denote n = #m.
e Case £ = gKdV. We observe that there exists n > 0 such that

2

" 3 a2 3a
VEEN, 12047+ 3 #0 = ‘12a4€2+7r23‘ > 7.

Consequently, in view of (70), we have ](5;‘%{; ) ngv] >n(k ngV)

e Case £ = gBO. If a3 = 0 or my +--- +m, = 0 then IigB’? = k,, and (5gBO)kn =
—12 a4 my k,. Consequently, the lower bound is clear. On the other hand, if ag ;é 0 and

mi+---+my # 0, we know by Lemma 4.5 that mgBo < 2n+2. So we conclude this proof

observing that n and m being fixed, k — (5m g)1§[§2n+2 can only take a finite number of
values. Il

As a corollary, we get the following probability estimate.
Lemma 4.20. If £ € {gBO,gKdV} and (k,m) € MZy,1; we have
Yy >0, P(|A£:?,’f| <7y) Smyo ! (ﬂi,m)28+1j—3+2a5.
Proof. Applying Lemma 4.14 and Lemma 4.15, we have
P(ALKT<7) <2 inf |05, 007 I frllew] =2 inf o755, )7 ">+

A fortiori, for £ = k& , | applying Lemma 4.19, we get the expected result. O

m,k?

Proposition 4.21. For all € € {gBO, gKdV}, we have
¥y >0, P(Y(m, k) € MTyutiy [ASN] 2 vo by ™ (5,,) ) =1 -,

Proof. We aim at bounding the probability of the complementary event by v > 0. By
sub-additivity of P, we have

(4 )5 dmly (& \—2s
(88) P(3(m,k) € MImu, |87 | < Cnovky ™™ (K m) )

4),€ —4 -2
< S PIAYE < Croy kT (5E,)7)
(mvk)EMImult

where C), > 0 is a positive constant depending only on m and that will be determined
later.
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Here, we denote by K, the constant in Lemma 4.20. Then, we apply Lemma 4.20 with

~ replaced by v Cy,o k;4‘m‘1 (K,i m) 2 Asa consequence, since v < 9 and |mi| > 5 we
get

POIAYE| < Couo by 1™ (1) ) < Couuaky ™ (65,)1° € ks 7

where we have used that x§, < k; (see (73)). Finally, observing that

[m|1 —2#m |m|1 2\ "
> LETLy ¥ Dreoat T () roen
() EM T e n>2 ke (N*)" me(Z+)n n>0 "
and denoting C,, = ;:Zl,l Kn_lle_”2/ 3 we get the expected result.

4.2.3. Genericity of the second non resonance condition. In this subsection, we aim at

(4,6),5

estimating the probability that A is not too small.

We recall here that by definition A(4 6).€ Aiﬁ?;f + AS?,;E and

#m
6),E £
Afn?k = Z mj kj Z Cp,q(kj)IqIP
j=1

0<p<g<kiast

where the real numbers cgq(k:j) are the coefficient of Zg <3 (see (24)). If 2p < kiast, an

explicit formula for the coefficients cpp(k:j) is given in Theorem 2.

Lemma 4.22. Let £ € {gBO,gKdV}, (m,k) € MZpnuy and n = #m. In the case
E = gBO we further assume that a3 =0 or m1 + --- +my, = 0. Then we have

4,6),€ 1. _
¥y < 1, PUALD?) < 5) S 0 min (y k25034208 /g6y

Proof. Note that, by Lemma 4.5, we have Ki%k = k, and that, by definition, AS)I’CE
independent of I, . Consequently, the bound

46 V—
PIALY | <7) S yo ko200

can be obtained as in the proof of the Lemma 4.20.
Furthermore if k,, < 2Jj, ,,, where Jy, p, is defined by

Jrym = [42n|m]1(1 + logy k1) ],

then y k2stv—3+2as < s VY k$™ and Lemma’s proof is over. Thus from now on we assume

kn > 2Jk, mm and we want to prove that P(|A "/ 46) 5] <) Simys 0 /A KS

(4,6),€

Now, if p is an integer such that 0 < 2p < kn, AT writes

4,6),€
AUOE = (df )p 2+ LE (1)) I + QF o (T 1)
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where L‘gmc((lg)g;ép) (resp. kacs((Ig)g;ép)) is a linear form (resp. quadratic form) in

the actions independent of I, and

kmp_E:mJ J p,

Consequently, applying Lemma 4.16, we get

(4,6),€ -1 v

k,’,m)p|

To conclude this proof, we are going to prove that there exists p, € N* satisfying 2 p, < kj,
and p. S Jk, m such that |(d km)p*| >m k10
As a consequence, by (89), we will have

P(A(476)75 < 7) Sm 0—1ﬁk5nJ5+V/2 Sims O'_I\Fkﬁn

m,k,e k1,m
To prove the existence of such a p,, we have to distinguish 3 cases.
x Case & = gBO and a3 = 0. Using the zero momentum condition (i.e. k-m = 0) and the
exact formula of c%%o(q) given by Theorem 2, we have

(@50 — 288a4z (p — kj) _ 2884} Pim(p)
o 7 (p+2k;) 3p — 2k;) T Qkm(p)

where Py, Qrm € Z[X] are the polynomial defined by

Pen(X) =Y mjk; (X — k) [J(X +2k)(3X — 2k)
= U]
Qem(X) = [[(X +2k)(3X —2k;)
j=1
We note that Py, is of degree 2n — 1 or less and is not identically equal to zero because
Py (—2ky,) # 0. As a consequence, there exists p, € [1,2n — 1] such that Py, (ps) # 0
and , since Py, € Z[X], we have |Pj,,(p«)| > 1. Furthermore, since k, > 2Jj, m, We
deduce 2(2n — 1) < k,, and then by a straightforward estimate we get |Qp.m(px)| < 6"k3".
ngO>

2n

Consequently, we have ‘( e
* Case &€ = gKdV. Using the zero momentum condition (i.e. k-m = 0) and the exact

Nm kl

formula of 551V (¢) given by Theorem 2, we have
dngV . Z . 3 a% B 24 a% as 48 p? a?l
] (p _ k2) 7.‘.4(p2 _ k2)2 7T2(p2 _ kf)Q
B " omykj 3a3 24aday 5, 48a3 ,
(90) = —K(p) ]z; pi(p — ) where K(p) = p; + e + 3 P
K(p) Prm(p)

pZ Qk m
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where Py, Qr.m € Z[X] are the polynomials defined by

Qr,m(X :ﬁ % and Py (X Zm@kg H Q—ka)2.

J#L

We note that K is a polynomial of degree 2 with respect to p? and since by assumption
a3z # 0 or aq # 0, it vanishes at most twice. Furthermore, the polynomial P, ,,, is of degree
2n — 2 or less and is not identically equal to zero because Py ,, (k) # 0. As a consequence,
there exists p, € [1,2n + 1] such that K(p.) # 0 and Py, (px) # 0. A fortiori, since
Py € Z[X] we have | Py ,,(p«)| > 1. Finally, since by assumption 2(2n+1) < k;,, we have
|Qrmn (p4)] < k¥ and thus (dgff;j")p* > kA,

x Case € = gBO and m1 + --- + m, = 0. Using the zero momentum condition (i.e.
k-m = 0) and the exact formula of c%%o (q) given by Theorem 2, we have

108 a3 (p — kj)
(&%), = 5"y P 8 _ J 288 ay | .
Z ik *k‘j)k‘? ™ (p+2kj)(3p—2k‘j) 4

2
We denote 8 = 2;%8:34 and 7 28§ra4. Consequently, we have
(ngO) _ nPk,m(p) - /BQk,m(p)
k,m /P Dk,m (p)

where Py, Qk.m, Di,m € Z[X] are the polynomials defined by

Ppom (X H KX = k) | D meko(X — ko) [[(X +2k;)(3X — 2k;)
j=1 (=1 G0

Qrem (X HX+2k —2k) | XD mek ] R5(X — ky)
j=1 /=1 AL

Dy (X H/#X ki)(X 4 2k)(3X —2k;)

Note that Py, and Qk,m are of degree 3n or less and are not collinear because

Qr,m(k1) # 0= P (k1) and Py (=2k1) # 0 = Qpm(—2k1).
Furthermore, by a straightforward estimate, if p < k,, /2, we have

|Qrem ()| < |m[1 6™ k"™,

Ik ,m
Then we observe that, by assumption 6n < Ji, m < kn/2 and |m|; 6" k" < 2 o L.

Consequently, recalling that Py ,,, Q,m are of degree 3n or less and are not collinear, by
applying Lemma 4.18, we get p, € [1, Ji, ] such that

1
Blm(pe) = Qump)l 2 55— 51



50 JOACKIM BERNIER AND BENOIT GREBERT

’77’ 10
ko, O
T e TTo

In the following proposition, we make the estimates of Lemma 4.22 uniform with respect
to k and m.

Proposition 4.23. For all £ € {gBO,gKdV}, if o <1 we have
Wy € (0,1), P(V(m, k) € MTpuies [ALDE] 200 v 0 by 2P max(kp 2, 70)) > 1 -7,

ngO)

Consequently, we have |(

—_—

where MZ iy = MZImae excepted if £ = gBO and ag # 0 in which case, to get MZ i,
all the indices such that my + - - - + myagt # 0 have to be removed from MZ it .

Proof. We aim at bounding the probability of the complementary event by v > 0. Denoting
by Cps € (0,1) the constant in the estimate we aim at proving, by sub-additivity of P,
the probability of this complementary event is bounded by

(4,6), 20
(91) > (yA E) < Crnsoy by 2™ max (k2 0)).
(mzk)EMf)
In order to estimate the probability in the previous sum, We want to apply Lemma 4.22.

It can be done since Cy, 5,7, 0 € (0,1) we have Cyp, sov ky 20#m max (k25 v 0) < 1. Asa
consequence, each term of the sum (91) is smaller than

20#m 25 2s+v—3+2ag
max(klast )klast

Km,sailcm,sfyo' kl_

and

Ky 50~ \/Cm syo ki 20#m Inau((kzlast Y 0) k:f#m.

where K, s denotes the constant in Lemma 4.22.
As a consequence, since v < 9 and #m > 2, each probability in the sum (91) is smaller

than
VE s/ Coskiy ™ < YKy sn/ Comshey 27

Consequently, proceeding as in the proof Proposition 4.21, and choosing

o7 ml
Ch.s < min (Km}s - 7r /3’ 1) ,
we get
P(El(m, k) € MZu, ‘ ‘ < Cpmsovky 20sm max(klast 770)) <.

g

4.2.4. Proof of Proposition 4.12. Applying Proposition 4.21 and Proposition 4.23, with a
probability larger than 1 — Ay, u (see (85)) satisfies

V(m, k) € My |AS (D] 2o Ay by ™ (5,) >
and, recalling that /\Z_I\m/ult is defined in Proposition 4.23,
V(m, k) € M, [ASE (1) + ADE (D] 2o Ay 27 max (k2,5 ).

last

From now on we assume that u satisfies these 2 last estimates.
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If we consider only the case ky < N and |m|; < r and if N is large enough with respect
tor,s, (1 —v)"1, A7! then we have the estimates

(92) AL (D] = 8wy N7 ()™

and

(93) ALK (D) + AL (D] = 8¢y o N2 max(k, 2, 8C(v)y o).

From (92), since by (86) we have HuH2 < 4((v)o, we deduce directly that u € Z/l(4) £, °

(4, ) 5 s
Now, we aim at provmg that, if o, v, N, v satisfy some estimates then v € U SNa

x Case (m, k) € MImult. We deduce from (93) that
(4,6), —21|m 6), 6),
AN (D] 2 87 N2 max (ki 2, 80wy o) = IARE (D) = AL (1))

As a consequence, recalling that by (86) we have ||u||%, < 4¢(v)o and estimating this last

term by Lemma 4.9 (here &,

to r and s, we have

& = Klast, see Lemma 4.5), if N is large enough with respect

4,6) £ —
AN D] 2 29l N7 max(k2 2 ulf.) = N(k5, )7 ull ..
Consequently, if N5HU||?;S < yN~2I7 then

4,6) - £ —
ALOLD)] = 5 [Jull N2 max((-5, 1) 7%,y Jull%,.)-

x Case (m, k) € MZ e \./\/l/I\m/ult. Here by construction of MZ,;, we have € = gBO,
az # 0 and my + - -+ + myast # 0. Consequently, by applying Lemma 4.10 and using (92),
we have

4,6), 6 —5lm —2s
AL D) = 1ADED) — 1ADE (D] = 8wy NI (kF,) 72— Cyllull L, N
(86) _os
> 2|y N7 (kE )T — Ol N

where C, is a constant depending only on r. By applying Lemma 4.5 to control Hi m by
24tk — 1 < 2r — 1, if N is large enough with respect to r and s and if yN =" > |lu% N5,
we have

46 -2
AU > Jull?, N (kE,,) 7

)

Observing that if ((v)o (and so |lu|| ;. ) is small enough with respect to a constant depend-
ing only on r and s then

(K ) > (2r = 1) 7 > y]Jul%.,

we also have ]Am k)N( D>~ ||u||2 N=2Umh max (k28 [|ul /%)
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5. THE RATIONAL HAMILTONIANS AND THEIR PROPERTIES

In this section we construct and we give the principal properties of the classes of rational
Hamiltonians that we will use in section 6. As explained in the introduction, these classes
are strongly based on those defined in [BFG18|. In fact the general principle remains
the same: we build a class which contains all Hamiltonians generated by the iterative
resolutions of the homological equations

{¢.2i(M}y =R, and {x,Z{()+Z{n()} =R

and which allows a good control of the associated vector fields.

We warn the reader that we index some objects defined in Section 4 by elements of
ZrrN M instead of elements of MZ,,,1;. Nevertheless, as explained in Remark 2.1, it make
sense using the correspondance (18).

5.1. The rational Hamiltonians. The class of rational Hamiltonian is defined as a sum,
over a set of admissible indices (see Definition 5.1), of monomials u’ divided by a product
of small divisors (see Definition 5.3). In addition, we provide this somewhat complex
structure with a number of control functions, defined in Definition 5.2, which will allow us
to estimate these Hamiltonians in different context.

Definition 5.1 (Structure of the rational fractions). For £ € {gBO,gKdV} and r > 2,
I e #° if
I c (DR x | J@rrnREP x | J(@rr nREP x Nx C
p=0 p=0
satisfies the following conditions :
i) Finite complezity. T' is a finite set, i.e. #I' < co.
ii) Reality condition. I' enjoys the following symmetry

(4, hk,n,c)el’ = (—¢,—h,—k,n,¢) el

iii) Order r. For all (¢,h,k,n,c) € I' we have r = #{ — 2#h — 4#k.
iv) Consistency. For all (¢,h,k,n,c) € I" we have 0 < n < #h.
v) Finite expansion of the denominators. For all (¢,h,k,n,c) € ', we have

hkel)( |J Zrm)’

gEN  2<n<H#e

Definition 5.2 (Controls of the rational fractions). Being given I' € ¢ we introduce
the following controls

e Control of multiplicity.

cm .- ¢, hk,nc) el | £=k}.
T max #{( n,c) €T }

e Control of the degrees of the numerators.

C’(de) = L.
r (Chkene)er #
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Control of the distribution of the derivatives.

£ Ry
C(dl) = max (K;hl e nhlast)
r (thknoel |03 .. last]

Control of the old zero momenta.

k; h;
Clgom) = max max max | j’1|, max | j’1| .
(£hk,n,c)el j=L.dtk |l2| Tj=1,..#h |la]

Global control of the structure.

C’é‘m) = max cNI).

oce{m,de,di,om}

Control of the existing modes.

clem) ax(101], 1y 1] k1))
T (X, Jax, m x([61], hial, [kjal)
1<j<#k

Control of the amplitude.

(00) _

T max _|c|.

© (Lhkne)el

Definition 5.3 (Evaluations). Being given I' € £ and N > C’l(fm), I'y denotes the
formal rational fraction defined by

n —1 #h —1 4k —1
4),E 4,6),E 4,6),E
Py = > e [ []AMS0) IT 2% m [Ta%sm
(¢,h,k,n,c)el’ j=1 j=n-+1 j=1

Naturally, we also identify this formal rational fraction with the smooth function defined
on the subset of L? where the denominators do not vanish.

Remark 5.4. Note that, since the numerators of the rational Hamiltonian are only reso-
nant monomials, they commute with ZQS.

The following proposition establishes the stability of the class #¢ by Poisson bracket.

Proposition 5.5. Being givenri,ro > 2, T € %’j:f, T e %”,,f and N > max(Cﬁem), C’éﬁem)),
there exists = € S, verifying the identity

r1+r2
{Tn,Yn} =En

and satisfying the controls clem <N

(o0) 3 (00) ~(o0)
4 = < str str N
(94) Cz ScEmctn Cy 7 Cp
and
(95) cbstn) < oem 1.

= NCI(—\StT),CT
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Proof. The proof is similar to the proof of Lemma 6.6 in [BFG18|, for the reader’s conve-
nience we outline it again in this new framework. To compute the poisson bracket between
I'v and T, we only need to calculate the poisson brackets of the summands. Applying
the Leibniz’s rule we see that, up to combinatorial factors and finite linear combinations

depending only on C’l(ftr) and CS; ") four kind of terms appear depending on which part of
the Hamiltonians the Poisson bracket applies to:

Type I. The first type of terms we consider are those where the derivatives apply only
on the numerators. They are of the form (to simplify the presentation we omit the index
€ in all the proof)

cc’

e v
@) INCOR my (@6) DA (L) U U )
[[j-, Ay H] 1 An) v Hj:l H HJ 1 A v TS Ay

with (¢,h,k,n,c¢) € I' and (Z’,h’,k’,n’,c’) € Y. The product {uf,u’} is a finite linear
combination of terms of the form 2imju’ where j is an element of the multi-indices ¢,
—j is an element of the multi-indices ¢/ and ¢” is the ordered concatenation of £ and ¢
minus the indices j, —j. We focus on the worst” term of this linear combination: when
j = {1 = ¢}. The corresponding term reads

/!
u J4

" (4) Tr#h” (4,6) #k” (4,6)
H?:l Ah;/ Hj:n”Jrl Ah// H k//

(96)

where n” = n +n/, h” is the concatenation of h and h’, k” is the concatenation of k and
k', " = 2imjed. Tt remains to prove that (¢, h” k" n” ") satisfies conditions (ii)-(v) of
Definition 5.1. Conditions (ii) and (iv) are clearly satisfied. Condition (iii) holds true since
the new order is r1 +79 — 2 and #0" = #0+#0' — 2, #h! = #h + #h', #k" = #k + #k'.
Finally all the indices of h” and k” have a length between 2 and max(#£, #¢') < #{" so
(v) is also satisfied. So the term (96) is associated with an element of %, +,,—2 (through
the Definition 5.3) and satisfies the control of existing modes (they are all of index smaller
than N since they have all been created from index mode smaller than N). Further since
" = 2imjed and |j| < N the control of the amplitude announced in Proposition 5.5, i.e.
(94), is verified (actually, here, the factor N® could be replaced by N). It remains the
difficult part : to verify (95). The control of multiplicity and the control of the degrees of
the numerator is clear for (96). Concerning the control of the old zero momenta we have
by construction for all j =1,--- , #k”

‘k”1| < ( (om) + C om) )([0s] + |€/ ) < Q(Crom) + C(om))’€//|
<2ACE™ + Y )+ # = 3]
< 2™ + OF™ " + o) 8|
and thus, by doing the same thing with h instead of k, the new "old zero momenta" is

,Sclg‘.strzc’(fstr) 1.

"That term will turn out to be the worst when we want to control of the distribution of the derivatives,
see below. All the other cases are treated in the proof of Lemma 6.6 in [BFG18]
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We finish in beauty with the control of the distribution of the derivatives. We have

Iféf T i;st = |£3 e 'Elastgg o 'fiast’ or ’54 o ’Elastglz o ‘giast| or |£2 o 'flastal o 'E{ast‘

depending of the value of ¢ and ¢5: the first term correspond to the case min(|lz|, |¢5]) >
max(|l3],|¢4]) (and thus {¢], 65} = {62, 5}) the second one corresponds to |la] > €3] > |¢5]
(and thus {¢7, ¢4} = {ls, 63}) and the third one is symmetrical to the previous one. But in
the second case, using the zero momentum of ¢', we have |¢}| > |0)| = 7,2%1\61\ > %]53\

ro—1
thus we get ’
/! 1 1 / /
’63 last’ > min (Tl 2)‘53 toe ElastHES T 1ast|
.11 di) ~(d

2 min (717 g) [CEO O™ oy i) (- ring)?
.11 (di) ~(di)7—1 9
= Imin (71, g) [OF CT ] (K}hlll .. h{;a)

and the new coefficient of distribution of derivatives is controlled by max(rq, TQ)Cﬁdi)C'(rdi).

(4)

Type II. The second type of terms we consider are those where one Ahj appears in the

Poisson bracket. (The case where AS? appears in the Poisson bracket is treated similarly.)
J

They are of the form

ccut

a )
n— 46 n’ 4 ! 4 / 46
[T AR T 0 A0 TS A S T A T AR R TTE Ay AL

In view of the Definition 4.1, Remark 4.2 and Definition 4.3 the Poisson bracket {1 a0 ul'}

vanishes except if there exits ¢ € {1,---,#¢'} such that kp, < [4;] < |hy |, so we get
finitely many terms. Let us analyse one of this terms: let us assume kp, < EZO < |hyal,
which leads to the term

' ul’
HJ:l h;/ Hj:n//_j’_l h// H k//
where ¢” is the ordered concatenation of ¢ and ¢, n” = n +n’ + 1, h” is the con-

catenation of h, h,, and h’ (with h’, = h,), k” is the concatenation of k and k' and
d' = 2i7rﬁgocc’814 Aﬁ?.

We easily verify that ("0 X' n" ") satisfies conditions (ii)-(v) of Definition 5.1. So the
term (97) is in %, 1,,—2 and it remains to prove that it satisfies the controls announced
n (94) and (95).

Going back to the Definition 4.1 we see that |812,1 Aﬁ‘j] < N so we conclude that || <

N2|ed|. Now we focus on the control of distribution of derivatives. We have

E// Elast =AL3--- El&s‘ﬁgé T Eiastji



56 JOACKIM BERNIER AND BENOIT GREBERT
where j = min(¢y, £, ¢, ¢5) and i = min((¢1, 2, ¢, 45) \ 7). So we get

2
Uimg - b )" o) ot K
|£” giast| | ’
By construction, kp, < |€; | < [¢}] < ra|fs| and using the control of the old zero momenta

we know kp, < |hy,1| < C ]62\ so we have
A, < (r2 + O™ ) min((ta], |63).
But it is clear that min(|f2|?, [¢5]?) < ij thus we get

(Bmy - )iy i) (om)72
—r e < A o)

ast |

Type III. The third type of terms we consider are those where one A( ]2, appears in the

(4,6)

Poisson bracket (the case where A}, appears in the Poisson bracket is treated similarly).
J

They are of the form
cdut { 1
(4,6) #k (4 6) (4) Tr#h’ 4 6) #k/ (4,6)
H] 1 A H] =n—+2 hj,N szl H] 1 A H] n’+1 H Ahn_,_l,N

We recall that Aﬁtﬁ)l N= Agl) A(G) LN SO that

Jut'}

40 AS?H g o, N
(98) {W’ Z 2l 13U “ Z 2iml—t oyl
AhnH,N AhnH,N] [AhnH,N]

As explained in the previous paragraph, the terms in the first sum vanish except if there
exits i € {1,--- ,#'} such that xp, , < 6| < [hyq11]. Let us analyse one of this terms:
let us assume Ky, ,, < EZO < |hy41,1|, which leads to the term

1!
u y4

” (4) #h!' (4,6) #k” (4,6)
H?:l Ah;/ Hj:n”Jrl Ah// H k//

(99)

where ¢” is the ordered concatenation of £ and ¢, n” = n + n’, h” is the concatenation
of h, hyy1 and h' (with h, ., = hy, 1), k" is the concatenation of k and k' and ¢’ =

22'7740 cc o1, Agi?ﬂ. Clearly this term can be treated in the same way as terms of Type 2

dealt with in the previous paragraph.
Now we analyse the terms arising from the second sum in (98). In view of (75), we know
that Jj, . A( ) " NI) = Eévzl a;1l; is a linear form in the actions whose coefficients are reals
and bounded by < N2. This leads to a sum of terms of the form

' ut”

n” #h" (4,6) TT#K" A (4,6)
IT5= h” H] n''+41 Ah;!,N j=1 Ak;',N

(100)
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where ¢ is the ordered concatenation of ¢, ¢’ and (j,—7j), n” = n + n', h” is the concate-
nation of h and h’, k” is the concatenation of k, k' and h,, 1 and ¢’ = 2in/] cc'a;. In
particular we see that |¢”| < N3|cc|.

We easily verify that (¢, h"” k", n”, ") satisfies conditions (ii)-(v) of Definition 5.1. So the
term (97) is in %, 1,,—2 and it remains to prove that it satisfies the controls announced
n (95). We notice that since we conserved ¢ and ¢ and since we did not add new h the

control of distribution of derivatives of this new term is automatic. So (95) is satisfied.
)
the Poisson bracket and are treated essentially as terms of Type III except that to deal

Type IV. The second type of terms we consider are those where one Al(j;’ﬁ appears in

with the terms arising from the first sum in (98) we distribute the new denominator Al(:ll’%
evenly: A6 — A(46) .
Y Sk N b gm0V

O

In order to optimize the estimates of the different terms that we will encounter by
applying a Birkhoff procedure in the next section, we will need subclasses that follow
the evolution of the different indices of T' as closely as possible (they have been designed
applying the ideas presented in Remark 3.11).

Definition 5.6 (Sharp subclasses). Let %(4)’5, %(6)’5,%(4)’*’5, %(6)’*’6 be the subsets
of ¢ such that

o if ((,h,k,n,c) €T € Y then
#k =0 and #h =n < 2r —10.
o if ((,h,k,n,c) €T € "¢
#k =0 and #h=n<2r—-10+1.

o if({,hk,n,c)el e %(6)’5 then there exists B € N3 such that 81+ o +83 < r—7
and

then

n < 13r — 87+ [ #h —n < B #k < d4r — 28 + f33.

o if (1, h,k,n,c) € T € 79" then there exists 3 € N3 such that B+ 85+ 85 < r—7
and

n<13r—87+ /51 +3 #h —n < f3y #k < 4r — 28 + B3 + 2.
Remark 5.7. By definition, if » > 7, it is clear that %(4)’5 C %’?«(6)’5.

Remark 5.8. If T € %(6)’5 then the condition #ii) gives the following upper bound of
Clgde) by an affine function of r :

c\) < a7r — 314,

Definition 5.9 (Integrable rational fraction). .27¢ denotes the set of the integrable rational
fractions of order 7 : T' € &% if T' € ¢ and for all (£,h,k,n,c) € T we have Zrr(£) = (.
Furthermore, Z¢ = ¢ \ /¢ denotes the complementary of <7/ in J¢.
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Similarly, for n € {4,6}, we define Jzir(n)’g as the set of the integrable rational fractions of

order r in 4™ and 2™ its complementary in /2™,

Remark 5.10. If 7 is odd then &7 = () and ¢ = %ﬁn)’g

Pr0p051t10n 5.11. In Proposition 5.5, if I' € %’?«Sm)’*’g T e %(m)f with m = 4 or
=6 then = € %’;ﬁk 9

Proof. Here, we only have to count the denominators. We recall that, by construction
(see the proof of Proposition 5.5), the terms of = are constructed by distributing the
derivatives of the Poisson brackets of the summand of I'y and Y. Consequently, if
(" n" X" n" ") € = then there exist ({,h,k,n,c) € T, (¢,h', k', n’,¢) € T such that
following the types of the proof of Proposition 5.5 we have:

Type I. n' = n-f-n’7 h” = (h17~-whnvhlp'”7h;ﬂ7hn+17~-whlasmh;L/Jrlw' hiast) and
k” = (ki, ..., Kiast, Ki, ..., hi,). In that case we have

n"=n+n" and #h” =#h+ #h' and #k” = #k + #K'.
Type II. n" =n+n'+1,h" = (hy,...,h,,hy,... b, hohy g, g, by, by )

and k” = (ky,. .., Kis, K, ..., b/

last
ip < n'). In that case we have
0’ =n+n' 41 and #h" =#h+#h +1 and #k” = £k + #K.

Type III, first sum in (98) . n” =n+n/, h” and K’ are given by the same formula as
in Type IT but & = h;, (or h = h;j ) for some some ig > n (or ig > n'). In that case we
have

) where h = h;, (or h = hj ) for some some ig < n (or

n=n+n" and #h”" =#h+#h'+1 and #k” = #k + #K'.

Type III, second sum in (98) . n” = n+n', h'”is given by the same formula as in Type
land k" = (ki, ..., Kiast, K, - - -, hi g, h) where h = h;, (or h = hj ) for some some ig > n
(or 79 > n'). In that case we have

n"=n+n" and #h” =#h+#h' and #k" =#k+ #KkK +1.

Type IV. It produce the same kind of denominators as the type III.
Therefore in any case, there exists ﬁ € N? such that Bl + BQ + 53 <1 and

(101) " =n+n'+ 51, #h"—n" =#h—n+#h'—n'+ By, #K' = #k + #Kk' + 3.

Here we have to distinguish the case m = 4 and m = 6.
x Case m = 6. Since I' € e%’?«(f)’*’g and T € jﬁgﬁ)’g, we deduce of (101) that

0 < [13(ry +4) — 87+ 3+ B1] + [13ry — 87+ B + B
=13(r14+ro—2)—87T+ B+ 8, + 51— 6
(102) #h" —n" < B1 + B + B,
#K" < (4(ry +4) — 28+ B3+ 2) + (472 — 28 + B3) + B3
= 4(r 479 —2) — 28+ B3+ B+ P53 — 2
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where 81+ B2+ 83 < (r1 +4) — 7 and 3] + 5 + 85 < ro — 7. Setting " :B+B’+Eand
observing that

T+ B85+ 85 <[(r+4) =T +[ro =7 +1=(r1+r2—2) =7

— 6),€
we deduce of (102) that = € %ﬁglrk?

* Case m = 4. Since I' € %”7«(14)’*’5 and T € %24)’5, we know that #k = #k’ = #h —n =
#h' —n/ =0 and 51 = 1. Consequently, we deduce of (101) that #k” = #h" —n" =0
and

n’ <[(2r1 +2) =10+ 1]+ [2ry — 10] + 1 = 2(ry +ry — 2) — 10

= (4)75
and thus we have = € '%grl+rz—2'

g

Proposition 5.12. If x € ,%”T(ﬁ)’*’g, Z e %(4)’5 and = is the element of HE o associated

with® {xn, {xn,Z}} through Proposition 5.5 then Z € %g?_f

Proof. Since [(6+7)—2]+r—2 = 2r+2, it is clear that, by Proposition 5.5, Z € ¢ ,. The
only thing we really have to do is to count the number of denominators of {xn, {xn~, Z}}.

First, we recall that by definition of @76(4)’5, each term of Z has at most two denominators
of the form A®. Then it follows of the proof of Proposition 5.5 that the denominators
of {xn,Z} are’ some products of denominators of y times some of Z plus at most one
denominator of the form A® (indeed Z is integrable, so the derivative of the Poisson
bracket cannot be distributed on a denominator of xx).

Consequently, if En = {xn, Z} through the Proposition 5.5 and (¢,h,k,n,c) € Z then

n<[13(r+4)—87+ 8 £33/ +2+1=13r — 29+ gV

and
#h-n<pl k<4 +4)—28+ 80 +2

where ﬁ§1) + Bél) + B?()l) <r+4-"7.

Similarly, the denominator of Zx are some product of denominators xy times some
of Z=n plus at most one denominator of the form A(4),A£4’6) or Al(j’ﬁ). Consequently, if
(4,h,k,n,c) €  then

n < [13r — 29 + 8] 4 [13(r + 4) — 87+ B2 4 3] +
—13(2r +2) — 87+ 8" + 8 + 5,
(103)  #h-n< g+ 82 + 85,
4k < (A0r+4)—28+ 81 +2) + (A(r+4) — 28+ 8P +2) + 8
= 4(2r +2) — 284+ BV + 82 1 (¥,

8for some N whose the value is irrelevant here.
9proceeding as in the proof of 5.11 we could make this sentence become more rigorous.
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where 8 + 8% + 87 < r44—7 and g%+ 8% + 8 < 1. Setting B = gV + 5@ 4 5
and observing that

@4 aD 80 <oprya T r1=(2r+2) -7

(6),€

r+2 0

we deduce of (103) that E € 77

5.2. Control of the vector fields and Lie transforms. First, in the following propo-
sition, we control the L2-gradient of the rational fractions.

<1, N> Clgem) and

~

Proposition 5.13. Let u € Ui’]f,’p and I € J¢ be such that ||ul ;.
p> Clgde) then we have

_ _ 2 _
(104) IV (w)]| g Ssycl(_‘str) CIEOO)W pr—2p\r12p HuHrHsl
and
— _ 2 _
(105) ||dVFN(U)HKg(Hs) 55,C§S”) Cl(“oo)ﬁ p+r 2N14p ”uH;{sQ

Proof. We recall that I' v (u) is given by the definition 5.3. Naturally, I'y (u) is of the form
Ty(w)= Y cu fongme(d),
(¢,hk,n,c)el

where fyhknc(]) denotes the denominator. Note that since u € Lli’f\,,p with p > Clgde)

and that by (v) of definition 5.1, #h;, #k; < #¢ < Clgde), we have lower bounds on the
denominators.
First, we aim at controlling ||VI y(u)| ;.. Naturally, for & € N*, we have

(VN (u))x = Z ¢ Ou_, (U frngme(l))

(¢,h,k,n,c)el

= Z c (6U7kug)f€,h,k,n,c(1) + ug Z Cugalkfé,h,k,n,c(l) = y](gl) + y](f)'
(¢,h,k,n,c)er’ (¢,h,k,n,c)el’

We are going to control ||y | . for j € {1,2}.
x Control of Hy(Q)HHS. Clearly, we have ||y(2)HHS < S||ul| 75 where

(106) S := sup Z Cuéalkfé,h,k,n,c(j) .
REN™ (4 hkn,c)eT

Thus, we just have to establish an upper bound on S. By definition of fyp, k n,c, we have

4),€ 4.6),E 4,6),E
W) 0, AN () E 0, AL ()

Or, fengne) = 900,
;N

1),€ 1,6).
Jenen.e(T) j=1 Afy) )R Aﬁj,}v ) =

(4,6),€

So, we have to control each one of the terms in these sums (the terms involving Akj N

and Ai”%’g are treated in the same way).
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(4),€
e Upper bound for 0p, Ay (I). We have
4.
05, AL (D] = 167, )kl S, Il Spe OF™ Spwa N

where 6¢ is defined in Definition 4.1.

e Upper bound for 81kA1((4_’%5(I). Since A(A‘_’G)’S(I) = Al(i)’g(l)+Al((6)f,(I) , it remains
to control Jr, Ag),}v( ). Using the explicit decomposition of A( )’ v (L) given by (81),
we clearly have

6) 4 4
05, AT (D] Sy Nl S o N
I

e Lower bound for Aﬁ)’g(l). As noticed at the beginning of the proof, since u €

L{j i » (see definition 4.6) we have lower bounds on the denominators :

4).€ —5#h; £ -
ADED)] = AN a2, (55,7
However, as explained in Remark 4.4, we have /@ﬁj < |h;1]. Consequently, we have

ke < Céom)wgl. So, since ¢ € D, we have
J

_ (de) _ _
2 otom YN 60|

(4).€
AL 2,
e Lower bound for Al(é’gz,’g (I). The same analysis as for the previous term leads to

4,6),E (de) _ _
ALREDI 2, g TN il ] el

Combining the previous estimates gives

8ka£hknc(j) 1 ar210We) —

,n,K,n, < ir -1n F+4£S€$U~2.

fengene() | 7508 7 1o lell

Then, we have to establish an upper bound on fy h k(). Since u € Z/{ (see definition

4.6) we control each factor of the form |A(4 :6), ( )| by YN~ 210" )%, (k5 ) 25 each factor
of the form | ALY (I)| by yN - 5CE |y 2 ,(§,)7% and each factor of the form [A{"Y (1))
by 72N ~210(" HuH‘iIs This leads naturally to the estimate

N721c§de) 72#k7#h(/€8 £ )25,

|f£ah,k7n70(‘[)‘ Ss’cl(_f‘tr) ( 7”“‘”2 s) h; - ﬂhlast

Using the condition (iii) of the definition 5.1 and the estimate associated with Cﬁdi) this
leads to

_o10) _
(107) [fenineD S, pem (N 20 %)

At |
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(em)

Consequently, recalling that C."’ < N and applying the Young inequality, we have

S Suotn O30 (ua Bl s DN )

(4,hk,n,c)el’
<ot NS (g P V2 2,) -
C(str) uél 1 "'u‘glast last Yw s
(¢,hk,n,c)el
(de)
C(de)+4 (m) ~(00) Cr _210(:16) 2 N—m=T_1q M s—1
S, et NOT 0T Cp Y (NTHE Sl > e liel
m=r+2 el =0 j=1
(de) @ (de)
de de m—r __
Sectn N0 ST (N )T ull,
m=r+2
—C*) 42 cldeyz -2
< C(str C(OO \/> e N12( ) HU‘TI-_I.S °

de) e
Finally, we deduce that |[y®|| ;. < S|ul|zs < Ssclt C’ f_ +r=2 12 (¢ ))2H s L
x Control of Hy(1)||H5. Using the estimate (107) to control |frnknc()], we have

_ (de)
GO S o O 3w N ) e
(¢,hk,n,c)el
C{ﬂde) »
St OO ST(NRET )27 Y 0wl - sl
m=r LeMmND
e |<N
Consequently, applying a triangle inequality for || - || 5., we have
Cﬁ‘de) .
—210\%¢ _m-r
(108 50 2, o OFF D7 (V0 3,075 )
m=r

where

2™ = > 10uull[ls ]

e My ND
[e1|<N

Naturally, we aim at controlling ||z("™)||;2. We observe that if —k is not one of the coordi-
nates of ¢ then 8u_kue = 0. Consequently, we have

m
ERED DD DERCINTAL T | (et
j=14eMmND i
i
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Then, we observe that |l5... 0n||k| < (m — 1)[¢1...4y|/]¢;]. Indeed, if j # 1, it is clear
since ¢ € D whereas if j = 1 we use that £ € M,,. As a consequence, we have

2 S Y TG S N ST [ sl

Lyl 1=k i#] Lyl 1=k i#]
V35,165 |<N

Thus, using the Young inequality leads to
122 S Nl

It follows of (108) that

Cl(_‘de)
_ _ (de) _m=r —
Iy e S, e CF 30 N NTHE el )
r m=r
_~(de) | (de) _
53 C(St'r) Clg‘m)ﬁ CF tr 2N12(CF6 )QHU‘T[-—.IS]-‘
“r

These estimates on [[y(V|| ;. and ||y@| ;7. give the estimate (104) on ||V n(w)|| -
We don’t detail the proof of the estimate (105). Indeed, the number of terms appearing
naturally in the expression of dVI'y(u) is huge, however, it is clear that all of them can
be controlled as we have estimated the terms of [[VI'n(u)|| ;.. O

Let us consider the particular case of integrable vector fields.

Proposition 5.14. Ifu € Llf”]f,w and Z € f are such that ||ul ze <1, N > C(Zem) and
p> C(Zde) then we have

(109) sup ko Zn(1)] S, o O VAP 2N 2,
keN* 5,0z He

Proof. Since N > C(Zem), Zn only depends on the variables Iy,...,Ix. Thus, if K > N

then 01, Zn(I) = 0. Consequently, the supremum in (109) only holds on k € [1, N] and it

is enough to establish upper bounds on |07, Zn ()| uniformly with respect to k.
We recall that Zy(u) is given by the definition 5.3. Naturally, Zxy(u) is of the form

Znw) = > cu fonpme(D),
(¢,hk,n,c)eZ

where fyhknc(f) denotes the denominator. Note that the sum holds on indices ¢ such
that Zrr ¢ = () because Z is integrable (i.e. Z € /¢ see Definition 5.9) and thus u’ is a
polynomial in the actions.

Naturally, for £ € N*, we have

OnZvw)e= > c@Onu)fonxmed)+ > cudr fongmel) =: Ok + Sk.
(¢,hk,n,c)er (¢,h,k,n,c)er

We note that we have already estimated |Sy| uniformly with respect to k in the proof of
Proposition 5.13 (see the definition of S in (106)). Consequently, we know that

_ _ 2 _
ksu’\ll) |Sk’ 58 C(ZSW C(Zoo)ﬁ p+r 2N12p HUHTHSZ
eN* ’
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Therefore, we just have to control ©4. Using the upper bound (107) on fyhkn.c(f) and
realizing estimates very similar to the ones of Proposition 5.13, we have

_910de) _m=r
04 Sy o0m C57 Y )Y gl

olde) LEM MDD
Tg'r:zn%velzl ‘qui?v@
11>
(de) (m—1)/2
Sooem 5 R G T Ik
7 r§m§C<Zde> k€D(m_1y/2 J=1
m even
—21044) 9 \—m=r 1
Sectn CF7 D0 (N9 qullf) =" ull:
rngC(Zde)
m even

—p+r—2 7712 p? -2
Scpm o N e 11 e
O
Now, we focus on the control of the Lie transforms associated with rational Hamiltonians.

Proposition 5.15. Letr >3, s > 1,1 € ¢, p > Clgde), N 2,5 1 satisfying N > Cﬁem).
If g9 > 0 satisfies
(110) 56_11/4 < (Cl(ﬂoo))—l\ﬁpfrJrZN—l—lépo and 46(1)/4 < 942 N2

NS,ClQStT)
the flow of the Hamiltonian system

(111) Ou = 0, VI N (u),

denoted by ®t v defines, for 0 <t <1, a family of symplectic maps from Z/lf’fvpﬁBs(O, €0)

to H®. Furthermore, for u € Z/Lf’]‘o{,p N Bs(0,e9) and t € (0,1), we have the estimates

7/4
s

19T (w) = ull e < flully, and [[(APE (w) ™ ] ey < 2-

Proof. A priori, the system (111) looks like a partial differential equation. However, the
Hamiltonian I'y only involves modes associated with indices smaller than N. Thus, (111)
is just an ordinary differential equation associated with a smooth vector field (since it is
a rational fraction). Consequently, by the Cauchy-Lipschitz theorem, the flow of (111)
is obviously locally well defined and is a smooth function. Furthermore, since (111) is
a Hamiltonian system, its flow is naturally symplectic. The non obvious fact is that if
welss n Bg(0,0) then ®f (u) is well defined until ¢ = 1. In other words, we have to

7,Nsp
prove that the solution of (111) cannot explose if ¢ € (0, 1).

We are going to prove that if u € I/{Af’fvp N Bs(0,e0) and ¢y € (0,1) are such that for
87
t € (0,tp), @%N(u) c Z/[V/;’ij and ||<I>tFN(u)||H5 < 3|lul| g then for ¢ € (0,tp), @%N(u) €

Uf/";’N’p and [|®F (u)|l s < 2||lull .. By this bootstrap argument, we will have naturally

. E,s
that ®f (u) is well defined for ¢ € (0,1), ® (u) € Uy N, and 10F (W)l s < 2ull s
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We assume that to € (0,1) is such that for t € (0,t0), |Pf, (u)llys < 3llully. and

@%N( u) € Ui/g N Applying the Proposition 5.13, we deduce that for t € (0, tg)

19:@, (W75 S, e CPN TN

Consequently, we have
(110
2 7/4
(112) 12Ty () —ullgs <, o smC S ATPTTENIR 1% HUII/

By applying the triangle inequality, we deduce that if g <1 then H<I>%N(u)HHg < 2wl g
Furthermore, if £ € N* we have
[1(@F (w)el® = Juel?| 2572 < | @F , (u) =l e (19T, (@) ] 7 + Nl )

11/4

10
< afu 14 22N 2

Consequently, by applying the Proposition 4.7 and using that u € ng N,pr We deduce that

S
Flnally, we have to prove that d@}N (u) is invertible and to estimate its norm. Differen-
tiating (111), we have
(113) 9 d®r (u) = 9,dVI N (P (u))dPr, (u).
However, since N > Cﬁem), I'y only depends on modes with indices smaller than N.
Consequently, in (113), 9, can be replaced by 15, |<n0:. Consequently, by applying the
estimate on dVT'n(®f  (u)) given by Proposition 5.13, we deduce that

(114) ||8td<I>tFN(u)||$(HS) 5p,s,0§“’“) APt (u)]| & Hs)C f—p—i-r 2 NP |, I

(110)
< log(4/3)|d®p ()l o f7-)-

Thus, the Gronwall Lemma proves that

vt e (07 1)7 qu)ff‘N (U)HJZ(HS) S

OJM-&

As a consequence, we deduce of (114) that

4 4 4
0B, () — 1 ey = 9P, () — AR ()] g1y < 5 T08(5) < 5 <

Consequently, since Z(H?) is a Banach space, d<I>tFN (u) is invertible and the norm of its
invert is smaller than or equal to 2. O

N

6. THE RATIONAL NORMAL FORM

This section is devoted to the proof of the following theorem which is our main normal
form result. In this section, we set

(115) pr =47r — 314
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the constant which ensures that if » > 7 and I' € %(6)’8 ) %(4)’8 then Cl(ﬂde) < pr (see
Remark 5.8).

Theorem 3 (Rational normal form). Being given £ € {gKdV,gBO}, r > 7, s > 1,
NZrsl,vSrs 1 and g9 Sps 1 satisfying

(116) go < 43095 and g < N710°7

there exist four symplectic maps @ 76 preserving the L? norm and making the

following diagram commutative
Va
TV X@)
id;

VIC—HSH/:,)

7 YS)

‘/0( idHS Hs
where Vy, = Bs(0,2%) N Z/{ngw N3 po and close to the identity
(117) Vo € {0,...,3},Vu € Vo, |77 (u) — ul . < [luf/®

such that He o 73) 0 72) writes

He o 73 62 — Zf + fo + Z Z](VTZ) + R(es) o £(2) 4 Rlrat)
m=6
where Z§ is given by (12), Z& is given by (22) and (23), Res) = Rs>N) L RUsn3) 4 R(or)
is the sum of the remainder terms of the resonant normal form (see Theorem 2), R s
of order r + 1, i.e.

(118) Y € V2’ ”8$VR(rat) (U)HHS ,Ss,r N105T27_23T+133HUHT~ .

and'® Z©) ¢ 42%6(4)’5, zZm) ¢ 5277&6)’5, for m > 7, are some integrable Hamiltonians such
that

(em) 3 (str) (c0) 321
Ym 2 6, CZ(m) S N ) CZ(m) Sm 1? Cz(m) Sm N m'

Furthermore, 72 preserves the high modes, i.e.
(119) Vu € Vo, V0 € Z%, €] > N3 = (7(u))e = ug
and its differential is invertible and satisfies the estimate

Yu € Vs, ||(d7-(2)(u))_1||$(gs) S

~T

1.

Remark 6.1. The assumption r > 7 means that r has to be larger than a universal
constant that we do not try to determine. This assumption is only useful to ensure that if
(116) is satisfied then many conditions of the kind |[u| 7. Sps NP are clearly satisfied
(because it is enough to consider the dominant exponent with respect to r).

100f course Z™) | as well as R and R depend on & but the notations are already heavy enough!
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We are going to prove this Theorem in three steps. The first one, essentially realized
in the Theorem 2 consists in constructing the maps 7(©) and 73 to remove all the non-
resonant monomials of order less than r + 1. Then, we will remove the non integrable
resonant monomials of order 5 and 6 by computing some averages with respect to the
dynamics of Zf . Finally, we will remove all the resonant non integrable terms of order less
than r 4+ 1 by computing some averages with respect to the dynamics of Zf + Z§N3~

The property (119) is a direct byproduct of the following proof. Indeed, 7 is designed
as the composition of Hamiltonian flows with Hamiltonians depending on modes of indices
smaller than N3. Consequently, in the proof, we do not pay attention to (119).

Similarly, in the proof it is clear that the maps 79, ... 7() preserve the L? norm.
Indeed, they are constructed by composition of Hamiltonian flows that preserve the L?
norms because the Hamiltonians are polynomials or rational fractions whose numerators

are of the form u* with k € M.

6.1. The resonant normal form. To prove Theorem 3, the first step consist in putting
the system in resonant normal form which has been done in Theorem 2. Provided that
g0 Srs N3 is small enough (which is ensured by the assumption (116)), by applying
Theorem 2, we get symplectic maps 7(%) : B,(0,4g0) — B, (0,8¢0) and 73 : B,(0,8¢0) —
H?* (denoted 73 in Theorem 2) such that 73) o 7(0) = id ;. and

-Hg © 7(3) - ZS: + Zf + Zg,SN3 + ReS§N3 + R(#3>N) + R(I>N3) + R(OT)

where the different terms are precisely described in the statement of the Theorem 2. Fur-
thermore, by (21), we know that the maps 7 76) are closed to the identity. Provided
that Eg/ ® <, N3 (which is ensured by the assumption (116)), we deduce that they satisfy
(117).

Finally, we have to prove that if 7(9) is restricted to V; then its takes its values in V;. On
the one hand, since g9 < 1, we deduce of (117) that for u € Vg, |7 (w)|| 4o < 2[|ull s <
2ep. On the over hand, provided that 5(2)N3 Sros y2N—322p2r - (which is ensured by the

assumption (116)), we deduce of Proposition 4.7 that 70 (u) € U5}37N37p2r for u € Vj.

Consequently, 79 maps V; into V.

6.2. The two first rational steps: resolution of the quintic and sextic terms. Let
us decompose Res<pys + Zg <3 as a sum of homogeneous polynomials

ReSSNs—i—ZéSNg:P5—|—P6_|_...+pr

where, as stated in Theorem 2, the polynomials P,,, m > 5, are of the form

(120) Po(w)= Y ™k with || < NP
k€EREND
k1| <N3

In this subsection and the following, we aim at removing these polynomials.
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6.2.1. Elimination of the quintic term. Following the strategy introduced in [BFG18], to

remove Ps, we consider the solution x5 of the homological equation {xs, Z{} = —Ps that
is
(121)
W= ¥ o - > o
X5 u) = Ck - c - z = Ck : (4)75
keREND 227T(k718[k1 Zi(I)+ -+ k:551k5 Z5 (1)) keREND 2 Al
|k1|<N? k1 |<N3

Note that x5 is a smooth function well defined on Vi 4 (we choose 11/4, but any value

strictly less than three would work). Furthermore, naturally, there exists ré e %(4)’*’5
such that

FE\% = x5 with CIE(5)) N, C’l(jgb) < N3, Cl(jg) S, C((5)) =5.

Provided that 63_11/4 s N7142(N3)~1-1425 and 6(1)/ < 42N—3225 (which is ensured
by the assumption (116)), Proposition 5.15 (applied with » = 3, p = 5) proves that the
Hamiltonian flows generated by +xs are well defined on V54 for ¢ € (0,1) and that these
flows are closed to the identity

7/4
Wt € (0,1),Yu € Viya, @y, (w) = ull g < Jlull 2

and [[(d®%, ()" ey < 2
Provided that eg/ 4 < 42N =32202 (which is ensured by the assumption (116)), Proposi-

tion 4.7 proves that, for ¢t € (0, 1), @;5 maps Vjy/4 in V3 and @EXS maps Vi in V4.
Recalling that Z§ commutes with x5 (see Remark 5.4), we have that on V;; /4

T
Heor® 0@, — 25 4 250l + 3 Pyol, + RO 0l
where R(®) = R(s>N) 4 RUsn3) 4 R(7) (see Theorem 2) is the sum of the remainder

terms of the resonant normal form. Then realizing a Taylor expansion of P, o @;5 with
respect to ¢, we have on Vi 4

Pnodl =P, + Z —adj TS iy oty
m X5 — T m 0 (T—m)! X5 m X5
and recalling that by construction {xs, Z} = —Ps, we have
=1 (11—t
E gl _ 1 — 4 t
Z5 0 dL = 7% P5—Zj—ad§<5 P — / 74)' ad’ *Ps 0 @ dt.
7j=2
Consequently, we have
T
(122) Heor®odl =25 +2{ +> QW+ RU® + R 0 3!
m=>6

where we have set

1 1
5) _ m—>5
(123) QY = Y p—ladisP sy 4)!adX5 P;
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and

1 t r—m (1 t)r 4
T(lt r—m+1 t r—4 t
E / d P, o <I> dt — /0 7(7“ 7y d P5 o <I>X5 dt.

Since P, can be identified with a rational fraction Tm) e ff#)’g such that

Py =T and O3 < Nom, ) < N2 o) <1, CLE) = m,

by applying Proposition 5.5 and Proposition 5.11, for all m > 6 there exists 2(")5 ¢ %n(f)’g
such that

(124) QY ==° with L), S N, Cl) < N3, CLT) S 1

Finally, we refer the reader to the subsection 8.2 of the Appendix for the control of the
remainder terms which leads to'!

(125) HR(rat),E)HHS SS,T N321(r+1)72049ﬁ—pr+1+r—1N12(pT_H)Q HuH’[’{g
6.2.2. Elimination of the sextic term. Now, we aim at removing the non-integrable part of

Qém) in the expansion (122) of Hg o 73 o P} ..

First, let us detail precisely the structure of Qém). By definition of Qém) (see (123)) and
Py it writes

m 1
é ):P6+§{X5ap5}-

By a direct but tedious calculation, {xs, P5} writes on the form

k h, ¢
U uu
126 Pl = E E Cop———s + E dop——5—
( ) {X57 5} e,kA(4)’5 £7h(A(4)’5)2
keREND CERE ‘ £heREND ¢
[k1|<N3 (€5)1<j<aEssa(k) |h1|>k5
|65 |<N?3 hl|e1|<N®

where ss,, (k) denotes the sub-sequences of k of length n and the coefficient ¢y, dy ), are
such that |cpp|, |dep| S N33TF5 = N39 The relation |hi| > &§ below could seem
strange. Nevertheless, it comes from the computation of a Poisson bracket on the kind
{ul (A (4)’5)_1} Indeed, recalling that by definition of &, Ag4),g is a linear function of

actions of indices larger than or equal to x¢, if we had |h1| < k¥ then u” and ( ) 1
would commute.
In order to remove the non integrable part of Qém), we consider one solution xg of the

homological equation {xs, Z5 } = —HNIQém) where IIN7 denotes the projection on the non
integrable part, that is

1 We could get a better estimate here, since the orders are smaller than 5, but it wouldn’t do any good
in the end.
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k

— (6 ) u
X6 = Y ¢ (4)5 + > 2in ADE ADE gCLk
kEREND kEREND CeRE TIrrk
k1| <N3 |’€1|<N3 («; )1<J<4€SS4(/<3)
Irr k40 Irr k%0 [£5|<N3

h, £

u"u
+ Y den
h 4),€ (4),€
LheREND 2im Aer(Zh)(Aé )

|h1‘2fil§
Zrr(L,h)#0
|ha|,le1|<N3

where the coefficients ng) are those of Ps (see (120)) . Note that we have used that by
Lemma 3.12 all resonant term of order 4 are integrable and thus if k € Rg and Zrrk # ()
then k is irreducible. By construction, it is clear that x¢ is a smooth function well defined

on Vs/9 (since 11/4 > 5/2). Furthermore, naturally, there exists re ¢ %(4)’*’5 such that
(6) (c0) 39 ~v(em) 3 (de) _
Iys =x6 with Cprg SN, CLg’ < N°, Che = 10.
. . o N (str)
Nevertheless, contrary to the pI‘eV(IO;IS case, it is not completely obvious that Cp(@)
. di
Indeed, we have to explain why CF(G)
First, note that this fact is obvious for the part of I'® coming from the resolution
of Ps. Then, we consider the part associated with u*/ (A(;T)TiA( )5). Recalling that

by Lemma 3.12 Zrrk € ss¢(k), we have by Lemma 4.5 that &, , < |ke|. Further-
more, since (¢;)1<j<4 € ss4(k), by Lemma 4.5, we have x§ < |ka|. Consequently, we

have (K%, 1.58)% < |ks] ... |ke|. Finally, we have to consider the terms associated with
u/( (Zt)fh 0 (Ag4)’8)2). We have to consider to cases.

e Case |hg| > |¢1]. We have to estimate

o (“5)4("5%«“&@)2
VG sl b

Recalling that by Lemma 4.5, x§ < |¢5], we have q < (/izwwh 2/ (|43]|h3 . . . hs)).
Since both h and ¢ are irreducible and since by Lemma 3.12, #Zrr(¢,h) > 6, we
have

Koty S 1Trr( h)ase| < min(|hs], [63]).

Consequently, we have q < 1.
e Case |hg| < |¢1]. Denoting by p1, po the two largest number among |k1|, k2|, |¢1], [¢2],
we have to estimate

. MIMZ("@?)LL(%%T(&M)Z
V= e G |
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However, since k, ¢ € Ms, we have ug < |[¢1] =p1 < |¢2]. Consequently, we have

(Hf)él(ﬁgrr(&h))z
LRV T

Here it is important to recall that by assumption we have mf < |hq] (see the remark

just below (126)). Consequently, since, as previously, we also have /{f < 45| and
H%,T(e’h) < |hs| < Jhal, we get g S 1.

Naturally, by definition of xg and Z¢

G <ns (see Theorem 2), xg is a solution of the

homological equation
1
(127) Ps+ 5{xs, Ps} + {xs 25} = Z o + Zii e = Z)

where Z(0), ZE ¢ Aé4),£ are integrable Hamiltonians such that
VI e {20,z o) < NP, ol < N3, o) = 10,

Provided that 53_11/4 g N73944(N3) 71714100 apg 53/4 < 292N 32210 (which is en-

sured by the assumption (116)), Proposition 5.15 (applied with r = 4 and p = C’ﬁde) =10)
proves that the Hamiltonian flows generated by +xs are well defined on Vy/5 and that
these flows are closed to the identity

7/4
Wt € (0,1),Yu € Vs, [y, (w) — ullge < flull¥/

s and ||(dq>5cxa(u))_1”g(gs) <2

Provided that eg/ 1 < A2N-32202 (which is ensured by the assumption (116)), Proposi-
tion 4.7 proves that, for ¢ € (0,1), ®, maps V5,5 in V4,4 and ®*  maps Vs, in V)o.

Recalling that the expansion of Hg o 7®3) o @;5 is given by (122) and that Zzg commutes
with x5 (see Remark 5.4), we have that on Vj

-
Heo7® o CI)i<5 ) @if; = Zzg + sz °© (D)lce + Z QS;) °© (I)>1<5 + RO o (I)>1<5 © (I)>1<6'
m=6

Then, realizing a Taylor expansion of P,, o @;5 with respect to ¢, we have on Vs /o

) opl — OF) 1 oy (A= 6)
Q@odl, = Q9+ Y —adl Q9+ —ad)( QP odt  dt
1<5<(r—m)/2 ’ 0 L(T N m)/QJ

and recalling that by construction {xg, Z$} = —Qé5) + Z](\?g (see (127)), we have

N3 N3
1<i<(r—4)/2 7"

Pl e e 6
+/o (2] o 2 (P = Q57) 0 2 dt.

1
Ziowl =zf - QP+ Z0+ Y —adl (20 - Q)

Consequently, we have

.
(128)  Heor®odl =25+ 2§ + 20+ QY + RIS L RO 09! ol

m=7
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where we have set

1 1, e
2= B el - T 2

2p+q=m

and

(1-— t
R(rat) 6 R(rat ° (I)l + /
Z /2]!
(1 — 22 e 6 AG) - a
+/0 a2 o) o @

Since Q) can be 1dent1ﬁed with a rational fraction 2 € s£LY€ (see (124)) and that
4).€

r—m)/2|4+1 (5
admm/2IH Q) o 9! - dt

X6

m)/2]
!
L

similarly Z](\?g Q6 can be identify with a rational fraction in %( satisfying the same

bounds as Z(6)5 (rigorously it is nothing but a subset of = =(6), %), by applying Proposition
5.5 and Proposition 5.11, for all m > 7, there exists Z(™):6 ¢ %”ng )€ such that

QW == with %), S NH, Ol

m

m o w3 o)

zme =N Cginye Sm L

Finally, we refer the reader to the subsection 8.2 of the Appendix for the control of the
remainder terms which leads to have same control on R("%):6 that we had for R (see
(125)).

6.3. The high order rational steps. Now we aim at removing the non integrable res-
onant terms of order higher than 7. We are going to proceed by induction on v € [7,7]

to prove that there exist 2 symplectic maps 7 7(2)* making the following diagram to
commute
idgs
V§+;c—7 4>V§_1:—7 s
2 2r-7 2 2r-=-7
7.(1),t1\ 7_(2) T
1ng

close to the identity
(130) Vo € {1,2}, |7 w) —ull g S llull L}

such that Hg o 763 o 72 writes

(131) Heor® o7 ¥(y) = 2§ +25+sz>+ Z Tm)r L Res) o () | Rlrat)e
m=>6 m=t+1

where the integrable Hamiltonians Z (”,‘) are those described in Theorem 2 (and Z](\?g =
Zg s T+ Zhr ¢ 15 given by (127)) satisfying for m > 8, C( o)< NB2Im=2079  R(rat)e

73
satisfies the same estimate (125) as R("*):5 the norm of the invert of the differential of

7(2:* is controlled by t and, for vt +1 < m < r, YM)r—1 ¢ %(6)’5 satisfies
(132) C(OO) N321m 2079 C(em) < N3 C(StT) < 1.

T(m),t—1 Nm Y(m),e—1 — Y(m),e—=1 ~MM
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Note that the case t = 6 have been proven in the previous subsection. Consequently,
here, we only focus on proving that if this normal form result holds at an index v — 1 with

t < 7 then it also holds at the index t.
In order to remove the non-integrable part of Tf\?gt_Q, we are going to proceed in 3 steps.

In the two first steps, we solve some homological equations associated with Zf + Zﬁg <N3-

However, due to the Hamiltonian Z it makes appear a new non-integrable term of

6.N3>
order t. Therefore, a priori, these normal form steps seem useless. Neverthleless, actually,
at each step, the terms of order v become smoother (in some unusual sense). Then using
this additional smoothness, we convert this term of order t in a term of order t + 2 just by
transferring a denominator associated with a k (i.e. of order 4) to a denominator associated
with a h (i.e. of order 2 but with some derivatives to distribute). We call this new step,
the transmutation step.

Let Z(V) ¢ &%(6)’5 and 'V e 9?56)’5 denote respectively the integrable and non integrable
part of T2 e

70 1 = rE)r-2

6.3.1. A first smoothing transformation. Let x():1 € %( ) € be the solution of the homo-
logical equation

(133) OO 28 + ZE e} + TR =0

implicitly defined by

I
(134) At = Y e feh(kn)c( )
(¢, hk,n,c)er® QWAITM N3 (I)

where fi hxn,c(I) denotes the denominator of rt )3 naturally associated with (¢, h, k,n, c)e r®

(see Definition 5.3). Of course x(*)! satisfies the same estimates as YT(® 2 (ie. (132)).

Note that, here, the denominator A(I f)g 3 (I) is considered as a term of order 4 (i.e. a k).

Provided that et 4-11/4 ~ <ex N™ 321t+2079ﬂpt—t+4+2(N3)—1—14~pt and 5(1)/4 < ,YQN—3~22~pt
(which is ensured by the assumption (116)), Proposition 5.15 proves that the Hamiltonian
(¥),1

are well defined on Vs _1.—75 and that these flows are close to
2 2 r—7

flows generated by +x 3
the identity

7/4 ¢ -1
vt € (0,1),Vu € Vs _1ets, ||<I>jE (:)1( ) —ullgs < ||u||HS, ||(d<I>iX§;)3’l(u)) ||$(Hs) < 2.

Provided that ¢ 3/4 <, y2N3222r (Wthh is ensured by the assumption (116)) Propo-
sition 4.7 proves that, for t € (0,1), <I> Lo maps V3+1 = in V3+1 c—7.5 and ®? (1 Maps
37 X

Nd 2 r—7 N3
Vgilrfrs in Vgi t—8 .

1
272 =7 27 2r—7
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Denoting 7(2)+=1/2 = 7(2)r=1op! (o1 and recalling that the expansion of He or®or(2)r-1
X

N3
is given by (131), we have that on Vs _ 175
2 2 r—7

HgOT(S)OT()t 1/2 Zg (Z4+Z6<N3)O¢(t)l_‘_ZGNSO@(t)I_‘_ZZN?’ O@l(t)l

m=8

+ I‘(t)3 o (I)l(:) L+ Z T m) t—2 (I)l(r),l + R(res) o 7_(2),‘(—1/2 + R(rat),t—l ° (I)l(r) .
m=t+1 X X

Recalling that ng,)gl solves the homological equation (133) and realizing, as previously, a

Taylor expansions of some of these terms, we get

(135) HgOT(3)oT( )r—1/2 _ Z5+Z4 + ZZN3 +{XN3 7Z£YN3}+ Z Q(r 1/2)
m=6 n=t+1
+ R(res) o ,7_(2),1‘—1/2 + R(rat),t—l/?

where Q *=1/2) is the Hamiltonian of order n given by!'?

1 1 1
-1/2) _ (m) (m) f
R D S D Y s
j(t—6)+m=n N j(t—6)+m=n N3 j(t—6)+6=n N
8<m<r t+1<m<r
1 1
+ S d] . (1‘)
i %;t_n <J! (j+ 1)!) X R

and R(86):x=1/2 ig given by

T‘

J

(1—t)l )
(136) RO=0-1/2 — Rlathe—1o gl Z / Folzm @ o1 dt
N

1_-[: t6J 1+r77n . 1 1_tLﬁJ
+ Z / =y ad <t>L,f76 T%)’t Zo®! <r>,1dt+/ %ad (0.1 ZérNﬁo‘I’t (r)ldt
X N3 X N3 0 LEJ

m=t+1 Xn3
1
+ .
o | L=l 1+ =5l
Since (! € %52)4*’5, ng € Aé4)’g, Z(m) p(m)e=2 ¢ a%”n(f)’g, we deduce of Proposition
5.5, Proposition 5.11 and Proposition 5.12 that there exists Y (™):t=3/2 ¢ e%’?l(ﬁ)’g such that

1—t¢ L%J 1—1t 1+\_%J r—zt
k) ) ad om0, 0 0t ) dt.

QS_W) _ Tg:flg,t—3/2 with C}({(n))t o2 < N321n—2079 C}(fe(v:))t a < st C}(fs(t;)’t_g/2 <l

Finally, we refer the reader to the subsection 8.2 of the Appendix for the control of the

remainder terms which leads to have same control on R("®):*=1/2 that the one we had for
R(at)5 in (125).

12the following sums hold on the indices j and m satisfying the prescribed conditions.
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6.3.2. A second smoothing transformation. In the expansion (135) of Hg o 7)o 7(2)=1/2,
there is still an non-integrable term of order ¢ : {X N ,Z fr Ng} Indeed, applying Proposi-
tion 5.5, there exists T("V1/2) € 7€ such that

DA ZE e} = DO/
and

t
(137) C&)ﬁm) < \321e-2079+48 0(62)1/2) < N3 C]gs(r:)l/Z < 1.

Since Z{F € Aé4),5 is an integrable Hamiltonian, considering the definition (134) of Xg\t,)g’l,

we observe that if (¢,h,k,n,c) € (+1/2) then Zrr ¢ # 0 and there exists 8 € N3 such that
b1+ P2+ Pz <t—7and

n <13t —87+ 1 +3 #h —n < By #k < 4v— 28+ (B3 + 1.

We refer the reader to the Propositions 5.11 and 5.12 where similar estimates are explained
in details and we also refer to the next subsection 6.3.3 where this term is computed
precisely. As a consequence of these bounds on the number of denominators, as previously,

we introduce (2 e %( )’*’g (see Definition 5.6) the solution of the homological equation

(138) {X1:7£27 Z4 + Z§<N3} + F t+1/2) =0
implicitly defined by
),2 /¢ fZ,h,k,n,c(I)
(139) Xg\t;:s = Z cu
. (4,6),€
(£,h,k,n,c)er(++1/2) 27’7TAI7“7“ ¢,N3 (I)
(t+1/2)

where fon kn,c(I) denotes the denominator of I'; naturally associated with (¢, h,k, n, c)
(see Definition 5.3). Of course x(V? satisfies the same estimates as T(H1/2) (ie. (137)).

Note that here the denominator A(Z )2 3 ([) is considered as a term of order 4 (i.e. a k).

Provided that Et 4-11/4 ~ Sox N™ 321t+2079— 48\/,*Ypr—t+4+2(N3)71714-pt and 5(1)/4 < A2 N2
(which is ensured by the assumption (116)), Proposition 5.15 proves that the Hamiltonian

()2 are well defined on Vs

N3 5 1.:—7 and that these flows are closed to
2 2

flows generated by +y

r—7
the identity
7/4 _
vVt € (0,1),Vu € Vg_%;:?a H‘I)i (c)z( u) —ull s < HUHA{S’ H(d<1>t (t)Q( u)) 1“3(1’13) <2

Provided that 53/ 4 <p YEN 32202 (Which is ensured by the assumption (116)), Propo-

sition 4.7 proves that for t € (0,1), <I> 02 maps V3+1 =75 in V§+ 1 and @ , , maps
N3 2 r—7 2 r— XN37
Vs 17 in Vs _1:c-75.
2 2r-=7 2 2 r-=7
Denoting 7% = 7(2)x=1/2 4 (I>1 ().2> Tecalling that the expansion of He o 73) o 7 (2)e=1/2
X

N3

is given by (135) and that X( 92 Solves the homological equation (138), and realizing, as
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previously, a Taylor expansions of some of these terms, we get, on Vs_ 1.7, that
2 2r-=7

T T
(140) Heor® or®r =28 + 2§ + 3" 200 + 1 28yt + > QP
m=6 n=t+1

+ R(res) ° 7_(2),1: + R(rat),t

where Qg,,t ) is the Hamiltonian of order n given by

3 1 e 3 ez, o ! §
let) — i dx(l) 2Z ﬁad; ©, 2T jadx(t ZGrNB
j(c—6)+m=n""" N3 j(t—=6)+m=n N3 j(c—6)+6=n " N3

8<m<rt +H1<m<r
1 1 1/2)
+ g R ad’ . (H_
j(e6) te=n (J! G+ 1)!> e v

and R is given by the same formula as R(#):*=1/2 (i.e. (136)) but with the change of
index v+t +1/2.

Since x (V2 € «%’t@f’g, 7k e Aé4)’5, Z(m) p(m)e=3/2 ¢ %726)’5, we deduce of Proposition

5.5, Proposition 5.11 and Proposition 5.12 that there exists Y"1 ¢ %’%@’5 such that
Q(t _ 317 1 with C'(T(n))t | <,y N32n—2079 Cq(f(%)r L < N3, C}(;(tz))ﬁ_l <, 1.
Finally, we refer the reader to the subsection 8.2 of the Appendix for the control of
the remainder terms which leads to have same control on R("%)-* that the one we had for
R85 in (125).

6.3.3. Transmutation of a denominator and conclusion. After these two steps of normal
form, the expansion (140) of Hg o 7(3) o 7(2)% seems similar to the expansion Hg o 7(3) o
7(2)*=1 Nevertheless, the non integrable term of order t denoted I') has been replaced

by {x ]:,)32, Zlr Ng}, which, following Proposition 5.5, is another term of order t. Describing
very Carefully this term, we are going to explain why one of its denominators of order 4
can be considered as a denominator of order 2. It will prove that this term is actually a
term of order v+ 2 and it will conclude the proof of this induction.

First, we have to describe precisely Zéf 3+ By definition (see (127)), it is the integrable
part of %{X& Ps}. Recalling that Ps is given by (120) and ys is given by (121), Zéng can

be written as o

Z5 (D) Z Z Ckh )€ )3

keRme hess(k)
‘kl |<N3 4<#h

where cg ¢ are some coefficients satisfying |cx | < N3 and ss(k) denotes the set of the
subsequences of k. Consequently, if £ € M, we have

#t h
I
l fr 4 . . fr _ .0
{u ,Z&Ng} =u"( E 2171'5]8%_ ZG,N3) =u E E Ch,h,¢ (A(4)’€)#h_2
Jj=1 keEREND hess(k) k

(Irrg)last<‘kl |<N3 3<#h
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where ¢y ¢ are some coefficients such that |cpp o] Se N*8. Let us justify the condition
(Zrrf)iast < |ki| in the sum above. The term of index k refers to a Poisson bracket

of the form {ue,Ih/(Agf)’g)#h*?‘} where h is a subsequence of k. However, as stated in
Remark 4.2, A,(f)’g is a linear function of actions associated with indices no larger than |k |.
Consequently, if (Zrrf)j.s; > |k1|, then v and I/ (A](f)"g’)?‘?éh_3 would Poisson commute.
That is why such a term do not appear in the expansion of {uf , Z(f; N3

Recalling that XE\%’Q, defined in (139), is the usual solution of

2 ,1
002, 28+ ZE oy + 1, 28 s} = 0

where Xﬁ\t,)g’l, defined in (134), is the usual solution of

1
O 25 + ZE oy + TR = 0.
Since the denominator of I'® and Z(ferS are both functions of the actions alone , we

never have to derive the denominator of I'® when calculating {Xg\t,)?jQ, ZérNS}. Therefore

{ N5 ,Zerg} can be decomposed as

¢ fenk, o

nc
. = 1 NP DI D e
(¢,hk,n,c)er® (20 Irr€N3 p—l kP eREND h(P) ess(k(P)) ( k(P))

(Irrf)lastglk"’)\gNi* 3<#h(P)

(¥)

where and fyn kn,c(I) denotes the denominator of I'y; naturally associated with (¢, h, k,n, c)
(see Definition 5.3).

Considering one a the denominator A5)E

Irrf,N3
for k) and the other as a term of order two (i.e. a new index for h), {XN3 ,ZerS} is

naturally associated with A(®) ¢ ,%”tfg’g

as a term of order four (i.e. a new index

{X]\tr)?,Q: Zerd} = Ag\%

such that C/(\m) <o N321v—207942:48 C’/(f(m) < N3. Nevertheless, contrary to the previous

cases, it is not completely obvious that C’(s(i:)
(di)

Cie) Se L.

By construction, the numerators of A are of the form

1. Indeed, we have to explain why

~t

ut = uZIh(UIh(Q) where ¢/ € RE N D.
We aim at estimating
& E N2/, \2#hM 4/ &
(K )2 (K5))** G

hlast k‘<1) k;(2)
/ /
T

(2) _
)2#h 4(K§'rr€)2

ast |
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We recall that by Lemma 4.5, for all £/ € Zrr, we have ’{é” Suer |4, Consequently, we

only have to estimate

(K -+ B )2 () 2 = ({2 A (Zrr )2

last!*

_ last last last
[ |
Up to natural symmetries, we only have to consider two cases.
e Case |l}] = |l3]. Here we also necessary have |¢]| = |¢1]. Consequently, we have
q< CI(:?:') (kl(;s)t)Qi?<l)_4E]€)1( ))222(2) 4(5)7” é)last < (kl(;s?t)Qi;lm_451{;1(33'5)21};(2 ((f)rrg)last
(R il )P (B i) (03" i P i)
Since h(?) is a subsequence of k()| we have \kzlabt| < |hlast| and consequently
(Zrr E)last (Zrr E)last

TS 0, (Mg @) D27 gy (D2
(hy"hy )2 (hy"hy )2 (hy')2(hy”)?

Recalling that, by construction, for p € {1, 2}, [(Zrr £)1ast| < |k§p)|, we get

ﬁ £
q Sx
o1 (B2

However, by construction, h(?) is a subsequence of k with at least 3 elements.
Consequently, we have |k::(,,p )| < |hgp )| and so

17"
q St
o1 (kP2

Finally, recalling that k() e Rg and applying Lemma 3.7 (again this Lemma is
the key), we have

171/ (k) < 9
and so we have proven that q <, 1.
e Case |l}] > |¢2]. This case is much easier. Without loss of generality, we assume

that |[0}] = |45] = |h§1)|. Consequently, we have
ey

last ( last

P b () )

last

)Q#h(l) 4(l<:(2) )Q#h(2> —4
2P )2

1 () —
oty ()P i P AT )

q= (v)
VAT SIS

last

Since hP) is a subsequence of k"), we have \k(p ) | < |h | and consequently,

last
1

TR D@7
(hy )?(hy"hy )
Finally, we conclude this induction step by the change of notation

(141) TP e P Al < -1
R(rat)xr . R(rat);e Ag\% else.

last
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As before, we refer the reader to the subsection 8.2 of the Appendix for the control of the
remainder term induced by this change of notation which leads to have same control on
R(rat).r=1 R(rat)r that the one we had for R"®)% in (125).

7. DESCRIPTION OF THE DYNAMICS

7.1. Dynamical consequences of the rational normal form. This subsection is de-
voted to the proof of the following theorem which in nothing but the dynamical part of
the Theorem 1.

Theorem 4. Being given £ € {gKdV,gBO}, r > 73 s > so(r) := 10772, N 2,5 1,
v Srs 1 and € S5 1 satisfying

(142) e<~% and e < N7 and N=* < &”

if u € Z/lf”im’p% (p2r being given by (115)) satisfies

(143) e/2 < |lullg. <e

then, as long as |t| < ||ul , the solution of £, initially equals to u and denoted ®f (u),

’—7‘/5
s
exists and satisfies
&
197 (W] s < 2[Jul] s
Furthermore, there exist C' functions 0, : Ry — R, k € Z*, such that

(144) 105 () — (@ Oug) ez | os < lull/?

where |0, — (2m)' 2 k[k|*¢ — 2mkdy, Z§(1)| < |Kl||u] %/,

7.1.1. Setting of the proof. We are going to proceed by bootstrap. We denote V, =

Bs(0,27¢) N Z/{f,"f,7 N3 pay’ By assumption we know that v € V. We are going to prove

that, assuming u(t) := ® (u) exists, u(t) € Vz and |t| < ]\u(O)\FC/S, we have u(t) € V; and
u(t) is described by (144).

Of course, such a proof by bootstrap requires a local existence theorem for solutions of
£ in H*(T). Even if we do not have found a precise reference of such a theorem in the
literature, since s is large, its proof would be classical and could be realized quite directly,
adapting, for example, the proof of local well-posedness of the quasi-linear symmetric
hyperbolic systems presented by Taylor in the section 1 chapter 16 of his book |Tay].

Naturally this result relies on the rational norm form Theorem 3 that we apply with
go = 4e and «y < /4. Note that with this change of notations, the indices of the set V,
introduced in Theorem 3 have to be increased of 2 (for example, here, 7(%) maps V5 in V3).

From now, we assume that 0 < 7' < |]u(0)H;IZ/5 is such that if |[t| < T then wu(t) exists
and belongs to V5. In this proof, we set

(145) v(t) == 7MW o 7O (y(2)).

Since, for [t| < T, u(t) € Va, we also have

(146) u(t) = 73 o 7 (v(1)).
13

see Remark 6.1.
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Furthermore, since 7(1), 7(9) are symplectic, v(t) is solution of the Hamiltonian system
(147) Opu(t) = 0,V (He o 7®) 0 7@ (u(2)).

In order to prove that u(t) € Vi, first we prove that ||u(t)| ;. < 2||[u(0)] ;.. Indeed,

since 71, 7(0) are closed to the identity (in the sense of (117)) and ¢ is small enough, it
follows of (145) that

[0O) s < Nluoll o + 2[u(O)l 72~ < (4/3)][uoll g+

Consequently, since, in the next subsection 7.1.2, we are going to prove that
(148) o)l s < N0(0)]l g5 + (1/3)[[w(0)]| 175
it follows of (146) and (117) that, provided that € is small enough, we have
13/8
()17 < o) 0 + 20D < 20u(0)| .-

In the last subsection 7.1.3, we are going to design C' functions 6, : Ry — R, k € Z*,
such that

(149) lo(t) = (€ Ov(0))reze [l o1 < (0]},

where denoting Jy(t) = |vg(t)|?

(150) 01— (2m) S k|k|"e — 2kmd, Z5 (T (1))] < (1/2) K] [[u(0) 7.

However, 79, ..., 7®) being closed to the identity and ¢ being small enough, we have
(151) lo(t) = a®ll s + 10(0) = w ()] o S [u(O)II};/*

and thus

(152) lu() = (€ Ou0))kez:llger < Ilu(O)II35-

We deduce of (152) that
sup K22 g (0 — [ (0) 2] < ()| gromr + [1(0)]] o) lfu(t) = (¢ Vu(0))neze |l gros
5/2
< 3)lu(0)]3.

Consequently, provided that 61/ < 'yQN 22p2r (which is ensured by (142)) by applying
Proposition 4.7, we get that u(t) € us ,, and so u(t) € Vi which conclude the
bootstrap.

To conclude the proof we just have to establish the bound about the variation of the
angles. Somehow, we would like to replace |v(t)[? by |u(0)|? in (150). To do this, we are
going to apply the following lemma about the variations of dy, Zf (which is proven in the
subsection 8.3 of the Appendix).

/2 N3.p

Lemma 7.1. Let u,v € H' and k € N*, if ||u|| .2 = ||v]| 12 then we have
101,25 (1) — 0, Z§ ()] < |kl llw = vl g [l 2

where Iy := |ug|? and Jy := |vg|%.
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Since gKdV and gBO are homogeneous equations, we know by Noether’s Theorem that
|w(t)|| 2 = ||u(0)|| 2. Consequently, since the maps 7(%), ..., 73) preserve the L? norm we

have [|o(t)]| 2 = [[u(t)]| 2 = [u(0)[[r2 = [[0(0)]| 2.
By Lemma 7.1 and the estimate (149), we deduce of (150) that

05, — (2m) 1o k|k|% — 2kmdy, ZE(J(0))] < (3/4)|K]||u(0)]|/2.
Finally applying once again Lemma 7.1 and using the estimate (151), we deduce that
61— (2m)" 0 kK| — 2k, 25 (1(0))] < [K][[u(0)]7.
7.1.2. Control of the Sobolev norm of v. We aim at proving the estimate (148), i.e. that

[0l zs < 10(O)] s + (1/3)][w(0) | 75

Since ¢ is small, it is enough to prove that
[o(@) 5. < 0(0)[[F. + €

Recalling that v is a solution of the Hamiltonian system (147), we have

l®11%. = Ilv(0)IF. + /{! e He 0 7% 0 7} (u(t))dt.

Consequently, since by assumption 7' < ¢~"/5 and ¢ is such that ¢ Srs 1, it is enough to
prove that

(153) {3, He 0 7@ 0 7@} (0(1))] S £7/5H4,

Since || - qus is integrable, it commutes with the others integrable Hamiltonians. Thus by

construction of He o 73) 0 7(2) (see Theorem 3), we have
{13 He o 7® 0 r® = {|| - |13, RU> 0 72} 4 {]] - ||2‘ ,R(I>N3) o7}
+{Il- 3., R D} + Il - 13 R}

where R(#s>N ),R(I>N3), R are the remainder terms of the resonant normal form (see
Theorem 2) and R("®") is the remainder term of the rational normal form (see Theorem 3).
We are going to prove that the estimate (153) holds for each one of these Poisson brackets.
x Control of {|| - ||HS,R(Fat Huw(t)). First, let us just recall that by (145), since u(t) € Va,

we have v(t) € V. Consequently, by (143), we have
(154) [0l s < &

Applying the estimate (118) of the Hamiltonian vector field generated by R(
directly that

rat) we have

54)
5,2 _ 5,2
HH HHS’ rat }(U(t))‘ 5577” NlO r v 23r+133H ( )”r-i;l Serlo ~y 23r51‘+1

(142) 23 L, T
< T€T+1*ﬁ’r710 r SS,T ET/5+4.

~S,



82 JOACKIM BERNIER AND BENOIT GREBERT

To control the other Poisson brackets, we are going to use Proposition 3.3 with N <« N3
and 7 « 7(3). Tt follows from Theorem 3 that the assumptions (A1),(A2) and (A3) are
satisfied with k; <, 1.

« Control of {|| - st, R o 72} (v(t)). We recall that by Theorem 2, R(°") writes
R () = Z cpuf with |ep| < p?EN3#F9 and p <, 1.
keM
#k>r+1
Therefore by (i) of Proposition 3.3, provided that ||v(t)|| 7. < N ™% which is ensured by
(142) and (154), we have

Il 130 RO 0 72} (0()] Ssrmr NN J0(®)]] )"
Consequently, we deduce of (142) and (154) that |{| - ||H§, R(") o T2} (v(t)| Srys gr/5+,
s Control of {| - ||%., R#>N)Y(v(t)). We recall that by Theorem 2, R*3>N) writes

R(M3>N) (’U,) = Z Cl uk with ’Ck‘ S#k NS#k—Q.

keMND
4<#Ek<r
k3> N

Then by applying (ii) of Proposition 3.3 (with K = N), we get
- 130 RN} w()] Sorr NANTF2NT 0 (1) 3.
Since by (142), N7* < ¢", we deduce of (142) and (154) that
>N r/5+4
- 170 R¥S Y w()] Srs €774,

« Control of {|| - H2 L RUsn3) 0 7@ (p(#)). We recall that by Theorem 2, RU>~3) writes

R >N3 Z Z kafeu with |eor| Suk N3F#k+2)—9
{=N3+1 keMND
3<#E<r-2

Consequently, by applying (iii) of Proposition 3.3, we get
Il 13, RE30) 0 73 (0(8))] S NTOETDNI=9 0 (8)][5,..

As previously, we deduce that ‘{H : ||§-{S, RI>n3) o 7(2)}(1)(25))‘ Sps €757,

7.1.3. Dynamics of the Hamiltonian system in the new variables. We are going to design
C' functions 6 : Ry + R, k € Z*, such that v(t) is closed to (e?"v,(0))s (see (149)).

We recall that v is solution of the Hamiltonian system (147). We note that this system
can be rewritten

Orvg(t) = 2ilmewy(t)vy(t) + Re(t)

where, denoting Z = ZQS +Zg Z(6) +- —i—Z( 2 and ¢y, the coefficients of RU>n3) (defined
(#’”2)), we have set

we(t) = 0, Z(J(t)) + Lo ns P o 7@ (u(1))
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and R(t) is given by

8IV(R(“3>N) or® L RN o+ 4 R(rat))(v(t)) + Z |W(t)’28mv(p(£) o 7-(2))(1](15))
¢=N3+1
with
(155) PY(u) = Z copul.
ke MND
3<#k<r—2

Note that by construction, since the Hamiltonians are real valued, wy(t) € R.
Applying the Duhamel formula, it comes

(156) [o(t) = (€D v(0))sez+|| yor < |t] ﬁ‘u<p ROl o
<t

where we have set!?
t
(157) Oo(t) = 2577/ wpe(t) dt.
0
o Step 1 : Control of ||R(t)| ;-1 By construction R(t) is the sum of 4 kinds of terms.
By applying the triangle inequality, we control them one by one.
x Step 1.1 : Control of R := |[V(RW>N) o 7)) (v(t)) || -
The map 7 being symplectic, denoting v(t) = 73 (v(t)) € V3, we have
RY < [[(dr®) " W) gy VR ()| g S IVRESD (w(0)] -
We recall that R(#3>N) writtes (see (26))

RNy = 3 cpub with Jop| S N3,
ke MND
4<#k<r
|ks|>=N

Consequently, for £ € N*, we have

€s|a RM3>N ‘ <ZN3nZ Z ESH’VIC

i=1 ke M,ND  j#i
|k3|=N
ki=—¢

< ZN3”Z P GIPA0]

i= 1k1+ +kn—é

keD
|k2| >N
T
SN Tt HINE N R PR ()[Rl 2 () T T vk, ()
n=4 ki+4kn=( Jj=3

MHere 6, is only well defined for |t| < T. Nevertheless, using a localizing function, it could be easily
extended.
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Consequently, recalling that v(t) € Vi, applying a Young inequality (and a triangle in-

equality for the sum for n =4,...,r), we get
. (142) 4l (143) ,
RM Srs N ZNM— [v( )||Hs~r35 Sris ||u(0)|rHt .
x Step 1.2 : Control of R := |[V(RI" o 73 (v(t)) || -
As previously, we naturally have
R® S0 [ VRO (w(0)) ] -
We recall that R(7) writes (see 28)
o0
R (u Z RO(u):= Y > cpuF with |op| S MFFN#2 and M <, 1.
n=r+1 n=r+1keM,

Realizing the same estimates we did at the previous step naturally leads to have

IVR® @) gs S 0T MONT (0|7 S (8MeN?)" 0N,

Hs ~T
Consequently, since N is large enough with respect to r and s, we have

(142
R® <, N7 " (8MeN?*)"In < (8MeN*)" <",

n>r
Thus by (143), we get R?) <, [u(0)[';
x Step 1.3 : Control of R0 (v(t)). Theorem 3 states in (118) that
10 VRIS (w(t)) | o S N1 7B 153y () |7,
(

Consequently, by the assumption (142), we have

B TRED (B) o S NIOr2 201857 <, 1072121735
:S,T (N1077'€)7'/100€%7m <r5 Hu( )||7‘/4

x Step 1.4 : Control of the remainder term induced by R(>n3). Naturally, by applying the
triangle inequality, we have

I RoT PO o))l £ 3 IOl 18P o))
L 1=N3+1
< N2 sup 9, V(PO o 7@) (w(1)) | 4
>N
S N7 sup [0,V PO (v(1)) ] 4.
>N

Considering the estimates of the two first sub-steps, it is clear that

10:V PO W) o < PN (1),
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It follows that by (142) and (143), we have

o0

IS Jo)Pa V(PO o @) (0(t)] e Srs (0%

{=N3+1
x Step 1.5 : Conclusion. We have proven that while |t| < T we have

1RO s Sros (0722

Consequently, since T' < Hu(O)HI_{i/E’, (156) leads to (for r > 200)

lo(t) = (€2 Dv(0)) ez [l 7o S [(O) [ u(O) 1, < (05

e Step 2 : Control of By := |0, — (2m)' e f|¢|*¢ — 20md;, ZE(J(t))]. Naturally, we assume
that ¢ > 0. By definition of 0 (see (157)), we have

E, ,

57 < 0L 2R 0) + -+ 01, ZQ T W) + PO o TP (1)),
On the one hand, in view of (155), by applying the Young inequality and using (142),(143),
we have

r—2

n 11/4

PO o r® )| S > N2 w1, S luo )HHS/
n=3

On the other hand, by applying the result of the Proposition 5.14, we have for n > 8
42
—47n+3144n—2 2
101, Z3gd (T (0)] S N3y HTHESUER=2 NAFL2GT0 oy 0) 22 < a(0))1,

and forn =6
42)

01, Z QT @) S N7 N2 u(0)]4, S [u(O)]1

Finally, since ¢ is small enough, we have E, < (1/2)|¢|||u(0 )||5/2

7.2. Proof of Theorem 1 : V‘€ and its geometry. Note that if 71 < r9 and the
Theorem 1 holds for ro then it also holds for r1. Hence, without loss of generality, we
assume that r > 7. Considering the Theorem 4, the second part of the Theorem 1 holds
if we set

eo(r,s) vo(r,s) e—1/(107r)

(158) vis.=UJ U U uo Nopey N (Bs(0,6) \ Bs(0,£/2)).
e=0 N= 51/35 N=¢ —r/s
where p, is given by (115) and eo(r, s), yo(r, s) are given by the Theorem 4.
Note that by construction it is clear that V¢ /5,5 is invariant by translation of the angles

(i.e. it satisfies (6)).
The other properties we aim at establishing on Vf/5 . relies on probabilities estimates.

Consequently, from now (Ij)xen+ denotes a sequence of random variables for which we
assume that

e the actions are independent
e [ is uniformly distributed in Ji + 3(4¢(v)) (0, k=2577)
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where v € (1,9] is a given constant, Ji > 0 and €9 > 0. We denote by u the random
function defined by

u(z) = Z 27/Ij, cos(2mk).
k=1

The following proposition is our main probability result even if it is essentially a corollary
of the Proposition 4.12.

Proposition 7.2. For all s > so(r) = 10712, all X € (0,1), alleg Srspn 1, ally < yo(r, s),

if
0 2

(159) lull? e =25 Tk + %0 <& and g <A
k=1

then

PueVis)=1-x.

Proof. By applying Proposition 4.12, provided that ey <p 5, 1, we have a probability larger
than 1 — Ay to draw u such that

—2\1/(63p2,+15 g,
(160) 1 Srsw N < (llull g2) /O = wetd s,
Consequently from now on we assume that u satisfies (160). By construction of Vf/5 ; and

recalling that by assumption £y < 43> we just have to check that there exists N such that

_2+L _ _ 7
1 Srsw N < (lull . %)Y 63021 and (JJull g /2) 77 < N < 2fJuf o)~ 0.
On the one hand, since 1077 > 63py, 4 15, it is clear that
o4l

(HUHHS/Q)fl/(lOM) < (”uHHz'ng)1/(63p27-+15)‘

On the other hand, since by assumption s > so(r) = 107r2, provided ¢ Srs 1, we have
IN € (([ull g /2) 7%, @l )7 E™) AN,

O

In the following corollary, we prove that Vf/5 s is asymptotically of full measure in the
sense of the Theorem 1 (see (8) and set € = g¢/(2+/((v))).
Corollary 7.3. If J =0, €0 Srps0 1 then

1

c £0 35
PlueV >1—- | ——

( r/5,s) = (2\/@>

Proof. It is enough to apply the Proposition 7.2, with A = (24/C(v)) /3. O

In the following corollary of the Proposition 7.2, we prove that Vf/5 < 18 asymptotically
dense.
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Corollary 7.4. If ||v|| ;s Srs 1 then there exists w € Vf/g),s such that

[0l s

(161) v —w| e < —75——.
1= Nog (v )

Proof. Since Vf/5 . is invariant by translation of the angles (i.e. it satisfies (6)), without
loss of generality we can assume that v is of the form

v(x) = Z 2/ Jy, cos(2mk).
k=1

We set v = 9 and g9 = v/2||v||,. Provided that |[v| ;75 <rs 1, applying Proposition 7.2

with v = 6(1)/35 and A\ = 2770 we have

£ 1/35

P(ueVis,)=1-Ivl

Now we aim at estimating the probability that ||u —v| ;. < [[v|| . /| log([|v]| g )| First,
we observe that by applying the Minkowski inequality, we have

R A SV IV EVANCES ) SV AL
k=1 k=1

Then we recall that, by construction, there exists some random variables (Xp)g>1, inde-
pendent and uniformly distributed in (0, 1) such that

Iy — Jp = 2”7)”2- Skai%ig.

Consequently, defining A = 27%/3 and = —log(||v|| ), provided that |[v| ;7. is small
enough, we have

P(llu = vl e < llollgam) = PAD k72X, <) > P(VE > 1, AX;, < k')
k=1
7,2 2
_ H k'n > (777)(,%2)1/7 > G > = 1/(36n) _ ||)|1/36,
)\Zkﬂnz >\

Finally, provided that ||v| ;. is small enough, we have proven that
E
P(lu— vl o < ol o) +P (w e VEs,) > 1

which ensures that the intersection of these events is not empty and so the existence of
w € VE,  satisfying (161).
O

8. APPENDIX

8.1. Proof of Lemma 4.5. We denote n = #m. We aim at proving that miKsV = ky

gBO _

gBO
mk = k,, else we have Kok <2n —1.

and if a3 = 0 or m1 + --- +m, = 0 then we have s

In view of (70) and assumption (Agkav), the case £ = gKdV is clear. So we only
focus on the case &€ = gBO. If a3 = 0 or my + --- + m,, = 0, then applying (71) we
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obtain (551]3,?)}; = 0 for all p < k,, while (5%1]3,?);% = —12a4myk, # 0 in view of (Agpo).
Consequently, we have /fi? ,? = ky.

Now we assume that we have az # 0, m1 + --- + m, # 0 and n%,]?,? >2n—2. Asa
consequence, for ¢ € [1,2n — 2], we have ((555,? )e = 0. In particular for £ = 1 we get from
(71)

18 a3

_12a4mn1kn:1_ <m1++mn):0

and thus &k, = 1.
We are going to prove that

(162) Vj € [2,n], (0570)k, = (65 k41 = (85

m,k

)k]-+2 =0 = kj_1 €{k;j+ 1,k +2}.

Before proving it, let us explain how we get the upper bound on /{fr]j ,? from (162). Since
(5%5?)@ =0 for £ € [1,2n — 2] we deduce from (162) that k;_1 —k; < 2 for j € [2,n]. But
since k, = 1, we get

ki=kn+ Y kji1—kj<1+42(n—1)=2n-1.
j=2

Since by (73), we have Hfr]?]? < k1. We deduce that Hif’l? =2n—1.

It remains to prove (162). To do that we assume that there exists j, € [2,n] such
that (552,?);%_5_1 = (@%E;?)kh +2 = 0and kj,_1 > kj, + 2, and we are going to prove that
(5%1]3,?)%* # 0. By assumption, we have by (71)

1
Ve e {kj, +1,k;, +2}, ij—i-zzmjkj =0
J>Jx J<Ix

As a consequence, we have g m; = g m; k; = 0. Thus, we have

>0 717«
1 1
E mj—l—kf E mj kj = E mj—i-kf E mj kj = 0.
kj>kj, T kj<ky, kj>kj, I kj<k;,

= —12@4 mkj* k?j* 7é 0.

gBO
Thus, we get (6, 4 )k;,
8.2. Control of the remainder terms in the rational normal form process. In this
subsection, we explain how we control the remainder terms in the rational normal form
process. The remainder terms we meet are some linear combinations of 3 kinds of terms.

o Type I: An old remainder term in new variables. Such terms are of the form Ro 7
where R is an Hamiltonian defined on a set of the form V), and 7 is a symplectic
map from V), to V), where 2 < \; < Ay < 5/2. Furthermore, the invert of the
differential of 7 is invertible and its norm is smaller than 2.
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Since 7 is symplectic, if v € V),, we have

10:V (R o m(u)| s = 102(d7(u)*(VR)(7(w))|| g« = I1(d7(w)) " 0x(VR) (T () 7+
<2 sup [|0:VR(v)|| s

UEV)\2

where (d7(u))* denotes the L? adjoint of d7(u). Consequently, the vector field
associated with R o 7 is controlled by the vector field associated with R.
o Type Il: A remainder term of a Taylor expansion. Such terms are of the form

1
R= / Exs o7 g(t)dt
0

where ||g||z= < 1, for t € (0,1), 7® is a symplectic transformation mapping a set
of the form V), in a set of the form V,\Q, the differential of 7(*) is invertible and the
norm of its invert is smaller than 2, = € %( )€ with!® 7+ 1 < m < 2r and such

that C(em) < N3, C(m) <r 1 and C'(OO) < N32Im=2049 (note that all these results
on = rely on the apphcatlon of Prop051t10n 5.5, 5.11 and 5.12).

Consequently, by Proposition 5.13, for u € Vi, = Bs(0,2"eg) N U
we have

Alv N3,poy’

1
102V R(u)| s = HM!L”/ H<d7(t)(U))’13z(VENs)OT(”HHS

(163) NB32im— 2049\f pmAm—2 pr3-12 pm)2||u||

NST

(116)
321(r+1)—2049 —pr+1+7—1 27312 (pr41)2
Ser N (r+1)— Jy Pty (pr+1) [

Note to apply this proposition it has been crucial to have the index po, in the
definition of V.

o Type Ill: The product of a transmutation. The last kind of remainder terms are the
terms A1, A appearing in (141). As a straightforward application of Proposi-

tion with the estimate we have established on C/(\O(f) C( r)), /(\8(?;), 10: VA" (u)
and ||0, VA" (u)|| ;. satisfy the same estimate as [|0; VR( u)| ;7. above.
Finally, note that the final estimate we write in (118) for the remainder term is

a direct consequence of the estimate (163).

Il s

8.3. Proof of Lemma 7.1. We use the explicit formula of Zf established in Theorem 2.
e Case & = gKdV. Since ||ul|z2 = ||v||z2, we have

3a
105, 25 (1) = 05, 25V ()] = ‘12a4+ [Te = Jil Sa 1K1 w = oll o[l g2

2k2

15pote that it is to obtain this estimate that we have paid a lot of attention to the order of our Taylor
expansions
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e Case & = gBO. Since ||ul|z2 = ||v] 12, we have

18 a2 1803 ~— |1, — J|
o1, 780 (1) — 0y, 280 ()] < |12 S~ Y s
0 Zy (1) — O, Zy " (J)] < a4+7rk:2 e = Jil + T Zmin(k‘,p)
p#k
Sa 1B lw = ol g lull 2.
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