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Abstract

Many recent and often (Adaptive) Markov Chain Monte Carlo (A)MCMC methods
are associated in practice to unknown rates of convergence. We propose a simulation-
based methodology to estimate and compare MCMC’s performance, using a Kullback
divergence criterion requiring an estimate of the entropy of the algorithm densities at
each iteration, computed from iid simulated chains. In previous works, we proved some
consistency results in MCMC setup for an entropy estimate based on Monte-Carlo inte-
gration of a kernel density estimate proposed by Györfi and Van Der Meulen (1989), and
we investigate an alternative Nearest Neighbor (NN) entropy estimate from Kozachenko
and Leonenko (1987). This estimate has been used mostly in univariate situations until
recently when entropy estimation in higher dimensions has been considered in other fields
like neuroscience or system biology. Unfortunately, in higher dimensions, both estimators
converge slowly with a noticeable bias. The present work goes several steps further, with
bias reduction and automatic (A)MCMC convergence criterion in mind. First, we apply
in our situation a recent, “crossed NN-type” nonparametric estimate of the Kullback di-
vergence between two densities, based on iid samples from each, introduced by Wang et al.
(2006, 2009). We prove the consistency of these entropy estimates under recent uniform
control conditions, for the successive densities of a generic class of MCMC algorithm to
which most of the methods proposed in the recent literature belong. Secondly, we propose
an original solution based on a PCA for reducing relevant dimension and bias in even
higher dimensions. All our algorithms for MCMC simulation and entropy estimation are
implemented in an R package taking advantage of recent advances in high performance
(parallel) computing.

keywords. Adaptive MCMC algorithms, Bayesian model, entropy, Kullback divergence,
Metropolis-Hastings algorithm, nearest neighbor estimation, nonparametric statistic.

1 Introduction

A Markov Chain Monte Carlo (MCMC) method generates an ergodic Markov chain for which
the stationary distribution is a given probability density function (pdf) f . For common
Bayesian inference, f is a posterior distribution of the model parameter θ over a state space
Θ ⊆ Rd. This posterior is typically known only up to a multiplicative normalizing constant,
and simulation or integration w.r.t. f are approximated by ergodic averages from the chain.
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The Metropolis-Hastings (MH) algorithm (Hastings, 1970; Metropolis et al., 1953) is one of
the most popular algorithm used in MCMC methods. Another commonly used method is the
Gibbs sampler introduced by Geman and Geman (1984).

Each step of a MH algorithm at a current position θt is based on the generation of the
proposed next move from a general proposal density q(·|θt). Historically, two popular MH
strategies used to be (i) the Independence Sampler (MHIS), which uses a proposal distribution
independent of the current position, and (ii) the Random Walk MH algorithm (RWMH), for
which the proposal is a random perturbation of the current position, most often drawn from
a Gaussian distribution with a fixed variance matrix that has to be tuned.

To actually implement a MCMC algorithm, many choices for the proposal density are pos-
sible, with the goal of improving mixing and convergence properties of the resulting Markov
chain. For instance running a RWMH strategy requires the determination of a “good scaling”,
since the mixing depends dramatically on the variance matrix of the perturbation (Roberts
and Rosenthal, 2001). As a consequence, a growing interest in new methods appeared these
last two decades, which purpose is to optimize in sequence the proposal strategy in MCMC
algorithms on the basis of the chain(s) history; see, e.g., Andrieu and Thoms (2008) for a
survey. These approaches called adaptive Markov Chain Monte Carlo (AMCMC) can be de-
scribed (not in an entirely general way) as follows: let f be the pdf of interest and suppose
that we aim to simulate efficiently from f given a family of Markov kernels {Pϑ, ϑ ∈ E}. This
can be done adaptively using a joint process (θt, ϑt)t≥0 such that the conditional distribution
of θt+1 given the information available up to time t is a kernel Pϑt where ϑt is an Euclidean
parameter tuned over time to fit a supposed relevant strategy. Some general sufficient condi-
tions insuring convergence (essentially ergodicity and the strong law of large numbers) of such
algorithms have been established by various authors, see Andrieu and Thoms (2008). These
conditions are informally based on the two following ideas.
Containment: for any (θ0, ϑ0), and any ε > 0, the stochastic process (Mε(θ

t, ϑt))t≥0 is bounded
in probability, where

Mε(θ, ϑ) = inf
{
t ≥ 1 : ‖P tϑ(θ, ·)− f(·)‖TV ≤ ε

}
is the “ε-time to convergence”.
Diminishing Adaptation: for any (θ0, ϑ0), limt→∞Dt = 0 in Pθ0,ϑ0-probability, where

Dt = sup
θ∈Θ
‖Pϑt+1(θ, ·)− Pϑt(θ, ·)‖TV ,

represents the amount of adaptation performed between iterations t and t + 1. Note that in
Bai et al. (2008) two examples are provided to show that either Diminishing Adaptation or
Containment is not necessary for ergodicity of AMCMC, and diminishing Adaptation alone
cannot guarantee ergodicity. See also the very simple four-state Markov Chain Example 1 in
Rosenthal and Roberts (2007), which illustrates the fact that ergodicity is not an automatic
heritage when adapting a Markov Chain from its past.

These various and sometimes experimental algorithmic choices are associated in general
to unknown rates of convergence because of the complexity of the kernel, and the difficulty
in computing, when available, the theoretical bounds of convergence. For instance, Bai et al.
(2010) compare two AMCMC strategies in dimension d ≤ 5, and Vrugt et al. (2009) compare
two AMCMC’s against some benchmark algorithm in dimension d = 10. More recently Fort
et al. (2014) define the best interacting ratio for a simple equi-energy type sampler, by mini-
mizing the corresponding limiting variance involved in the Central Limit Theorem (see Fig. 1
in Fort et al. (2014)). There are also tools or numerical methods for MCMC comparisons,
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showing that these questions are crucial in nowadays MCMC application and research; for
instance Thompson (2010) proposes the R package SamplerCompare for comparing several
MCMC’s differing by a single tuning parameter, using standard evaluation criterion.

In this paper, we propose a methodological approach and corresponding software tool,
only based on Monte Carlo simulation (i.e. not requiring a theoretical study typically MCMC
and/or target-specific) with two goals for two different situations:

(S1) For researchers to numerically better understand which methods (MCMC or AMCMC)
perform best among a set of given and fully tractable circumstances.

(S2) For end users to decide, given a practical Bayesian problem, which sampler among a
list of possible candidates, with one of them identified as a convergent benchmark algorithm,
performs the best.

The common feature of the two above situations is that a sample directly drawn from the
target density, see (S1), or a very close approximation of it, see (S2), is available to proceed
to our study. Let

H(p) :=

∫
p log p = Ep(log p) (1)

be the differential entropy of a probability density p over Rd, and pt be the marginal density
of the (A)MCMC algorithm at “time” (iteration) t. Our approach is grounded on a criterion
which is the evolution (with t) of the Kullback-Leibler divergence between pt and f ,

K(pt, f) :=

∫
pt log

(
pt

f

)
= H(pt)−

∫
pt log f. (2)

This Kullback “distance” is indeed a natural measure of the algorithm’s quality and has
strong connections with ergodicity of Markov chains and rates of convergence, see Harremoes
and Holst (2007) for recent results. In MCMC setup, Chauveau and Vandekerkhove (2013)
showed that if the proposal density of a Metropolis-Hastings algorithm satisfies a uniform
minorization condition implying its geometric convergence as in Holden (1998), then K(pt, f)
also decreases geometrically. Our criterion requires the estimation of two terms: the entropy
H(pt) and the “external entropy”

∫
pt log f = Ept(log f), where pt is not available explicitly.

We start in Section 2, by a presentation of our approach which is grounded on parallel
chains methods, and a review of our successive developments related to this objective. In
particular, we mention the two estimates of H(pt) we considered, and the reasons for which
this methodology requires more work, motivating the present article. In Section 3, we present
in detail the entropy and Kullback estimates we propose, historically based on Nearest Neigh-
bor (NN) from Kozachenko and Leonenko (1987) adapted to our adaptive MCMC setup, and
recently improved by NN entropy and Kullback estimates from Wang et al. (2006, 2009). In
Section 4, we prove the consistency of these entropy estimates based on new conditions rigor-
ously established by Bulinski and Dimitrov (2019), see also Berrett et al. (2019) for the k-NN
entropy estimate case, for a generic class of Adaptive Metropolis-Hastings (AMH) algorithms
to which most of the AMCMC strategies proposed in the recent literature belong. Section 5
illustrates the good behavior of our criterion on synthetic and actual multi-dimensional exam-
ples. These examples also allow us to show that the bias coming from the curse of dimension
in the nonparametric statistical estimation of H(pt) can lead to wrong decisions. In Section 6
we consequently introduce a novel solution for handling that bias problem, based on Principal
Components Analysis (PCA) and projections, in such a way that our approach is still usable
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even in large dimension, in practice for Bayesian models with dozens of parameters. Some
technical details are finally given in the Appendix.

It is important to mention that our method, which requires intensive simulations of parallel
chains, is in the scope of the current evolution of statistical computing that uses more and more
parallel computing. All our algorithms are progressively implemented in the EntropyMCMC
(Chauveau and Alrachid, 2019) package for the R statistical software (R Core Team, 2018)
that precisely takes advantage of these recent advances, and can exploit multicore computers,
networked workstations and genuine computer clusters. The first version of this package is
already available online1

2 Problem review and objectives

Motivations for estimation of the entropy H(p) for a multivariate density p over Rd appeared
recently in the literature, in other fields like molecular science (see, e.g. Singh et al., 2003)
or Biology (Charzyńska and Gambin, 2015). Most of the estimation techniques proved to
be consistent under various conditions are based on iid samples from p. There exists some
results about entropy estimation for dependent sequences, but these heavily rely on the mixing
properties of these sequences themselves, that are precisely what we want to capture by our
simulation-based approach without theoretical investigations concerning mixing properties of
the MCMC kernel. In addition, these approaches could be used to estimate H(f) but cannot
estimate H(pt) for each t with a same desired precision (sample size).

Our approach is consequently based on the simulation of N parallel (iid) copies of (even-
tually Adaptive) Markov chains started from a (preferably) diffuse initial distribution p0 and
using the transition kernel defined by the (A)MCMC strategy under investigation. The N
chains, started from θ0

1, . . . , θ
0
N iid∼ p0, are denoted

chain # 1 : θ0
1 → θ1

1 → · · · → θt1 ∼ pt → · · ·
...

...

chain # N : θ0
N → θ1

N → · · · → θtN ∼ pt → · · ·

where “→” indicates a (eventually non-homogeneous) Markovian move. At “time” (itera-
tion) t, the locations of the N simulated chains θt = (θt1, . . . , θ

t
N ) form a N -sample iid∼ pt.

In an experimental framework where one wants to evaluate a new (A)MCMC algorithm –
situation (S1) – the target often corresponds to a benchmark model, for which f is completely
known (as e.g., in Vrugt et al., 2009). In this case a strongly consistent estimate of

∫
pt log f

is given by Monte Carlo integration i.e., the Strong Law of Large Numbers,

p̂tN (log f) =
1

N

N∑
i=1

log f(θti)→
∫
pt log f when N →∞ (3)

so that estimation of K(pt, f) is in turn accessible provided H(pt) is. However, if the objective
is to evaluate an experimental MCMC method for an actual Bayesian model for which f
is a posterior density, say f(·) = Cφ(·) where φ is the product of the prior and likelihood,
the normalization constant C is not known – situation (S2). In this case only p̂tN (log φ)
is accessible. This is not really a problem since φ itself retains all the specificity (shape,
modes, tails,. . . ) of f , and since we are mostly interested in the stabilization in t of K(pt, f),

1https://CRAN.R-project.org/package=EntropyMCMC
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not necessarily in knowing its limiting value (which, as we will see, can also be biased in
large dimensions). In addition, the normalization problem can be eliminated by comparing
the MCMC under study to a benchmark MCMC algorithm (e.g., a gaussian RWMH) for the
same target f . Indeed, considering two MCMC strategies leading to two sequences of marginal
densities, say (pt1)t≥0 and (pt2)t≥0 allows the difference of the divergences to be accessible to
estimation since

K(pt1, f)−K(pt2, f) = H(pt1)−H(pt2) + Ept2 [log φ]− Ept1 [log φ]. (4)

The Kullback criterion is the only usual divergence insuring this property and, in addition to
its connection with ergodicity, it motivates our choice. Note also that the Kullback divergence
is currently used as a criterion in other simulation approaches, see Douc et al. (2007). The
choice of this estimate also has the advantage of avoiding numerical integration in moderate or
high dimensional spaces (replaced by Monte Carlo integration), in contrary to other criterion
such as the L1-distance. We start here by recalling the building blocks of our methodology,
since our early results, and the problems that have risen to the challenges addressed in the
present work.

Step 1 In Chauveau and Vandekerkhove (2013), we first proposed an estimate of K(pt, f) based
on the simulation of parallel (iid) chains started from a same initial distribution. In
this work, the estimation of H(pt) was built on a Kernel density estimate (KDE), and
the estimation of

∫
pt log f was based on Monte-Carlo integration (SLLN) of f or φ

using (3). This KDE following Györfi and Van Der Meulen (1989) was interesting since
it requires mild regularity condition for pt. We proved the consistency of our estimate
as N → ∞ in some generic MCMC situations. A difficulty in this approach was the
requirement of tuning parameters: as always, the kernel bandwidth for the KDE, but
more importantly a trimming parameter difficult to tune appropriately. We did not
investigate high dimension situations in that work.

Step 2 In Chauveau and Vandekerkhove (2014), we showed that the KDE of H(pt) deteriorates
as dimension increases, a phenomenon known as the curse of dimension that was ac-
tually noticed in literature from other fields requiring entropy estimation in moderate
to high dimensions (see e.g., Stowell and Plumbley, 2009; Sricharan et al., 2013). This
and the question of tuning the trimming parameter motivated us to investigate an al-
ternative estimation technique based on Nearest Neighbors (NN), to estimate the first
term H(pt) in (2). This family of estimators initiated by Kozachenko and Leonenko
(1987) reveals itself particularly attractive since it allows for a straightforward imple-
mentation whatever the dimension and without any tuning parameters. We did not
investigate its theoretical properties in MCMC situation in this article. The NN esti-
mate of H(p) also shows on our numerical experiments a better stability in moderate
dimension (say d ≤ 10). We also proposed a first solution to get rid of the curse of
dimension. This methodology was based on the assumed availability of a “benchmark”
convergent MCMC, with an approximately known convergence time t∗. Using the sta-
bilization value of the estimate K(pt

∗
, f) for this benchmark as the desired target value

for any converging MCMC (namely an approximation of bias + log(C)), we compared
competing MCMC algorithms based on their stabilization towards this reference.

The present work goes several steps further: We propose to use in this (A)MCMC situa-
tion a recent nonparametric estimate of the Kullback divergence between any two densities,
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K(g1, g2), based on crossed NN-type estimates based on iid samples from both densities.
This estimate has been introduced by Wang et al. (2006, 2009). We will refer to it as a
“2-samples-NN” or 2-NN estimate here, see Section 3.1, to insist on its difference with the
previous estimate of K(pt, f) that was using a NN estimate for H(pt) (from one sample) and
Monte-Carlo integration of the analytical form of f (or φ) for Ept(log f) as in (3). This 2-NN
estimate hence does not require any analytical form of the target density, but it has an obvious
drawback: an iid sample from f is required and is not directly available in MCMC situation.
Using this version has nevertheless several advantages and possibilities:

1. An experimental study we did conclude that, when g1 ≡ g2, the bias in the estimation
of K(g1, g2) eliminates since each term has a bias (in the density estimation) of the same
magnitude, even in moderate to large dimension (at least up to d = 50 and for Gaussian,
Student, and Gaussian mixture distributions). Hence, when pt ≈ f , we can expect
the bias in K(pt, f) estimation to be approximately negligible, so that stabilization
of the sequence t 7→ K(pt, f) towards zero indicates convergence; this eliminates the
requirement of a reference value (unlike in Step 2 above) and provides a better readability
and automatic decision rule for our criterion.

2. The estimation of the sequence K(pt, f) for t = 1, . . . , n does not requireN∗n evaluations
of log f that needs computing effort in situations where the target is complex. The
expression of f or φ is not evaluated in the estimation step.

3. Our present experiments show that, when the dimension gets large (typically d > 50),
even the 2-NN estimate of K(pt, f) for pt ≈ f may be slightly biased, resulting in possible
wrong decision despite its better behavior as explained in (1) above. We thus propose
an alternative: monitoring the convergence of the processes obtained by projection of
the original chain paths in optimal, lower dimension sub-spaces obtained by a Principal
Components Analysis (PCA), where the 2-NN estimate is unbiased so that our criterion
is reliable. This will be detailed in Section 6.

3 Entropy and Kullback estimation in MCMC context

As detailed in the introduction, our approach is based on the simulation of N iid copies of
simulated chains, sharing the same initial distribution and (A)MCMC kernel. For estimating
the entropy H(pt) a classical, plug-in approach, is to build a nonparametric kernel density
estimate of pt, and to compute the Monte Carlo integration of this estimate. Techniques
based on this approach have been suggested by Ahmad and Lin (1989), and studied by
many authors under different assumptions (see, e.g., the survey paper Beirlant et al., 1997).
Several consistency and asymptotic normality results pertaining to this approach have been
proved (see references in Eggermont and LaRiccia, 1999). However, most of these are not
suitable to estimate H(pt) even in the simplest MH cases, either because they do not apply
to multivariate densities, or because they require smoothness conditions that are far too
restrictive to be proved for the sequences of densities pt we have to consider here. Up to our
best knowledge, the unique consistency result applicable in this MCMC simulation context is
the one proved in Györfi and Van Der Meulen (1989), that essentially requires a Lipschitz type
smoothness condition. Indeed, for that approach, Chauveau and Vandekerkhove (2013) have
proved that adequate smoothness and tail conditions on the “input ingredients” of the MH
algorithm (namely p0, q and f) propagate a Lipschitz condition to the successive marginals
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pt, t = 1, . . . , n, so that the sequence of (H(pt))t=1,...,n can be consistently estimated. These
technical conditions have been proved to hold in simple univariate IS and RWMH cases, but
are not meant to be verified in general, since it would require tedious (and often unfeasible)
calculations.

3.1 Estimates based on Nearest Neighbor (NN) distances

The plug-in estimate presented above requires the tuning of several parameters: a certain
threshold for truncating the data over the tails of pt, the choice of the kernel and the difficult
issue of choosing an appropriate bandwidth matrix, particularly in high dimensions. All
these issues motivated us to find an alternative, and study the behavior of the somehow
simpler Nearest Neighbor (NN) estimate initiated by Kozachenko and Leonenko (1987) (see
also Beirlant et al., 1997, for a survey on these entropy estimates). Here, based on the sample
θt iid∼ pt in dimension d, this NN estimate is

ĤN (pt) =
1

N

N∑
i=1

log(ρdi ) + log(N − 1) + log(C1(d)) + CE , (5)

where CE = −
∫∞

0 e−u log u du ≈ 0.5772 . . . is the Euler constant, C1(d) = πd/2

Γ(d/2+1) and where

ρi = min{ρ(θti , θ
t
j), j ∈ {1, 2, . . . , N}, j 6= i}

is the (Euclidean) distance ρ(·, ·) from the ith point to its nearest neighbor in the sample θt.
The term involving the Euler constant comes for a correction for asymptotic unbiasedness, see
Kozachenko and Leonenko (1987), Equation (10). We also provide an intuitive understanding
of this estimate in Appendix B.

In our setup, the external entropy term
∫
pt log f in K(pt, f) can be estimated following

two methods. Remember that the target f is fully known in situation (S1) so that a N -sample
iid ∼ f is available, and that f is only known up to a multiplicative constant in (S2), and
only a N -sample iid ∼ fε is available (using a benchmark MCMC) in this latter case. Thus in
(S1) the natural estimate is p̂tN (log f), the Monte-Carlo (MC) integration of log f , consistent
by the SLLN, given by Equation (3). We denote the estimate of K(pt, f) using this MC term

K̂N,1(pt, f) := ĤN (pt)− p̂tN (log f),

where the subscript “1” indicates that it is based on a single sample iid ∼ pt contrarily to
the two-sample based approach (7) under (S2). In (S2), a similar estimate can be used, up
to the multiplicative constant, i.e. by using the MC integration of the available expression of
log φ, where f(·) ∝ φ(·).

However, previous studies and experiments as, e.g., Stowell and Plumbley (2009) , Sricha-
ran et al. (2013), have shown that the available entropy estimates — including the NN estimate
ĤN (pt) used here — are suffering from a non neglictible bias arising when the dimension gets
large (noticeable already for d > 10, see Chauveau and Vandekerkhove (2014) Figure 2). Since
the Monte-Carlo term is not suffering from the same bias, the Kullback estimate K̂N,1(p, f)
based on the NN + MC terms is biased. Chauveau and Vandekerkhove (2014) proposed a
methodological approach using some prior information from a benchmark MCMC known to
converge, to handle this bias.

A novelty of the present work, as stated in Section 2, consists in introducing in our
(A)MCMC context another estimate of K(pt, f) involving the NN machinery for both terms,
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with bias reduction in mind. Indeed, the external entropy can also be estimated very similarly
using a two-sample NN approach, see Wang et al. (2006) or Wang et al. (2009). For that we
have to consider an iid sample θε = (θε1, . . . , θ

ε
N ) drawn from fε (where fε ≡ f directly in

(S1)) and define

ĤN (pt, fε) =
1

N

N∑
i=1

log(νdi ) + log(N) + log(C1(d)) + CE , (6)

where
νi = min{ρ(θti , θ

ε
j ), j ∈ {1, 2, . . . , N}}

is the distance from the ith point in θt to its nearest neighbor in the sample θε. This leads
to the two-sample estimate of K(pt, f),

K̂N,2(pt, f) := ĤN (pt)− ĤN (pt, fε), (7)

where now the subscript “2” indicates that this estimator uses the two N -samples θt iid∼ pt
and θε iid∼ f in (S1) or iid ∼ f ε in (S2). This estimate will be called “2-NN” in the
experiment Section and figures.

4 Peak and tail type conditions

We propose in this section to briefly introduce the technical assumptions established recently
by Bulinski and Dimitrov (2019) in order to rigorously prove the L2-consistency of the entropy
estimator (5) and check that they are satisfied for the successive densities pt of a generic class
of Adaptive Metropolis-Hastings (AMH) algorithms to which most of the AMCMC strategies
proposed in the recent literature belong (see, e.g., Andrieu and Thoms, 2008). The asymptotic
analysis of the external entropy estimator (6) being very similar to the entropy estimator (5),
we propose, for simplicity matters, to present and derive our theory only on this last case (the
extension would require extra tedious work not of great importance for application).

As recalled in the introduction, an AMCMC algorithm relies on a family of Markov kernels
based on a joint process (θt, ϑt)t≥0 such that the conditional distribution of θt+1 given the
information available up to time t is a kernel Pϑt where ϑt is a Euclidean parameter depending
on the past. For easier notations, we denote in this section θt by xt, to omit the connection
with Bayesian MCMC setup, and just focus on the stochastic process involved. In the case
of a generic Adaptive MH processes (Xt)t≥0 valued in Rd, each MH step at time t is based
on the generation of the proposed next move y from an adapted proposal density qϑt(y) ∈
F := {qϑ|ϑ ∈ Θ}, where ϑt := ϑ(xt0) is a strategically tuned parameter possibly integrating
the whole past trajectory denoted xt0 = (x0, . . . , xt).

For a starting value x0 ∼ p0, the t-th step xt → xt+1 of the AMH algorithm is as follows:

1. generate y ∼ qϑt(·)

2. compute αϑt(x
t, y) = min

{
1,
f(y)qϑt(x

t)

f(xt)qϑt(y)

}

3. take xt+1 =

{
y with probability αϑt(x

t, y)
xt with probability 1− αϑt(xt, y).
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The proposition below gives the convergence of our NN entropy estimates for the successive
AMH marginal densities. Set G(t) = t log tIt≥1 and for any pdf h defined on Rd, x ∈ Rd, r > 0
and R > 0 introduce the functions:

Ih(x, r) =

∫
B(x,r) h(y)dy

rdVd
, Mh(x,R) = sup

r∈(0,R]
Ih(x, r), mh(x,R) = inf

r∈(0,R]
Ih(x, r),

where B(x, r) denotes the ball in Rd with radius r centered at point x ∈ Rd, see also Section
B for further notations.
Assumptions. For positive εi, i = 0, 1, 2 and Rj , j = 1, 2, we have :

(A1) Kh(ε0) =

∫ (∫
G (|log ρ(x, y)|h(y)dy)

)1+ε0

h(x)dx < +∞.

(A1’) Kh,2(ε0) =

∫ (∫
G
(
log2 ρ(x, y)h(y)dy

))1+ε0

h(x)dx < +∞.

(A2) Qh(ε1, R1) =

∫
M ε1
h (x,R1)h(x)dx < +∞.

(A3) Th(ε2, R2) =

∫
m−ε2h (x,R2)h(x)dx < +∞.

If conditions (A1–3) are satisfied, Theorem 1 in Bulinski and Dimitrov (2019) establishes
that the estimate (5) is asymptotically unbiased. If in addition (A1’) is also satisfied, Theorem
2 in Bulinski and Dimitrov (2019) establishes the L2 consistency of the estimate (5).

Proposition 1. Suppose that there exist nonnegative functions (ϕ1, ϕ2) both defined on Rd,
a constant a ∈ (0, 1) and positive constants εi, i = 0, 1, 2 such that:

(C1) C1 =

∫
ϕ1(x)dx <∞, C2 =

∫
ϕ2

1(x)

ϕ2(x)
dx <∞, and C3 =

∫
ϕ2(x)dx <∞.

(C2) ϕ1 ≤ p0 ≤ ϕ2, and ϕ1 ≤ f .

(C3) af ≤ qϑ ≤ ϕ2 for all ϑ ∈ Θ.

(C4) Kϕ2(ε0) < +∞.

(C4’ ) Kϕ2,2(ε0) < +∞.

(C5)

∫
M ε1
ϕ2

(x,R1)ϕ2(x)dx < +∞.

(C6)

∫
m−ε2
ϕ2
1/ϕ2

(x,R2)ϕ2(x)dx < +∞.

Under (C1-3), the successive densities of the Adaptive MH algorithm described above then
satisfy respectively (A1-3) and (A1’) if (C4-6) and (C4’) respectively hold.

Proof. For all t ≥ 0, we define Pϑt(x
t, ·), the generic adaptive transition kernel depending on

ϑt = ϑ(xt0):

Pϑt(x
t, dy) = qϑt(y)αϑt(x

t, y))dy

+

[
1−

∫
qϑt(z)αϑt(x

t, z)dz

]
δxt(dy).
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We denote as before by pt the marginal density of the AMH algorithm at iteration t. Define
first the two nonnegative functions controlling pt from Lemma 1 in Appendix A.2, Equa-
tions (13) and (14) using conditions (C1-3) of Proposition 1:

At(x) := a2tC1C
t−1
2

ϕ2
1(x)

ϕ2(x)

Bt(x) := 2(C3 + 1)t−1ϕ2(x)

At(x) ≤ pt(x) ≤ Bt(x), t ≥ 1. (8)

For (A1) we can notice, since G(·) ≥ 0, that from (8) we have:

Kpt(ε0) =

∫ (∫
G
(
|log ρ(x, y)|)pt(y)dy

))1+ε0

pt(x)dx

≤
∫ (∫

G
(
|log ρ(x, y)|)Bt(y)dy

))1+ε0

Bt(x)dx

≤
(
2(C3 + 1)t−1

)2+ε0
∫ (∫

G (|log ρ(x, y)|ϕ2(y)dy)

)1+ε0

ϕ2(x)dx.

For (A2), using (8) and the fact that

M ε1
pt (x,R1) = sup

r∈(0,R]

∫
B(x,r) p

t(y)dy

rdV d
≤ 2(C3 + 1)t−1 sup

r∈(0,R]

∫
B(x,r) ϕ2(y)dy

rdV d
,

we have:

Qpt(ε1, R1) ≤
(
2(C3 + 1)t−1

)2 ∫
M ε1
ϕ2

(x,R1)ϕ2(x)dx < +∞.

For (A3), using again (8) and the fact that

mpt(x,R) = inf
r∈(0,R]

Ipt(x, r) ≥ inf
r∈(0,R]

IAt(x, r) = a2tC1C
t−1
2 inf

r∈(0,R]
Iϕ2

1/ϕ2
(x, r)

we have

Tpt(ε2, R2) =

∫
m−ε2pt (x,R2)pt(x)dx ≤ 2(C3 + 1)t−1(

a2tC1C
t−1
2

)ε2 ∫ m−ε2
ϕ2
1/ϕ2

(x,R2)ϕ2(x)dx < +∞,

which conclude the proof.

5 Numerical Experiments and simulations

Before experimenting our approach on actual or synthetic MCMC and Bayesian models, we
have checked that K̂N,2(f, f) ≈ 0, for some known f for various dimensions 2 ≤ d ≤ 50 and
several parametric families (multivariate Gaussian, Student with heavy tails, and mixtures
of these). We have also checked that K̂N,2(f, fε) ≈ 0, where the sample iid∼ fε comes from
a convergent (bench) MCMC ran up to a large enough number of iterations, with (S2) in
mind. These preliminary experiments (not detailed in this article for brevity) give a numerical
evidence that the 2-NN estimate is approximately unbiased, at least when the two samples
come from approximately the same distribution, in comparison with the one-sample estimate.
This will be illustrated in the first two examples below.
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5.1 MCMC vs. AMCMC in situation (S1)

We illustrate this situation with a well-known synthetic model called the banana-shaped ex-
ample, a benchmark already used in several MCMC articles. We compare here standard
Random-Walk Hastings-Metropolis (RWHM) algorithms available in the EntropyMCMC pack-
age (Chauveau and Alrachid, 2019), vs. an Adaptive Metropolis (AM) sampler from Haario
et al. (2001), documented in Roberts and Rosenthal (2009) and for which a C code simulating
a single chain, is available online2. Our motivations for using this example are twofold:

1. illustrate the employment of the R package EntropyMCMC (Chauveau and Alrachid,
2019) 3 in an actual context where an external code for a AMCMC algorithm is available
online, and needs only to be run repeatedly to obtain N iid copies of simulated Markov
Chains, to which the Kullback criterion can be applied in a black-box manner after
importing into R the array (n, d,N) of simulated chains.

2. illustrate the real improvement of our new two-samples estimate K̂N,2(pt, f) in term of

bias elimination, in comparison with the MC + NN estimate K̂N,1(pt, f). This bias elim-
ination gives, at least in situation (S1), a practical tool for both convergence assessment
and MCMC’s comparisons.

Our experiment for this model has been set to dimension d = 20, and simulation of
N = 600 chains for n = 30, 000 iterations each. One important point is the choice of the
initial distribution p0 used to draw the starting position of the N chains. The code associated
to Roberts and Rosenthal (2009) sets θ0 = 100Id ∈ Rd, i.e. p0 ≡ δ100. This can be viewed as a
penalty for two reasons. First, the domain of interest of the banana-shaped pdf is similar to
that of the product of d normals N (0, 1), except for the first two coordinates that are (non-
linearly) transformed to get the banana shape. Hence a chain started from θ0 = (100, . . . , 100)
has to accept big jumps to “escape” from θ0 and reach the area of interest. A standard RWHM
is penalized in the sense that if its variance is large enough to escape from θ0, then it will
be too large then to explore the domain (smaller in comparison) efficiently. Conversely, if its
variance is calibrated small enough to explore the domain, it will not allow the chain to escape
from θ0. These situations can be highlighted by running a couple of RWHM algorithms and
look at their convergence and empirical rates of acceptation in the EntropyMCMC package.
Here the adaptation helps the AM by updating the variance matrix of the random walk, but
to compare with RWHM’s we choose instead p0 ≡ δ0, so that all chains are started from
the center of the domain. Secondly, even if a Dirac distribution is natural in a single chain
experiment, a diffuse initial distribution would have been preferable in our parallel chain setup.
However, we kept the Dirac initial distribution for simplicity, allowing us to use directly the
public code for the AM.

We compare three algorithms: two RWHM with variance parameters 1 (RW1) and 0.02
(RW2), and the AM from Haario et al. (2001) discussed in Roberts and Rosenthal (2009)
using the available code and tuning parameters. For these, we compared our two Kullback
estimates K̂N,k(pt, f) for k = 1, 2. Remember that here (S1) the asymptotic N -sample

involved in K̂N,2(pt, f) is drawn from the exact target pdf, i.e. θε iid ∼ f .
Figure 1 shows the plots of the criterion for both estimates. We can see that the two

RWHM’s stabilize at the same level, corresponding to the bias of the estimate K̂N (pt) indicated
on Fig. 1, top. The RW with variance parameter set to 1 (RW1) can here play the role of

2from J. Rosenthal, http://probability.ca/jeff/comp/
3https://CRAN.R-project.org/package=EntropyMCMC
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the benchmark, but we have to assume (e.g. by running more iterations, or using external
information like here because we actually know the target) that this is acceptable. Then the
bias can be estimated from a batch of last iterations. This RW1 converges (i.e. stabilizes at
the bias level) after about 15, 000 iterations, whereas RW2 with too small variance converges
more slowly, after about 25, 000 iterations. The important fact is that we can deduce the
same convergence and comparison properties much more directly buy looking at the criterion
based on the 2-NN estimate K̂N,2(pt, f), since it is unbiased so that a convergent algorithm
should stabilizes around 0, without the requirement of a benchmark MCMC. The AM does
not even converges during these n = 30, 000 iterations, for both estimates, i.e. the biased or
the unbiased. This is not really surprising since the advantage of this AMCMC is its ability
to found the area of interest where the mass of the target is, when started from far away. As
mentioned in Roberts and Rosenthal (2009) in their experiments, it takes many iterations for
the algorithm to learn this information; they announce n = 400, 000 for d = 100.

5.1.1 An automated convergence criterion

The fact that the new version of the convergence criterion (the 2-NN estimate) stabilizes
around 0 instead of a strongly biased value depending on a benchmark MCMC and the
target particularities, suggests to monitor the convergence in a automatic manner based on
the sequence t 7→ K̂N,2(pt, f), in a way to produce a convergence time comparing MCMC’s.
After some investigations, we choose a numerical procedure based on moving averages and
numerical derivatives, both required to be sufficiently smaller than some ε > 0 simultaneously.
An example of the result of this procedure is displayed in Figure 2. The ordering of the three
MCMC’s is as we suggest by looking at Figure 1, i.e. RW1 converges faster than RW2, and AM
does not satisfy the convergence criterion in these 30, 000 iterations (despite a short “visit”
near 0 for 4000 ≤ t ≤ 5000). The tuning parameters of the procedure (size of the moving
window, lag for differences, ε), together with the resulting convergence times, are given in the
plots.

5.2 AMCMC in situation (S2): Real data and Bayesian model

In this section we propose to compare various (adaptive)-MCMC strategies on the James-
Stein Bayesian model for baseball data studied in Rosenthal (1996). In that model, a sample
(Y1, . . . , YK) is observed where the Yi|θi ∼ N (θi, V ), i = 1, . . . ,K, and are conditionally
independent. The θi’s are unknown parameters to be estimated and the variance V is supposed
to be known. In addition θi|µ,A ∼ N (µ,A), i = 1, . . . ,K, and are conditionally independent.
The James-Stein estimator for θi is obtained, see Efron and Morris (1975), as the posterior
mean E(θi|Yi), where µ is a prior guess on θ’s and where (1 + A2)−1 is replaced by its
unbiased estimator (K−2)/

∑K
i=1(Yi−µ)2. To integrate µ and A as further parameters to be

estimated, Rosenthal (1996) introduce prior distributions µ ∼ N (µ0, σ
2
0) and A ∼ IG(a, b),

the inverse Gamma distribution with pdf proportional to exp(−b/x)x−(a+1). This leads for
(A,µ, θ1, . . . , θK) to a posterior distribution on the (K + 2)-dimensional state space X =
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[0,+∞)× RK+1 with pdf

f(A,µ, θ1, . . . , θk) = N (µ0, σ
2
0;µ)IG(a1, b1;A)×

K∏
i=1

[N (µ,A; θi)N (θi, V ;Yi)]

∝ exp(−(µ− µ0)2/2σ2
0) exp(−b1/A)/Aa1+1) (9)

×
K∏
i=1

[A−1/2 exp(−(θi − µ)2/2A)V −1/2 exp(−(Yi − θi)2/2V )].

This Bayesian posterior distribution is applied on a real baseball dataset (y1, . . . , y18) with
K = 18 observations, see Table 1 in Efron and Morris (1975). The state space is X ⊆ R20

and they use prior parameters µ0 = 0, σ2
0 = 1, a1 = −1 and b1 = 2. V is replaced by its fixed

empirical Bayes estimate.
In Roberts and Rosenthal (2009), the authors run a Regional Adaptive Metropolis Algo-

rithm (RAMA) on this example. The RAMA methods consists in partitioning the state space
X into a finite number of disjoint regions, i.e. X = X1∪̇ . . . ∪̇Xm. The algorithm then runs a
Metropolis algorithm with proposal Q(x, ·) = N (x, exp(2ri)), whenever x ∈ Xi, i = 1, . . . ,m.
Now if x ∈ Xi and y ∈ Xj , then σ2

x = exp(2ri) and σy = exp(2rj) the Metropolis acceptance
ratio for the move x→ y is:

α(x, y) = min

[
1,
π(y)

π(x)
exp

(
d(ri − rj)−

1

2
(x− y)2[exp(−2rj)− exp(−2ri)]

)]
.

In Roberts and Rosenthal (2009) the adaptation is calibrated in order to get an acceptance
probability close to 0.234 in each region. That acceptance rate was proved to be optimal in
certain high-dimensional settings, see references therein.

Usage of the entropy criterion with the RAMA online code As in Section 5.1, we
illustrate with this actual Bayesian model the relevance of our approach for evaluating and
tuning new AMCMC strategies, using only (repeatedly) the C code available online for this
RAMA algorithm4. In this code, the algorithm is designed for two regions, defined by a
(so-called) cutoff parameter c, which consequently acts as a tuning parameter for the RAMA
adaptive strategy. Indeed, several settings are proposed in the code, from c = 0.07 up to
c = 1000, but Roberts and Rosenthal (2009) claim themselves in Remark 3 that user specify
the regions by hand. We thus illustrate the usage of our methodology for selecting the cutoff
parameter. Specifically we:

• simulate N = 500 iid copies of RAMA chains for n = 105 iterations, and for three cutoff
values proposed in this code (0.07, 1.6, 3.08);

• define in the EntropyMCMC package the target pdf f proportional to the posterior,
as given by Equation(9);

• generate an “asymptotic sample” iid∼ fε, as required in situation (S2): in the present
case we ran N iid copies of one RAMA algorithm and retain the last “slice” at time n =
105 as the N -sample approximately f -distributed;

• for each cutoff value, compute the sequences of estimates t 7→ K̂N,1(pt, f) (NN + MC

terms), and t 7→ K̂N,2(pt, fε) (2-samples NN estimates).

4from J. Rosenthal, http://probability.ca/jeff/comp/
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• compare the behavior of the three RAMA w.r.t. convergence.

Results are displayed in Figure 3. Surprisingly, there are significative differences (up to
20, 000 iterations) in convergence times due to just these apparently slightly different cutoff
values. First, like in (S1), results illustrate the fact that (as expected and shown before)
the NN+MC estimate is biased but the three algorithms converge to the same stabilization
value that depends on the unknown normalization constant for f , plus the unknown bias
due to dimension. The biased estimate thus give insurance that, after n = 105 iteration, the
asymptotic sample is approximately f -distributed, validating the 2-NN estimation.

Secondly, both estimate types (NN+MC and 2-NN) deliver the same ranking between
the three competing AMCMC. Fortunately, as in (S1), the 2-NN estimate is approximately
unbiased, so that the target stabilization value of 0 can be used to produce a convergence
criterion in an automatic manner, as already illustrated in Figure 2.

6 PCA for unbiased Kullback estimation in large dimension

The automated convergence criterion we used in Section 5.1 is based on the fact that, for small
to moderate dimensions like, say, d ≤ 20, the 2-NN estimate K̂N,2(pt, f) is “almost unbiased”,
so that stabilization around the target value of zero delivers a right answer. However, we
noticed in further experiments that increasing the dimension up to larger values, this estimate
itself reveals some negative bias. Again, this bias is neglictible in most cases, in comparison
with the NN+MC estimate, but it may impact a numerical (automatic) detection of what
“stabilization near zero” means. Hence we developed a complementary approach to reduce
the dimension of the stochastic process under study.

Recently various authors considered that the convergence rate of MCMCs in high dimen-
sion, which basically degenerates as the dimension grows to infinity, could be considered/scaled
with more or enough accuracy by taking into account the convergence over domains of sig-
nificant interest with respect to the target density, basically with a significant amount of
information related to the landscape related to f , (see, e.g. Atchadé, 2019; Yang and Rosen-
thal, 2019; Maire and Vandekerkhove, 2018).

We propose in this Section to develop these intuitions by numerically showing that the
rates of convergence of MCMC algorithms in high dimension could be approximated with
enough precision and virtually no bias if they are looked on a lower dimension linear subspace
provided by a Principal Component Analysis (PCA) method (main percentage of inertia)
instead of the whole space. The main advantage then is that our criterion based on the
stabilization of K(pt, f) around zero can be derived in an automatic manner, even if the
dimension d of the state space is large. Let us denote by

θε = (θε(1), . . . ,θε(d)) :=

 θε1(1) . . . θε1(d)
...

...
θεN (1) . . . θεN (d)

 , (10)

the indifferently (S1) or (S2) N × d benchmark data matrix, corresponding to a N -sample
iid ∼ f or f ε. In this notation θ(1), . . . , θ(d) are the d coordinates of any θ ∈ Rd, and the
sample mean of each column is supposed to be shifted to zero. The PCA method is as an
orthogonal linear transformation that transforms the data to a new coordinate system such
that the greatest variance by some projection of the data comes to lie on the first coordinate
(called the first principal component), the second greatest variance on the second coordinate,
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and so on. The transformation is defined by a set of d-dimensional vectors of weights or
loadings (uε1, . . . , u

ε
d) corresponding to the eigenvectors of the covariance or correlation matrix

based on the data matrix θε (depending on the metric used), and associated to the sorted
eigenvalues λ1 ≥ λ2 ≥ . . . λd. The projection of the i-th benchmark individual on the q-th
principal axis is obtained by

ψi(q) =< θεi , u
ε
q >=

d∑
j=1

θεi (j)u
ε
q(j), q = 1, . . . , d, (11)

which defines the (simulated) data according to this new coordinate system: for all 1 ≤ q ≤ d,
the N -coordinates vector ψ(q) = (ψ1(q), . . . , ψN (q))T denotes the so-called q-th principal
component of the PCA. The next step consists then in determining a reduced number d′ < d
of principal axes such that the percentage of variability explained by this subset, that is∑d′

j=1 λj/
∑d

j=1 λj , is considered as acceptable.
Turning back to the statistical viewpoint, each “individual” ψi = (ψi(1), . . . , ψi(d)) is

distributed as the image of f ε by the θε-PCA transformation (enhancing the spreading on
subspaces that matter in the multidimensional composition of the targeted density f ε). Un-
fortunately, the images of the N simulated realizations θε from the benchmark process are
not iid anymore after this transformation, since the loadings depend on this whole dataset
itself. This is true also for their d′ first coordinates so that the N × d′ dataset ψ cannot be
used directly for statistical purposes, namely NN entropy estimation. One way of correcting
this is to actually simulate the benchmark data matrix for 2N realization (at the expand of
some additional computing time in situation (S2)), and:

1. retain a first N -sample for building the θε-PCA loadings (uε1, . . . , u
ε
d). In common PCA

analysis, the N (simulated) data from the benchmark process that have been used to
compute the PCA axis are called the “active” dataset,

2. use the second N -sample, say θεS for the needed statistical estimates based on projection
of these simulated data as in (11). Again in PCA analysis, the individuals that do not
participate to the principal axes determination, but are simply projected after the PCA
using the loadings, are called the “supplementary” dataset, hence the notation.

It is clear then that the d′ first principal components provide a N -sample in this reduced di-
mension, iid from the d′-dimensional marginal of the image of f ε by the PCA. The transformed
simulated realizations is a N × d′ matrix, the rows of which form an iid sample (ψ1, . . . , ψN ).

Once this preliminary θε-PCA analysis is done, we propose to compute for the MCMC
process of interest (θt)t≥0 the projection of its N realizations on the first d′ principal axis
of the θε-PCA, for every time t. More precisely this step leads to consider for each t the
N × d matrix Ξt of the N simulations in Rd, with rows ξt1, . . . , ξ

t
N , and to compute the d′ first

projections with the analog of Equation (11). We obtain d′ vectors of N -coordinates, each one
being the projection using the θε-PCA, of the i-th simulated chain from the MCMC process
of interest at time t,

ξ
t
q = Ξtuεq q = 1, . . . , d′.

Note that the iid property of the N simulated and projected individuals ξ
t
1, . . . , ξ

t
N is preserved

for the same reason given above.

Finally, let us denote by ht and hε the d′-dimensional pdf of the iid samples (ξ
t
1, . . . , ξ

t
N )

and (ψ1, . . . , ψN ) respectively. These are image distributions, by the PCA transformation,
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of pt and f ε respectively. The bottom line of our approach lies in the study of the Kullback
divergence t → K(ht, hε) when t increases, which can be estimated using the two-sample
estimate K̂N,2(ht, hε) as in Equation (7). As said before, this is the advantage of this estimate
which does not require any analytical expression of these two densities, that are not available
here.

6.1 An example for PCA-based entropy estimation

To illustrate the approach detailed above, we have built a synthetic model (situation (S1)),
designed so that the PCA is efficient, i.e. most of the inertia of the full space (simulated) data
θε is kept in the three first principal axis. The target pdf corresponds to a multivariate Gaus-
sian in dimension d = 50 separated in 3 independent blocs with high within-block correlation,
as detailed in Table 1.

Table 1: Block structure for a synthetic d = 50 model resulting in efficient PCA.

dimension mean variance within-block correlation

block 1 30 0 100 0.95
block 2 15 1 4 0.90
block 3 5 2 1 0.80

The idea is that each block is essentially summarized by one principal component (PC),
these PC’s being ordered by decreasing variance corresponding to the decreasing block di-
mensions and magnitude of within-block correlation. The d − 3 remaining PC’s correspond
to coordinates remaining from each block (merely like “noise”). Note that block means and
variances have no impact on the PCA, but are chosen to impact the convergence property of
our candidate MCMC, a RWHM with variance 1 started from p0 ≡ N (0, 1)⊗d. To investigate
the effect of the number of chains over the remaining bias, we set the experiment size to
N = 500, 1000 and 2000 parallel chains, ran for n = 100, 000 iterations.

Figure 4 summarizes typical results we obtain. The top-left panel shows the strong bias
of the NN+MC estimate K̂N,1(pt, f), and also the slow impact of N in decreasing this bias.
The three other plots are using the same y scale. The top-right panel shows the obvious
improvement brought by the 2-NN estimate K̂N,2(pt, f) for this d = 50 example: the Kullback
divergence estimates are almost unbiaised, but a small negative bias is nevertheless noticeable
for N = 500 iid chains, and also slightly for N = 1000 chains. In this case, an automatic
detection of stabilization near zero based on the N = 500 chains run could lead to a wrong
decision. The bottom panels shows the 2-NN estimates K̂N,2(ht, hε) as detailed in Section 6,
computed after projections of the chain’s paths on the optimal subspaces of dimension d′ = 2
(left) and d′ = 8 (right). Thanks to the efficient PCA for this model, the d′ = 2 subspace
already retains 84% of the total inertia. The important conclusion is that one can see that
the estimates are unbiased, even for N = 500 chains (the number of chains have an effect
on the variance, as always), but also that they deliver the same conclusion concerning the
convergence time, since the decays and stabilization around zero are similar.
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7 Conclusion

In this paper, we have proposed a methodological approach to evaluate (A)MCMC efficiency
and control of convergence on the basis of simulation of parallel chains only. No theoretical
— and often unavailable — study of the MCMC kernels regarding their convergence rate
is needed. We started with a review of our preliminar developments, the first estimates we
considered, and the difficulty these first approaches were suffering due to a noticeable bias
slowly decreasing in high dimensions. We have then defined for this MCMC and parallel chains
framework a way to use a more recent estimate for the Kullback divergence between any two
densities, based on crossed NN-type estimates and iid samples from both densities. Our
numerical experiments show an efficient bias reduction in moderate dimensions, permitting
and automatic (A)MCMC convergence diagnostic based on a practical, easy-to-understand
graphical criterion. We also proved here the consistency of these entropy estimates under
recent uniform control conditions, for the successive densities of a generic class of MCMC
algorithm to which most of the methods proposed in the recent literature belong. Finally, for
larger dimensions problems, we also proposed an original solution based on PCA projections
of the simulated chains, for monitoring MCMC convergence in lower dimension where the
automatic criterion above is usable and reliable.

Since our methods require intensive simulations that may be computationally demanding,
all our algorithms are progressively implemented in the R package EntropyMCMC (Chauveau
and Alrachid, 2019) for the R statistical software (R Core Team, 2018). The first version of this
package is already available on the CRAN mirrors5, and takes advantage of recent advances
in high performance (parallel) computing. Most of the examples shown in this paper have
been ran with the development version of it, that will be made available in future updates.

A further interesting topic could be the generalization and adaptation of the Leonenko
and Kosachenko entropy/Kullback estimator to the online mixing and stationary case. This
step could allow to detect, with a much less computing effort, some asymptotic bias between
a known to converge benchmark algorithm (in the stationary regime) and an (Adaptive)-
algorithm to be tested.

A Appendix: Controlling the successive marginals

We provide in this Appendix some technical results which allow us to control the successive
marginals of some generic AMH algorithms, in order to prove the key inequality (8) in the
proof of Proposition 1.

A.1 The MH independence sampler case

To help intuition, we start here by showing how successive marginals of a simple independent
MH sampler can be controlled using the assumptions (C1-3) of Proposition 1 (where q does
also simply not depends on the past). Recall that “independent” here means that the proposal
density q does not depend on the current position of the chain. Let us denote the probability
of accepting the move y from x,

α(x, y) = min

(
1,
f(y)q(x)

f(x)q(y)

)
.

5https://CRAN.R-project.org/package=EntropyMCMC
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Then

p1(y) =

∫
p0(x)q(y)α(x, y)dx+

∫
p0(y)q(z)(1− α(y, z))dz

≥ aϕ1(y)

[∫
ϕ1(x)α(x, y)dx

]
.

We have also

α(x, y) ≥ min

(
1,
af(y)

q(y)

)
≥ min

(
1,
aϕ1(y)

ϕ2(y)

)
= a

ϕ1(y)

ϕ2(y)

since aϕ1 ≤ q ≤ ϕ2. This leads to

p1(y) ≥ a2ϕ
2
1(y)

ϕ2(y)

∫
ϕ1(x)dx = a2ϕ

2
1(y)

ϕ2(y)
C1.

Iterating, we have

p2(y) ≥ q(y)

∫
p1(x)α(x, y)dx ≥ a4C1

[∫
ϕ2

1(x)

ϕ2(x)
dx

]
ϕ2

1(y)

ϕ2(y)
. (12)

By induction we prove that

pt(y) ≥ q(y)

∫
pt−1(x)α(x, y)dx

≥ a2t

[∫
ϕ1(x)dx

]
.

[∫
ϕ2

1(x)

ϕ2(x)
dx

]t−1
ϕ2

1(y)

ϕ2(y)

= a2tC1C
t−1
2

ϕ2
1(y)

ϕ2(y)
.

To majorize p1(y) we can simply notice that p1(y) ≤ q(y) + p0(y) ≤ 2ϕ2(y) and iterate to
get pt(y) ≤ (t+ 1)ϕ2(y). However this will not hold in the adaptive case.

A.2 The Adaptive MH (AMH) case

We turn now to the case of the AMH generic algorithm defined in Section 4. For more obvious
notations, we will not use the common description of an adaptive MCMC algorithm through
a Markov kernel indexed by ϑt = ϑ(xt0) as we did previously, but directly by the trajectory
from all the past xt0 to indicate dependence.

Lemma 1. Let (ϕ1, ϕ2) be nonnegative functions satisfying conditions (C1-3) of Proposi-
tion 1, and qxt0(y) be an adaptive proposal density depending on the past such that af ≤ qxt0 ≤
ϕ2 for any xt0 ∈ (Rd)t+1. Then, for all y ∈ Rd,

a2tC1C
t−1
2

ϕ2
1(y)

ϕ2(y)
≤ pt(y) (13)

and
pt(y) ≤ 2(C3 + 1)t−1ϕ2(y), (14)

where the constants a,C1, C2, C3, are defined in Proposition 1.
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Proof. For all t ≥ 1, we define the generic AMH transition a kernel depending on the past
xt−1

0 = (x0, . . . , xt−1):

Pxt−1
0

(xt−1, dy) = qxt−1
0

(y)αxt−1
0

(xt−1, y)dy

+

∫
qxt−1

0
(z)
[
1− αxt−1

0
(xt−1, z)

]
dz δxt−1(y) dy (15)

where

αxt−1
0

(xt−1, y) = min

(
1,
f(y)qxt−1

0
(xt−1)

f(xt−1)qxt−1
0

(y)

)
is the probability of accepting the move y from xt−1 in the MH step.

We handle first the minorization part (13). The technique is similar to the simplest inde-
pendence sampler case of Appendix A.1, except that here we need to minorize the transition
kernel itself as follows:

Pxt−1
0

(xt−1, dy) ≥ qxt−1
0

(y)αxt−1
0

(xt−1, y) dy.

Similarly to the independent sampler case we have:

αxt−1
0

(xt−1, y) ≥ min

(
1,

af(y)

qxt−1
0

(y)

)
≥ aϕ1(y)

ϕ2(y)
,

which implies

Pxt−1
0

(xt−1, dy) ≥ a2ϕ
2
1(y)

ϕ2(y)
dy.

Proceeding in that way we have the following minorization for the densities:

pt(y) dy =

∫
p0(x0) dx0Px0(x0, dx1)Px10(x1, dx2) . . . Pxt−1

0
(xt−1, dy)

≥ a2t

∫
ϕ1(x0)

ϕ2
1(x1)

ϕ2
2(x1)

. . .
ϕ2

1(xt−1)

ϕ2(xt−1)
dxt−1

0

ϕ2
1(y)

ϕ2(y)
dy

= a2tC1C
t−1
2

ϕ2
1(y)

ϕ2(y)
dy.

To obtain the majorization (14) of the densities, we notice from (15) that:

Pxt−1
0

(xt−1, dy) ≤ qxt−1
0

(y)dy + δxt−1(y) dy ≤ ϕ2(y)dy + δxt−1(y) dy = Φ(xt−1, dy),

where
Φ(x, dy) := ϕ2(y)dy + δx(y) dy

is a non-normalized transition kernel, i.e.
∫

Φ(x, dy) = C3 + 1. This leads to

pt(y) dy =

∫
p0(x0) dx0Px0(x0, dx1)Px10(x1, dx2) . . . Pxt−1

0
(xt−1, dy)

≤
∫
p0(x0) dx0Φ(x0, dx1)Φ(x1, dx2) . . .Φ(xt−1, dy).

19



We can now study separately the right hand side term of the above inequality. For the first
step we have:

p1(x1) dx1 =

∫
p0(x0) dx0Px0(x0, dx1) ≤

∫
p0(x0) dx0Φ(x0, dx1)

=

∫
p0(x0)

[
ϕ2(x1)dx1 + δx0(x1) dx1

]
dx0

= ϕ2(x1)

[∫
p0(x0)dx0

]
dx1 +

[∫
p0(x0)I{x1}(x0) dx0

]
dx1

≤ ϕ2(x1) dx1 + p0(x1)dx1

≤ 2ϕ2(x1) dx1.

Similarly for the second step (the integrals being w.r.t. dx0 and dx1),

p2(x2) dx2 =

∫ [∫
p0(x0)Px0(x0, dx1) dx0

]
Px10(x1, dx2)

≤
∫ [

2ϕ2(x1) dx1
]

Φ(x1, dx2)

≤
(∫

ϕ2(x1) dx1

)
2ϕ2(x2) dx2 + 2ϕ2(x2) dx2

= 2(C3 + 1)ϕ2(x2) dx2.

So that, by induction,
pt(xt) dxt ≤ 2(C3 + 1)t−1ϕ2(xt) dxt.

This bound degenerates as t→ +∞ but it is finite for each fixed iteration t.

B Entropy formula intuition

For a given pdf f in Rd the associated differential entropy is H(f) = −
∫
Rd f(x) log f(x)dx. To

estimate this entropy from a sample (X1, . . . , XN ) drawn from f , Kozachenko and Leonenko
(1987) introduced the following estimator:

HN =
1

N

N∑
i=1

ξi(N), where ξi(N) = log
(
ρdi Vdγ̃(N − 1)

)
(16)

where ρi = min (ρ(Xi, Xj) : j ∈ {1, . . . , N} \ {i}), γ̃ = eγ where γ = −
∫∞

0 e−t log tdt is the

Euler constant, and Vd = πd/2/Γ(d/2 + 1) is the volume of the unit ball in Rd. In the sequel
we will denote B(x, r) =

{
y ∈ Rd : ρ(x, y) ≤ r

}
the ball with radius r ≥ 0 and centered at

point x ∈ Rd.
The consistency proof for this estimator relies on two main steps: i) proving first that

E(|ξ1(N)|) < +∞ and E(ξ1(N))→ H (asymptotic unbiasedness); ii) the risk of HN is asymp-
totically null. The construction of HN itself is directly connected to step i). To understand
this point the key technical argument is that

E(ξ1(N)|X1 = x)→ − log f(x), as N → +∞, (17)

the Monte Carlo average in (16) converging somehow towards limN→+∞E(E(ξ1(N)|X1)) =
E(E(limN→+∞ ξ1(N)|X1)) = E(− log f(X)) = H(f). Let us explain now briefly how the
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convergence result (17) happens. Considering the conditional cdf of eξ1(N) given {X1 = x} it
comes:

FN,x(u) = P (eξ1(N) ≤ u|X1 = x)

= P (ξN,x ≤ u), where ξN,x = min
j=2,...,N

ρd(x,Xj)Vdγ̃(N − 1)

= P ( min
j=2,...,N

ρ(x,Xj) ≤ rN (u)), where rN (u) = (u/Vdγ̃(N − 1))1/d

= 1− (1− P (X ∈ B(x, rN (u)))N−1

= 1−

(
1−

∫
B(x,rN (u))

f(y)dy

)N−1

.

Noticing that Vol(B(x, rN (u)) = Vd(rN (u))d = u/(γ̃(N − 1)), and that according to the
Lebesgue differentiation theorem

∫
B(x,rN (u)) f(y)dy/Vol(B(x, rN (u)) = f(x) +αN (x, u) where

αN (x, u)→ 0 as rN → +∞, it comes that

lim
N→+∞

FN,x(u) = 1− lim
N→+∞

(
1− u

γ̃(N − 1)
×

∫
B(x,rN (u)) f(y)dy

Vol(B(x, rN (u))

)N−1

= 1− exp

(
−f(x)u

γ̃

)
.

This last results shows in particular that the random variable ξN,x converges in law towards a
ξx random variable with E(f(x)/γ̃) distribution, where E denotes the exponential distribution.
As a consequence log ξN,x converges also in law towards log ξx as N → +∞. Noticing that for
any random variable η such that η ∼ E(λ), for λ > 0, we have:

E(log(η)) =

∫ +∞

0
log uλe−λudu =

∫ +∞

0
e−t log tdt︸ ︷︷ ︸− log λ = − log(λγ̃). (18)

− γ = − log(γ̃) (19)

Considering now λ = f(x)/γ̃ we obtain the wanted result: E(log ξx) = − log f(x), the final
convergence in expectation of E(log ξN,x) → E(log ξx) = − log f(x), as n → +∞ being han-
dled using the Theorem 3.5 in Billingsley (1995) under some uniform integrability condition
on the random variables family {log ξN,x; N ≥ N0(x)}, where N0(x) is suitable rank to be
determined.
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Figure 1: Banana-shaped target pdf, d = 20. Top: default plot from the EntropyMCMC
package for MCMC’s comparisons using the NN+MC biased estimate K̂N,1(pt, f). Bottom:

the two-sample estimate K̂N,2(pt, f).
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Figure 2: Banana-shaped target pdf, d = 20: Automatic convergence criterion for RW1, RW2
and AM based on stabilization near 0 of the sequences of two-sample estimates t 7→ K̂N,2(pt, f).
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Figure 3: Baseball data and RAMA algorithm, d = 20. Top: default plot from the Entropy-
MCMC package for three values of cutoff between regions, using the NN+MC biased estimate
K̂N,1(pt, f). Bottom: Same setting with the two-sample estimates K̂N,2(pt, f).
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Figure 4: Gaussian target for efficient PCA, d = 20. Top left: default plot from the EntropyM-
CMC package for three values of N , using the NN+MC biased estimate K̂N,1(pt, f). Top right:

2-NN estimate K̂N,2(pt, f) on the full space d = 50. Bottom: 2-NN estimates K̂N,2(ht, hε) as
detailed in Section 6, for two projections in dimensions d′ = 2 and d′ = 8.
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