Gel et grêle en viticulture et arboriculture - Etat des lieux des dispositifs de protection contre les aléas climatiques

Matthieu Hirschy, Michel Badier, Laurent Bernos, Guillaume Delanoue, Thierry Dufourcq, Thierry Fabian, Baptiste Labeyrie, Taran Limousin, J. Gautier

To cite this version:
Matthieu Hirschy, Michel Badier, Laurent Bernos, Guillaume Delanoue, Thierry Dufourcq, et al.. Gel et grêle en viticulture et arboriculture - Etat des lieux des dispositifs de protection contre les aléas climatiques. [Rapport Technique] ACTA - Association de Coordination Technique Agricole. 2020. hal-02769435

HAL Id: hal-02769435
https://hal.archives-ouvertes.fr/hal-02769435
Submitted on 4 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Gel et grêle
en viticulture et
arboriculture

Etat des lieux des dispositifs
de protection contre les
aléas climatiques
Rédaction
HIRSCHY Matthieu – Acta

Relecture
BADIER Michel – Chambre d'agriculture de Loir et Cher
BERNOS Laurent – Chambre d'agriculture de la Gironde
DELANOUE Guillaume – IFV
DUFOURCOQ Thierry – IFV
FABIAN Thierry – INAO
GAUTIER Jacques – INAO
LABEYRIE Baptiste – CTIFL
LIMOUSIN Taran – IFV

Mai 2020
Préambule

Ce document s’inscrit dans le cadre de la concertation sur la gestion des risques en agriculture mise en place par le Ministre de l’Agriculture et de l’Alimentation, lancée en juillet 2019 avec les représentants agricoles, les assureurs et les réassureurs, autour de trois thématiques :

- Articulation entre assurances et dispositifs de gestion des risques
- Sensibilisation, pédagogie et prévention
- Problématiques particulières au secteur arboricole

Il a pour objectif de réaliser un état des lieux exhaustif des dispositifs de protection mobilisés en France – contre les aléas de gel et de grêle pour les cultures arboricoles et viticoles. Pour chacun d’entre eux seront présentés une évaluation de leur efficacité, leurs avantages et inconvénients ainsi qu’une approche technico-économique de leur déploiement sur les exploitations. Ces éléments ont été rassemblés sur la base de la documentation scientifique et technique existante ainsi que sur les expertises recueillies au sein des structures sollicitées : instituts techniques (CTIFL et IFV), chambres d’agricultures départementales et régionales, INAO. De ce fait, il peut être remarqué que :

- Les données disponibles à l’instant de cet état des lieux ne permettent pas de proposer des indicateurs technico-économiques (e.g. le coût de fonctionnement par heure et par hectare) uniformes pour l’ensemble des dispositifs. Un travail approfondi de normalisation de ces indicateurs, nécessitant l’acquisition et l’analyse de données supplémentaires, permettrait une approche comparative plus fine des dispositifs étudiés.
- Les aléas étudiés dépendent de phénomènes climatiques de grande ampleur – dont les mécanismes physiques qui les sous-tendent font encore l’objet de recherche scientifiques – et au caractère aléatoire en termes de fréquence et d’intensité. Ils échappent dès lors aux conditions classiques d’expérimentations contrôlées qui permettraient de disposer de références scientifiques permettant une évaluation simple et comparative de leur efficacité. Pour nombre de dispositifs de protection, cela explique le peu de références disponibles dans la littérature et la difficulté qui en découle de dégager un caractère générique à leurs conclusions. Aussi, la poursuite d’expérimentations en conditions réelles et aux protocoles robustes continuera de permettre l’acquisition des références supplémentaires face à la diversité des situations d’apparition des aléas dans des contextes de productions locaux.

Enfin, si certaines études récentes d’ampleur régionale ont permis d’identifier les niveaux de déploiement des dispositifs de protection au sein de plusieurs bassins de production, il n’en existe pas une vue d’ensemble à l’échelle nationale. L’instruction d’un travail aboutissant à une caractérisation fine du niveau de déploiement de chaque dispositif sur le territoire national et des surfaces protégées serait dès lors complémentaire de l’état des lieux ici présenté.
Table des matières

Introduction ... 7

Dispositifs de lutte contre le gel ... 8

- Caractérisation climatique du gel ... 9
 - Gel advectif ... 9
 - Gel radiatif ... 9

- Prévision à moyen et court termes des gelées ... 11

- Impacts du gel .. 12
 - En viticulture ... 12
 - En arboriculture .. 13

- Méthodes de lutte passives .. 15
 - Choix de la parcelle ... 15
 - Choix variétal ... 15

- Pratiques culturales .. 15

- Nutrition de la plante ... 16

- Méthodes de lutte actives .. 16

- Brassage de l’air ... 17

- Tour anti-gel .. 17

- Hélicoptère .. 19

- Extracteur d’air froid ... 19

- Drone ... 20

- Chauffage statique .. 21

- Combustibles solides .. 21

- Combustion de gaz ... 22

- Combustion de fuel .. 23

- Câbles chauffants .. 23

- Chauffage dynamique ... 24

- Frost Guard ... 24

- Frost Buster ... 25

- Heat Ranger ... 26

- Aspersion .. 26

- Autres dispositifs ... 28

- Voile de fumée et brouillard ... 28

- Bâche antigel .. 29

- Bactérie antigel .. 29

- Eliciteurs ... 30

- Bilan sur les dispositifs de protection contre le gel ... 31
Dispositifs de lutte contre la grêle ..32
Caractérisation climatique de la grêle ...33
Prévision des orages avec risque de grêle ...34
Systèmes de détection ..34
Services d’alerte ..34
Impacts de la grêle en arboriculture et en viticulture35
Lutte passive ..36
Lutte active et mécanique ..37
 Lutte mécanique par des dispositifs type filet ..37
 En arboriculture ...37
 Couverture totale de la parcelle ..38
 Filet monorang ...39
 En vigne ..40
 Couverture totale de la parcelle ..40
 Filet monorang ...40
Lutte active par perturbation du climat ..42
 Protection par propagation d’ondes de choc ..42
 Protection par ensemencement ...44
 Générateurs à iodure d’argent ...44
 Diffusion de sels hygroscopiques par ballon ...46
Efficacité des dispositifs de protection par ensemencement47
Innocuité des dispositifs de protection par ensemencement47
 Iodure d’argent ...48
 Sels hygroscopiques ...48
 Bilan sur les dispositifs de protection contre la grêle49

Conclusion ...50

Références Gel ..51
Références Grêle ..53
Introduction

La qualification sous le terme « aléas climatiques » des phénomènes de grêle et de gel repose sur le caractère incertain de leurs dates d’apparition, de leur répétition sur une période donnée (i.e. de leur fréquence), de leur localisation et de l’ampleur des zones impactées ainsi que sur la difficulté d’en prévoir l’intensité.

Face à ces aléas, différents dispositifs de protection sont existants et déployés au sein des filières agricoles susceptibles d’être impactées. Ces dispositifs ont pour vocation de limiter les dégâts sur la plante et de protéger les futures récoltes, en réduisant l’exposition des productions aux aléas climatiques et en en atténuant les dégâts.

La gestion du risque résultant de l’apparition de ces phénomènes climatiques repose donc à la fois sur la capacité d’en prévoir la venue et sur la capacité d’apporter une protection aux productions pour en réduire la vulnérabilité.

L’évolution constatée du changement climatique, si elle peut se traduire par une plus forte variabilité de la fréquence d’apparition et de l’intensité de ces phénomènes climatiques, a également des répercussions sur les stades phénologiques des cultures dont on constate dorénavant des apparitions plus précoces. En viticulture en particulier, l’avancée des stades phénologiques représente un risque plus important de dégâts face au gel de printemps. Ces éléments questionnent sur les moyens à disposition des exploitants pour en gérer les risques.

Pour apporter des éléments de réponse aux exploitants vis-à-vis des moyens à leur disposition pour gérer les risques face aux aléas de gel et de grêle, ce document réalise un état de lieux des dispositifs de protection existants. On s’intéressera spécifiquement aux productions viticoles et arboricoles, en mettant en avant l’efficacité des dispositifs, leurs avantages / inconvenients ainsi que les éléments technico-économiques les caractérisant. Ce travail mobilise les connaissances et l’expertise acquises au sein d’organismes de R&D agricoles, en particulier des instituts techniques agricoles et des chambres d’agriculture.

Il est à noter que pour les productions sous AOP, très majoritaires en viticulture et étroitement liées au milieu naturel au travers de leur terroir, il convient de respecter les règles de production qui peuvent encadrer ou exclure certains dispositifs de protection, en lien avec les effets qu’ils peuvent avoir sur le méso climat de la vigne et donc la physiologique de la plante ou encore sur le paysage. Il en sera fait mention pour les dispositifs concernés.

Pour l’analyse des dispositifs proposés pour la vigne, l’INAO procède par expérimentations. Conduites à la demande des organismes de défense et de gestion des AOP pour examiner la compatibilité de nouveaux dispositifs avec les fondements du concept d’appellation. Le cas échéant, ces dispositifs pourront être intégrés dans les conditions de production, appellation par appellation. Elles n’ont pas pour but de réaliser une évaluation de l’efficacité des dispositifs.
Dispositifs de lutte contre le gel
Caractérisation climatique du gel

Le gel est défini par l'état de la température lorsqu'elle s'abaisse en dessous de 0 °C, dans des conditions standard de pression, ce qui provoque la congélation de l'eau. Cette définition est cependant différente de la réalité des gelées pour les agriculteurs, qui en considèrent les répercussions sur la plante. On distingue donc le gel « météorologique » (température inférieure à un seuil) du gel « agronomique » pour lequel sont considérés les dégâts observés sur la plante.

Il existe 2 types de gel pouvant avoir des répercussions sur la plante, qui dépendent des conditions météorologiques du milieu : le gel radiatif et le gel advectif.

Gel advectif

Il se définit comme un refroidissement généralisé du climat à hauteur des productions agricoles, pouvant avoir lieu la nuit et/ou en journée. Ce refroidissement se caractérise par l'arrivée d'une masse d'air froid, résultant soit d'une invasion d'air polaire (issu généralement du nord-est de l'Europe) soit d'un système dépressionnaire. Cette masse d'air froid est généralement accompagnée de vents dont la vitesse est parfois forte. Le gradient de température (à partir du sol jusqu'à 30 m) est nul, d'où une homogénéité spatiale de la température de la masse d'air.

Le gel advectif se prolonge souvent sur une longue période et il est le mécanisme principal des gelées en hiver. Cependant, il peut également se produire au printemps, et avoir des conséquences sur les productions agricoles pour lesquelles sont constatées l'apparition précoce des stades phénologiques (débourrements, floraison, …) du fait des effets du changement climatique.

Gel radiatif

Plus courant que le gel advectif, dit également d'évaporation ou de rayonnement, il est fréquent au printemps. Le gel radiatif se produit uniquement au cours de la nuit, lorsque les rayons du soleil cessent de réchauffer le sol et apparaît dans le cas de conditions atmosphériques précises : lorsque la vitesse du vent est faible ou nulle (très faible brassage de l'air) et que le ciel est clair (non nuageux). Le sol perd la chaleur accumulée durant la journée, par rayonnement thermique, sans que cette perte ne soit compensée par un rayonnement inverse,
soit par effet de serre (la chaleur perdue par le sol est bloquée par la couverture nuageuse et est restituée au sol), soit par un apport radiatif atmosphérique.

Ce phénomène apparait uniquement à proximité du sol, où la température est sensiblement plus froide qu’en hauteur, créant une inversion de température en altitude : l’air froid, plus dense que l’air chaud, reste à proximité du sol.

Les gels radiatifs sont fréquents au printemps et présentent une hétérogénéité spatiale importante, potentiellement sur de grandes étendues.

Des paramètres locaux (la couverture nuageuse, l’humidité, le vent, la topographie, la couverture végétale, ...) peuvent induire de fortes différences thermiques entre deux lieux proches. En particulier, le taux d’humidité de l’air au niveau du sol permet de distinguer l’intensité du gel radiatif selon deux types :

- La gelée blanche, lorsque le taux d’humidité de l’air est élevé (la température du point de rosée\(^1\) est supérieure à -2 °C). Ces gelées concernent surtout les bas de coteaux et les zones humides. Elles se caractérisent par la formation d’une fin couche de cristaux de glace. Elles se manifestent lors d’un temps clair pour des températures comprises entre -3 et -5 °C. L’intensité des dégâts varie de quelques pousses atteintes à l’ensemble de la jeune végétation.

- La gelée noire, lorsque le taux d’humidité de l’air est faible (air sec) et que la température du point de rosée (*) est inférieure à -2 °C. Elles se manifestent lorsque les températures sont basses, en dessous de -5 °C. La perte de chaleur par évaporation de la plante, et donc l’abaissement de la température des organes végétatifs, est importante : les gelées noires sont équivalentes en intensité à des gelées d’hiver et peuvent avoir pour effet de détruire totalement les jeunes pousses lorsqu’elles surviennent au printemps.

\(^1\) La température du point de rosée est la température à laquelle l’air doit être refroidi pour que la vapeur d’eau commence à se condenser. Elle dépend de l’humidité relative de l’air et de la température de l’air. Plus la température du point de rosée sera faible, plus la perte de chaleur par les organes végétatifs des plantes pourra être importante si elle n’est pas compensée (par exemple par un sol humide ou par un dispositif de protection contre le gel).
Pour conclure :

Avant de mettre en œuvre une ou plusieurs stratégies de lutte contre le gel, au risque de ne pas protéger efficacement les parcelles, il est important d’être en mesure de déterminer le type de gel auquel la parcelle sera confrontée. À noter qu’il peut arriver que ces 2 types de gel interviennent simultanément et engendrent des dégâts plus conséquents.

Pour aider à la caractérisation du risque de gel en fonction des conditions atmosphérique et appuyer la prise de décision en matière de lutte contre le gel, la clé de diagnostic suivante a été mise au point :

<table>
<thead>
<tr>
<th>Annexe d’un risque de gel</th>
<th>Température air < 0 °C</th>
<th>NON</th>
<th>Température air < 1,1 °C</th>
<th>NON</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUI</td>
<td>Vitesse vent > 8 km/h</td>
<td>OUI</td>
<td>Vitesse vent > 16 km/h</td>
<td>OUI</td>
</tr>
<tr>
<td>NON</td>
<td>Ciel clair</td>
<td>OUI</td>
<td>Gelée noire</td>
<td>OUI</td>
</tr>
<tr>
<td>NON</td>
<td>Risque de dommages fables (ciel couvert)</td>
<td>OUI</td>
<td>Gelée blanche</td>
<td>OUI</td>
</tr>
<tr>
<td>NON</td>
<td>Température point de rosée > -2,2 °C</td>
<td>OUI</td>
<td>Gelée noire</td>
<td>OUI</td>
</tr>
<tr>
<td>NON</td>
<td>Température point de rosée < -2,2 °C</td>
<td>OUI</td>
<td>Gelée blanche</td>
<td>OUI</td>
</tr>
</tbody>
</table>

Clé de diagnostic de l’apparition et du type de gel – © Barclay Poling E, 2008

Prévision à moyen et court termes des gelées

La mise en œuvre efficace des dispositifs de lutte contre le gel dépend de la capacité à anticiper les conditions à risque ainsi qu’à piloter la lutte avec précision – déclenchement, suivi et arrêt. La prévision à moyen terme, plusieurs jours en amont du phénomène, est permise par la mise à disposition par Météo-France de services gratuits de prévision ou via son espace PreviExpert (payant) offrant la possibilité de disposer d’alertes personnalisées. Des organismes régionaux ou des prestataires de services proposent également des prévisions à moyen terme couplées à des systèmes d’alerte par SMS ou mail.

A court terme, afin de déclencher et de piloter au mieux la lutte, des outils d’aide à la décision pourront être mobilisés et équiper les parcelles ou des lieux de référence, comme des avertisseurs (à positionner dans la zone la plus froide) ou des sondes humides.
Des thermomètres secs et humides, couplés à des abaques de pagoscope permettent également de déterminer le point de rosée, aidant à l'identification du risque de gel et d'appuyer le pilotage de la lutte (déclenchement / arrêt). Des systèmes de mesure numérique permettant également d'assurer cette tâche. Ils peuvent être couplés à des systèmes d'alerte SMS et/ou automatiser le déclenchement des dispositifs de protection.

Impacts du gel

Pour qu'il y ait dégât de gel, il faut que les tissus d'un ou plusieurs organes végétatifs de la plante soient lésés par la prise en glace de l'eau qu'ils contiennent. En cas de température inférieure à 0 °C, l'eau reste à l'état liquide dans un état dit de surfusion tant qu'il n'y a de rupture de la surfusion. Cette rupture est provoquée par des noyaux de congélation (poussières, particules minérales, grosses molécules à l'intérieur des tissus...) autour desquels aura lieu la cristallisation des molécules d'eau environnantes. Des dégâts liés au gel n’auront lieu qu’à partir du moment où cette rupture de surfusion s’est réalisée. La prise en glace autour des noyaux de congélation progressera de l’extérieur vers l’intérieur des tissus, dans toutes les directions tant qu’il y aura de l’eau en présence. La progression de la prise en glace dépendra donc de l’intensité et de la vitesse du refroidissement (éclatement des cellules végétale si trop rapide) mais également de l’espèce et du stade phénologique des cultures concernées.

En viticulture

La vigne peut être atteinte par les gelées de l’automne au printemps. Des seuils critiques de températures, selon les stades phénologiques, ont pu être établis par des travaux empiriques.

En automne

Les gelées précoces, intervenant avant la chute des feuilles, sont surtout préjudiciables pour les jeunes vignes dont le cycle végétatif est souvent plus long (en particulier lié à des plantations trop tardives). Les organes herbacés (feuilles, rameaux, vrilles) sont atteints lorsque la température s’abaisse en dessous de -2,5 °C. Ces gelées peuvent provoquer une mise en dormance prématurée de la vigne et perturber l’aoûtement, c'est-à-dire la mise en stock des ressources de la plante pour l’hiver.

En hiver

La vigne, alors en repos végétatif, peut supporter des températures jusqu’à -20 °C si le refroidissement est lent et -15 °C s’il est rapide. Les gelées d’hiver sont un facteur limitant de la culture de la vigne et il convient de cultiver des cépages plus ou moins résistants en fonction des régions. Dans le cas d’une durée longue de froid intense, les bourgeons, les bras et la
souche peuvent être touchées et aller jusqu’à provoquer la mort de la souche, en particulier pour les jeunes plantations et quelques cépages très sensibles (Malbec par exemple).

Au printemps

La vigne reprend son activité végétative et est donc plus sensible aux gelées. La sensibilité des bourgeons au froid varie en fonction de leur stade phénologique : plus les organes sont développés, plus ils sont sensibles au gel. Les seuils critiques passent ainsi de -10 °C à -0,5 °C, entre le stade dormant et les premières feuilles déployées.

Les dégâts provoqués par des épisodes de gel printanier sont plus fréquents que pour les épisodes de gel hivernal mais moins grave pour la pérennité de la souche. Lorsque le bourgeon primaire est endommagé, les bourgeons secondaires et tertiaires prennent la relève ce qui peut néanmoins réduire la récolte de façon importante selon la fertilité du cépage.

Le gel printanier peut également induire un décalage de la pousse entre les parties gelées et non gelées, ayant pour conséquence un décalage de maturité et une perte de temps pour le travail en vert et pour la taille.

En étant une préoccupation majeure pour le viticulteur, puisqu’il affecte la récolte pour l’année en cours, le gel printanier peut aussi impacter la taille de formation sur de jeunes plantations, en plus de retarder la maturité des fruits.

En arboriculture

Les dégâts liés au gel sur les cultures arboricoles pourront comme en vigne, être occasionnés par des gels hivernaux caractérisés par des températures très basses, ou par des gels printanières affectant les organes producteurs.

Les gelées printanières pourront affecter quantitativement ou qualitativement la qualité de la production. Les gelées intervenant lors de la floraison ou de la nouaison des fruitiers sont les plus sensibles et peuvent avoir des conséquences importantes sur les résultats économiques des exploitations. En touchant les pistils ou les ovaires des fruits, entrainant leur noircissement, celle-ci ont pour conséquence de limiter la production de l’arbre.

Les gelées plus tardives pourront affecter qualitativement, voire quantitativement la récolte. Dans le cas où le fruit ait commencé à se former, il peut arriver que la glace arrive à décoller des tissus, qui s’ils ne se ressoudent pas entraîne des dégâts.
partiels. Dans le cas de l'épiderme d'un jeune fruit, le résultat est la formation d'un anneau de gel. Des craquelures ou microlésions peuvent également se former, rendant les fruits plus sensibles aux pathogènes.

Au sein des tissus internes des fruits, la prise en glace de l'eau extracellulaire a également pour effet, par pression hydrostatique, d'inciter l'eau intracellulaire à sortir. Si la prise en glace est trop rapide du fait d'une température baissant trop rapidement, l'augmentation du volume de l'eau gelée aura pour conséquence la rupture et donc la mort de la cellule. Si la température descend plus lentement (environ 0,5 à 1 °C par heure), cellule augmentera sa concentration en solutés à la suite de sa déshydratation et ne sera pas affecté par le gel. Toutefois, dans le cas où le gel est trop intense ou s'il dure trop longtemps, la cellule continuera à perdre de plus en plus d'eau jusqu'à ce que sa déshydratation soit irréversible.

Les seuils de sensibilité au gel dépendront des espèces fruitières et peuvent être données à titre indicatif, les dégâts dépendant également de la rapidité et de la durée du refroidissement.

La présence de microlésions sur les fruits à la suite d'épisodes de gel peut également causer des dégâts indirects, en devenant des voies de contamination favorisant le développement de maladies (par exemple, cas de bactériose à pseudomonas sur abricotier).

<table>
<thead>
<tr>
<th>Stades phénologiques</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abricotier</td>
<td>-4 °</td>
<td>-3,5 °</td>
<td>-3 °</td>
<td>-2,2 °</td>
<td>-1,2 °</td>
<td>-0,5 °</td>
<td>-0,5 °</td>
</tr>
<tr>
<td>Cerisier</td>
<td>-4 °</td>
<td>-3,5 °</td>
<td>-2,2 °</td>
<td>-1,7 °</td>
<td>-1,1 °</td>
<td>-1,1 °</td>
<td>-1 °</td>
</tr>
<tr>
<td>Pêcher</td>
<td>-4 °</td>
<td>-3,3 °</td>
<td>-2,8 °</td>
<td>-2,2 °</td>
<td>-1,8 °</td>
<td>-1 °</td>
<td>-1 °</td>
</tr>
<tr>
<td>Prunier</td>
<td>-4 °</td>
<td>-3 °</td>
<td>-2,8 °</td>
<td>-2 °</td>
<td>-1,5 °</td>
<td>-1 °</td>
<td>-0,5 °</td>
</tr>
<tr>
<td>Poirier</td>
<td>-6 °</td>
<td>-4,5 °</td>
<td>-2,8 °</td>
<td>-2 °</td>
<td>-1,6 °</td>
<td>-1,5 °</td>
<td>-1 °</td>
</tr>
<tr>
<td>Pommier</td>
<td>-4 °</td>
<td>-3,5 °</td>
<td>-2,2 °</td>
<td>-2 °</td>
<td>-1,8 °</td>
<td>-1,6 °</td>
<td>-1,6 °</td>
</tr>
</tbody>
</table>

Seuils de sensibilité d'espèces fruitières – © CTIFL et CIRAME

Seuil critique - Dégâts 10% - Températures exprimées en °C - Cellules vides : valeurs non disponibles.
Méthodes de lutte passives

Plusieurs méthodes préventives, relevant d’une lutte passive, permettent d’atténuer les effets des gelées sur les cultures et sont communes aux productions arboricoles et viticoles. Elles sont à appliquer avant l’apparition du risque de gel, parfois dès la plantation et sont vraisemblablement les plus économiques et les plus efficaces pour éviter de manière préventive l’apparition de dégâts. Cependant, ces méthodes de lutte ont un impact limité et ne constituent pas seules des moyens de protection suffisants contre des épisodes de gel.

Choix de la parcelle

S’il convient évidemment d’éviter d’installer la culture en zone gélive, il faut particulièrement éviter l’implantation dans les « creux de terrain » ou les fonds de vallées, dans lesquels les masses d’air froid risquent de s’accumuler et stagner.

La présence d’aménagements paysagers, comme des haies compactes d’arbres ou des bandes boisées, joue également un rôle :

- En augmentant le risque de gel si les aménagements sont positionnés dans le bas d’une parcelle, favorisant l’accumulation de l’air froid plutôt que d’en favoriser l’écoulement ;
- En réduisant le risque de gel si les aménagements permettent de limiter les flux d’air froid. Dans ces cas, l’implantation d’espèces à feuillages persistants est à favoriser.

Les zones des parcelles de vignes et des vergers adjacentes à des parcelles disposant d’une couverture végétale (prairie ou culture céréalière) sont également plus sensibles au gel, en favorisant la présence d’un environnement humide du fait de la biomasse présente.

Les parcelles adjacentes à celles de la vigne et des vergers, et de la même manière, la présence de parcelles adjacentes disposant d’une couverture végétale (est plus défavorable que des parcelles nues et les zones en bordure de telles parcelles seront plus sensibles au gel.

Choix variétal

Le choix de l’espèce et de la variété conditionne la précocité vis-à-vis du débourrement. Le choix d’une variété ou d’un cépage avec un débourrement tardif peut limiter les risques de dégâts. En vigne, ce choix peut cependant être restreint dans le cas de zones d’appellation contrôlée qui font l’objet de cahiers des charges limitant les cépages pouvant être implantés.

Pratiques culturales

La mise en œuvre de certaines pratiques permet également de réduire le risque de gel :
• En vigne, une taille tardive peut retarder de 10 jours le développement de bourgeons, ce qui peut être suffisant pour les mettre hors d’atteinte des gelées printanières (attention cependant aux pleurs qui peuvent couler sur les bourgeons).
• En vigne, un buttage sur le cavaillon permet de lutter contre les gelées hivernales en protéger la base du cep par recouvrement de terre.
• Un sol non travaillé et/ou non enherbé (même si cela n’est pas à encourager) limite les effets des gelées en permettant au sol de perdre de l’énergie thermique dont bénéficiera la culture. Il est par exemple constaté une température de près de 3 °C (prise à 40 cm du sol) supérieure entre un sol nu et tassé et un sol travaillé, ainsi qu’une température de 2 °C inférieure entre un sol enherbé et un sol tassé. Il est à noter qu’un enherbement peu dense se comporte presque comme un sol nu et il est important de veiller à faucher ou broyer le couvert plusieurs jours avant un épisode de gel, afin de lui laisser le temps de disparaître et de ne plus produire de mulch isolant.

Nutrition de la plante

En protection des vergers, le CTIFL met également en avant l’importance de la nutrition de la plante pour résister aux épisodes de gel. Il est ainsi mentionné que la limitation des apports d’azote, en particulier tardifs, permet de réduire la présence d’acides aminés dans les tissus par rapport aux protéines : « la balance protéines / acides aminés doit pencher du côté des protéines pour plus de résistance ». Également, « une bonne alimentation en calcium et potassium est favorable à une meilleure résistance de la plante au gel ».

Méthodes de lutte actives

Complémentaires des méthodes de lutte passives, les méthodes de lutte actives sont utilisées pour modifier localement – à l’échelle de la parcelle – le microclimat. Le choix de la méthode et sa mise en œuvre dépendra de la température prévue et du seuil critique de la culture, selon le stade phénologique atteint. Plusieurs dispositifs de protection, relevant de plusieurs méthodes de lutte actives, peuvent également être déclenchés simultanément pour améliorer l’efficacité de la protection contre le gel.

Pour chacune des méthodes de lutte ci-dessous il sera rappelé le principe d’action sur le gel. Les différents dispositifs préciseront le gain thermique apporté et son efficacité en fonction du type de gel considéré ainsi que les éléments technico-économiques à disposition. La majorité des dispositifs présentés peuvent être mobilisés pour une lutte contre le gel en viticulture et en arboriculture.

Aussi, ce document n’a pas vocation à présenter de manière exhaustive tous les dispositifs de protection contre le gel existant sur le marché français et international. Il est privilégié ici de traiter de la diversité des moyens d’actions à disposition pour lutter contre le gel et de les présenter au travers des dispositifs les plus couramment rencontrés dans les filières arboricoles et viticoles françaises.
Brassage de l’air

Principe : Le brassage d’air a pour objectif d’assurer une homogénéisation de l’air froid à proximité du sol avec l’air « plus chaud » présent en altitude (environ 10-15 m au-dessus de la surface), ou de déplacer la masse d’air froid qui s’est accumulée au niveau du sol.

S’il contribue au réchauffement du microclimat, le brassage peut induire un assèchement des bourgeons qui augmente leur sensibilité au gel en faisant perdre environ 1 °C.

Dans le cas de fortes gelées, le moyen de lutte ne se suffit pas à lui seul et pourra être complété par un apport d’énergie thermique, comme avec des dispositifs de chauffage par bougies par exemple.

Tour anti-gel

Les tours anti-gel sont des dispositifs fixes ou mobiles, dont une hélice montée de 10 à 11 m de haut à l’extrémité d’un bras articulé (potentiellement repliable) ou d’une tour, réalise une action de brassage. L’hélice est légèrement inclinée, de 5 à 7 degrés, de sorte à aspirer l’air du côté extérieur, plus chaud, pour le refouler côté intérieur, vers le bas de la parcelle. L’hélice tourne à 360 degrés sur l’axe de la tour afin de couvrir l’ensemble de la parcelle, à un rythme d’environ une rotation toutes les 4 minutes (temps maximum au-delà duquel la stratification de l’air se remet en place). Des modèles mobiles sont également disponibles mais atteignent des hauteurs moins élevées que les dispositifs fixes (8 m maximum) et la surface protégée ainsi que leur efficacité sont plus limitées. Ces tours permettent d’empêcher la stratification de l’air au niveau des zones à protéger et confèrent également une meilleure résistance du végétal au gel en limitant le dépôt de rosée et donc la prise en glace.

Un investissement collectif dans ces dispositifs permet de couvrir plus efficacement un ensemble de parcelles de plusieurs producteurs et de ne pas avoir à allouer un espace et un
accès au sein d’une parcelle (d’autant plus s’il est fait le choix de tours fixes). Les tours peuvent alors être installées en abords de parcelles et leur positionnement, en fonction de la direction des arrivées d’air froid et de la topographie, est déterminant pour optimiser la zone couverte et l’efficacité du dispositif.

| Efficacité | Une tour anti-gel couvre une superficie maximale allant de 5 ha (tour fixe) à 3 ha (tour mobile). De récentes études tendent également à prouver que la surface protégée par une tour est maximisée lorsque la vitesse de rotation axiale de la tour est lente et que les tours mobiles sont moins efficaces pour augmenter la température au niveau de la culture (expliqué par un moteur moins puissant et une hauteur plus limitée). Les tours anti-gel sont efficace jusqu’à -4 °C mais doivent être déclenchées avant que les températures soient négatives. Elles permettent de protéger du gel radiatif si le différentiel de température entre le sol et au niveau de l’hélice est suffisant, d’au moins 1 °C. En général, le gain maximal de température correspond à la moitié de la différence entre la température de la couche d’air froid près du sol et celle de la couche plus chaude située au-dessus.

Contré le gel advectif, il a été démontré que plusieurs tours faisant front au courant d’air froid offrent une bonne protection en détournant la vague d’air.

Pour améliorer leur efficacité, des systèmes de chauffage peuvent être installés, soit au pied de la tour avec un ou plusieurs brûleurs (propane ou gasoil) soit par des chaufferettes. La combinaison de tours et d’un dispositif d’aspiration est également possible.

D’après le CTIFL, les tours disposent d’une efficacité maximale en cas de gel radiatif avec une forte hygrométrie, par effet « sèche-cheveux ».

Les observations et études menées montrent l’importance du positionnement de la tour, selon la topographie de la zone à protéger et des flux d’airs, pour en optimiser la zone d’efficacité.

On pourra mentionner que l’efficacité des tours en vigne sera appréhendée dans le cadre du PEI SICTAG et intégrera un travail de modélisation des couches d’air et la gestion cohérente d’un réseau (heure de mise en route, déclenchement…).

A noter que la température de l’air en altitude diminue généralement au cours de la nuit, impliquant une réduction potentielle de la surface de protection.

| Avantage | Peut faire l’objet d’un déclenchement et d’un arrêt automatisé en fonction des conditions météorologiques.

Demande peu de main d’œuvre et une surveillance lors du fonctionnement quasi nulle.

Les modèles repliables permettent de limiter l’impact visuel.

| Inconvénient | Bruit important, de 45 à 50 dB à 300 m pour les dispositifs mobiles (généralement à 4 ou 5 pales) et de 70 à 100 m pour les dispositifs fixes (généralement à 2 pales). Des tours fixes à 4 ou 5 pales font actuellement leur apparition sur le marché français et permettraient de réduire le bruit généré (réduction à évaluer).

Ces dispositifs sont inefficaces dans le cas de vent supérieurs à 10 km/h.

Efficacité limitée si la couche d’inversion (plus chaude) est à une altitude plus élevée que celle de la tour.

Risque de vandalisme (vol de fuel, de pièces moteur).

L’installation de tours fixes doit faire l’objet d’une déclaration préalable en secteur sauvegardé, en site classé ou en réserve naturelle (3 à 6 mois pour la procédure de déclaration et environ 10 mois pour la procédure d’autorisation) et son installation doit être conforme au PLU de la commune.

| Coût | Investissement de 30 000 € (type Tow and Blow) à 47 000 € (tour fixe repliable)

Amortissement et frais financiers de 1 000 €/ha (type Tow and Blow) à 800 €/ha (tour fixe)
Hélicoptère

La lutte par hélicoptère consiste à réaliser des passages réguliers, toutes les 4 à 7 minutes ou toutes les 20 minutes selon les sources, afin d’éviter que la stratification de l’air ne se remet en place. La mobilisation de ce dispositif, du fait de son coût et de l’importance de la surface couverte, est difficilement envisageable autrement que dans le cas d’une mutualisation des coûts entre plusieurs producteurs. Ce dispositif est plus spécifiquement mobilisé pour la lutte contre le gel en viticulture.

L’hélicoptère doit être mobilisé dès la veille du gel et doit être équipé de capteurs de températures pour localiser le niveau de la couche d’inversion des températures.

Des sources de chaleur supplémentaires peuvent être apportées en abords de la parcelle, comme par la combustion de tas de paille ou de bois.

Efficacité	L’efficacité de l’action de l’hélicoptère dépendra en premier lieu de la présence en altitude d’une couche d’air plus chaude qu’en surface. Elle dépendra également de la fréquence des rotations et de la durée de l’intervention, qui conditionnent le renouvellement de la couche d’air à la surface de la zone à protéger. L’altitude optimale dépendra du niveau de la couche d’inversion. Il n’a pas été constaté qu’une augmentation de la vitesse de l’hélicoptère a une incidence sur le niveau de protection. Le gain de température en surface peut atteindre de 3 à 4,5 °C, mais reste conditionné à la présence d’une couche d’air en altitude. Ce dispositif n’est efficace que face à des gels radiatifs.
Avantage	Permet de couvrir d’importantes surfaces, jusqu’à 30 ha par appareil sans vent, y compris les zones comprenant des bas-fonds dans lesquels s’accumule les masses d’air froid. Peu de main d’œuvre et de surveillance sont nécessaires.
Inconvénient	Bruit important, de l’ordre de 100 dB à 300 m. Nécessite une autorisation de vol spéciale pour décoller avant le « lever du jour aéronautique ». Risque d’accident (présence ligne EDF…).
Coût	Environ 7 500 € pour protéger 25 ha sur une matinée, soit environ 300 €/ha par matinée.

Extracteur d’air froid

Dans le cas de terrains ayant une topographie ou des aménagements paysagers favorisent l’accumulation par gravité de masses d’air froid dans les zones les plus basses des parcelles ou les zones en cuvette, des dispositifs d’extraction de l’air froid (appelé SIS : Selective Inverted Sink) permettent de l’expulser en dehors de la zone à protéger. Une hélice horizontale aspire l’air froid présent en surface pour l’expulser en altitude à plusieurs dizaines de mètre au-dessus de la couche d’inversion des températures et différents modèles sont existants, déterminant la surface protégée. L’alimentation du dispositif est possible soit par moteur, soit
par un raccordement à la prise de force d’un tracteur selon la taille du modèle choisi. Ce dispositif est peu mobilisé en Europe et surtout mobilisée outre-Atlantique pour la protection de vergers.

Il est également proposé d'installer des voiles réduisant la circulation de l'air en surface ou des haies à feuillage dense autour des parcelles à protéger pour améliorer l’efficacité de l’extracteur, en limitant le retour de masses d’air froid.

Il est également proposé d'installer des voiles réduisant la circulation de l'air en surface ou des haies à feuillage dense autour des parcelles à protéger pour améliorer l’efficacité de l’extracteur, en limitant le retour de masses d’air froid.

Efficacité

Dépendant du modèle choisi, de 0,5 à 20 ha, de la topographie et des aménagements paysagers existants.
Efficace seulement sur les gels radiatifs.
Pas suffisamment de recul en France (plus largement déployés à l’étranger, sur verger et vigne).
Des expérimentations terrain menées à l’étranger (Espagne, Iran, Canada, États-Unis…) mettent en avant des résultats positifs en matière de réduction des dégâts sur les cultures par rapport à des parcelles non protégées et d’augmentation des températures autour du dispositif (jusqu’à 4 °C selon les références). Les raisons pour lesquelles ces résultats positifs sont rarement investiguées ou explicitées et peu d’entre elles visent à déterminer si ce dispositif permet effectivement d’augmenter la température dans son rayon d’action. Des expérimentations (Canada en 2015) proposant un suivi précis de l’évolution des températures et des flux d’airs au sein des parcelles (selon des positionnements différents du dispositif dans et autour de la parcelle) concluent que l’appareil ne montre une efficacité que lorsque le refroidissement de l’air est principalement dû à un phénomène d’écoulement d’air froid. L’emplacement du dispositif et la topographie jouent un rôle essentiel et conditionnent fortement son efficacité. Une connaissance précise des flux d’air au sein des parcelles est déterminante pour garantir son efficacité est donc nécessaire.

Avantage

Les plus petits modèles peuvent être mobiles.

Inconvénient

Bruit généré par le moteur.

Coût

De 13 000 à 26 000 € selon le modèle

Drone

Une solution de protection, le drone Protégel, récompensée par les Chambres d’agricultures lors du concours Agreen Startup (2ème prix) est en expérimentation depuis 2018. D’une envergure de 2 m pour un appareil de 25 kg, le drone suit un plan de vol préprogrammé. Le mouvement des pâles effectue un brassage de l’air, avec un mode d’action similaire à la mobilisation d’un hélicoptère (lutte contre gel radiatif). Il peut également être équipé de brûleurs de gaz qui réchauffe la masse d’air (lutte contre gel adventif).

Il n’a pas été trouvé de référence sur l’efficacité de ce dispositif. Le prix annoncé est de 20 000 à 30 000 € par appareil et il est proposé dans un premier temps pour une application en viticulture. La question de la réglementation autour de l’usage de ce type de dispositif devra être également étudiée s’il devait faire l’objet d’une commercialisation du fait du durcissement
Chauffage statique

Principe : Les méthodes de lutte associées consistent à réchauffer la couche d’air présente à hauteur des cultures, majoritairement par combustion de matières inflammables au sol. Par convection de l’air chaud produit, la culture profite d’une augmentation de la température de la masse d’air. Il s’agit d’un des plus vieux moyens de lutte contre le gel, qui peut être associé à d’autres dispositifs de lutte contre le gel en cas de fortes gelées. Compte tenu des fortes contraintes en disponibilité de la main d’œuvre, il s’agit de dispositifs davantage adaptés à une lutte ponctuelle contre le gel. Pour une meilleure efficacité de ces dispositifs, il est également recommandé de préférer plusieurs points de chauffage dans la parcelle plutôt que peu de points de capacité de chauffage plus importante, la majeure partie de l’énergie thermique produite (estimée entre 75 et 85 %) étant perdue par convection : l’air chaud produit, plus léger, s’élève et est perdu. La majeure partie de l'énergie thermique produite (estimée entre 75 et 85 %) étant perdue par convection : l’air chaud produit, plus léger, s’élève et est perdu au-dessus de la parcelle. Elle ne bénéficie pas au réchauffement de la masse d’air en surface et au contact effectif des cultures.

Combustibles solides

Ces dispositifs, consistent en la combustion d’un matériau (bougies, paille, sciure, copeaux de bois, graisse animales, granulés, blocs de paraffine purs ou mélangés à d’autres matériaux combustibles…) dans un contenant métallique appelé chaufferette. Une diversité de type de chaufferettes, allant du simple seau à des dispositifs semblables à des poêles à granulées est proposée aux producteurs, rendant variable le nombre de chaufferettes nécessaires pour protéger les parcelles, d’autant plus que le nombre de chaufferettes à disposer sera variable selon l’intensité du gel en présence. Pour des dispositifs simples de type seau, entre 200 et 500 unités sont nécessaires pour protéger un hectare.
Efficacité
Gain thermique de 2 à 2,5 °C, efficace uniquement en cas de gelées de faibles intensités ne dépassant pas -6 °C.
S’agissant principalement de chaufferettes ouverte, la multiplication des points de chauffage dans la parcelle est à privilégier.

Avantage
Efficace sur gel advectif et radiatif.

Inconvénient
Besoin d’une autorisation de brûlage de la part de la mairie et restriction possible selon l’environnement adjacent de la parcelle (bois à proximité etc.) et les arrêtés préfectoraux en vigueur.
Nécessite une main d’œuvre importante pour la mise en place et la surveillance (allumage / fermeture), limitant la mobilisation de ce dispositif en situations de gelées fréquentes et aux petites parcelles.
Selon le combustible, l’allumage peut se révéler délicat et la combustion (et donc la protection) irrégulière.
Pouvoir de l’air par la combustion et éventuel voile de fumée.

Coût
Investissement très variable selon le type de combustible choisi et le nombre de chaufferettes au sein de la parcelle : de 1 500 à 9 000 €/ha.
Coût de main d’œuvre et frais de fonctionnement (très variable selon le type de combustible et le nombre de chaufferette) à ajouter à chaque déclenchement (par exemple, environ 850€/ha pour 4 h de protection pour un chauffage avec 400 bougies).

Combustion de gaz

Ce dispositif comporte environ 150 brûleurs par hectare, alimentés en propane sous forme gazeuse à faible pression. La flamme générée par la combustion est produite au sein de cylindres métalliques qui servent de plaques rayonnantes.

Système 2Bgaz—© Canton du Valais

<table>
<thead>
<tr>
<th>Efficacité</th>
<th>Efficace jusqu’à -8 °C et gain thermique d’au moins 5 °C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avantage</td>
<td>Efficace sur gel advectif et radiatif.</td>
</tr>
<tr>
<td></td>
<td>La combustion du propane, si elle est complète, est dite propre (production de CO2 et de la vapeur d’eau).</td>
</tr>
<tr>
<td></td>
<td>Possibilité d’automatisation du dispositif et de réglage de la puissance de chaufte.</td>
</tr>
<tr>
<td>Inconvénient</td>
<td>Besoin important en main d’œuvre, au moins pour la mise en place du dispositif, si l’allumage est automatisé.</td>
</tr>
<tr>
<td>Coût</td>
<td>Investissement de l’ordre de 33 000 €/ha</td>
</tr>
<tr>
<td></td>
<td>Coût de main d’œuvre et frais de fonctionnement à ajouter à chaque déclenchement</td>
</tr>
</tbody>
</table>
Combustion de fuel

Ce dispositif comporte en moyenne 180 à 200 brûleurs par hectare, avec une consommation maximum de 400 l/h de fuel. Le matériel est installé en début de campagne dans la parcelle, avant d’entrer dans la phase de sensibilité phénologique au gel de la culture et retiré après les risques de gelées. Le fuel pulvérisé est envoyé sous pression dans les tuyaux et alimente les chauffelettes où se réalise la combustion. Ce dispositif est plutôt recommandé pour les petites surfaces, du fait du besoin important en main d’œuvre.

<table>
<thead>
<tr>
<th>Efficacité</th>
<th>Efficace jusqu’à -8 °C et gain thermique d’au moins 5 °C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avantage</td>
<td>Efficace sur gel advectif et radiatif. Possibilité d’automatisation du dispositif et de réglage de la puissance de chauffe.</td>
</tr>
<tr>
<td>Inconvénient</td>
<td>Besoin important en main d’œuvre, au moins pour la mise en place du dispositif, si l’allumage est automatisé. Risque de pollution du sol en cas de fuite. Pollution de l’air par la combustion du fuel. Le stockage du fuel, s’il ne se fait pas par cuves amovibles, doit être conforme à la réglementation.</td>
</tr>
<tr>
<td>Coût</td>
<td>Investissement entre 11 000 et 15 000 €/ha Coût de main d’œuvre et frais de fonctionnement à ajouter à chaque déclenchement</td>
</tr>
</tbody>
</table>

Câbles chauffants

Ce dispositif, commercialisé pour un usage en viticulture et non mobilisé en arboriculture, consiste à fixer des câbles électriques chauffants le long du palissage de la vigne, sur lequel les baguettes et les bourgeons sont alignés. De fait, ce dispositif est mobilisable pour les vignes conduites en taille Guyot mais non utile pour les vignes en taille gobelet. La diffusion de la chaleur intervient sur un rayon de 5 à 10 cm, pour une température de chauffage pouvant atteindre 30 °C. L’alimentation électrique des câbles par le biais d’une armoire électrique peut être assurée par un transformateur fixe, un groupe électrogène mobile ou un groupe électrogène associé à la prise de force d’un tracteur. Des dispositifs proposent des câbles autorégulant la chaleur fournie en fonction de la température extérieure grâce à des sondes de température permettant un déclenchement automatique en dessous d’une température seuil.
Efficacité
Efficace sur gel advectif et radiatif. Expérimentés en Champagne il y a une dizaine d'années, la protection avoisine les 95 % si le palissage est bien réalisé, avec une efficacité pouvant aller jusqu'à -5 °C.

Avantage
Le déclenchement peut être automatisé à partir d'un seuil de température et la température autorégulée selon le gradient de température présent sur la parcelle.

Inconvénient
Incompatible avec la taille Chablis. Risque de dégâts sur les câbles lors des opérations de taille. Besoin d'une alimentation électrique sur la parcelle.

Coût
Investissement de l'ordre de 30 000 à 40 000 €/ha pour les câbles, les armoires de contrôle et le transformateur. Coût de fonctionnement : quelques centaines d'euros par hectare et par an (abonnement EDF)

Chauffage dynamique

Principe : De la même manière que pour les dispositifs de chauffage statique, les dispositifs de chauffage dynamique permettent un réchauffement de la masse d’air présente au niveau des cultures depuis des dispositifs projetant de l’air chaud. Il peut s’agir de dispositifs mobiles ou fixes. La mise sur le marché de ces dispositifs est relativement récente et leur niveau de déploiement en France métropolitaine est plutôt restreint en comparaison aux dispositifs par brassage de l’air, aspersion et chauffage statique. Outre des témoignages de producteurs qui les mobilisent, peu de recul est disponible vis-à-vis de leur efficacité face à une diversité de situations de gel.

Frost Guard

Ce dispositif est constitué d’une turbine couplée à un brûleur à gaz qui réchauffe l’air et le diffuse sur une distance d’environ 50 m de chaque côté. L’air est réchauffé à environ 80-100 °C en sortie de turbine avec une alimentation au propane. La consommation est de l’ordre de 40 à 45 kg de propane par heure.

Plusieurs modèles sont proposés en fonction des cultures à protéger et se distinguent en particulier par des hauteurs d’éjection de l’air différentes (au ras du sol en verger et certains vignobles, à 1 m de hauteur pour les cultures basses comme les fraises et les vergers, voire au-dessus du dispositif pour des cultures plus élevées. Les dispositifs destinés aux vignes et vergers peuvent pivoter à 360°.

Dispositif Frost Guard – © Société de Viticulture du Jura
<table>
<thead>
<tr>
<th>Efficacité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retour expérimentations CTIFL : agit par effet « sèche-cheveux » qui confère une meilleure résistance du végétal au gel en limitant le dépôt de rosée et donc la prise en glace. Efficace maximale en cas de gel radiatif avec une forte hygrométrie.</td>
</tr>
<tr>
<td>D’après la chambre d’agriculture de l’Yonne (2017) et en vigne, efficacité de 10 à 20 m autour de la machine. Efficacité réduite en cas de vents supérieurs à 10 km/h.</td>
</tr>
<tr>
<td>Données constructeur : Efficace sur tout type de gel. Protection variable selon la topographie, de 0,5 à 0,7 ha. Gain de 2 à 7 °C selon le nombre de machines installées.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inconvénient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuisance sonore, d’environ 50 dB à 50 m de distance du dispositif. A positionner au milieu des parcelles.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coût</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investissement de l’ordre de 8 000 € par appareil</td>
</tr>
<tr>
<td>Coût de fonctionnement d’environ 250 €/ha/an</td>
</tr>
</tbody>
</table>

Frost Buster

A la différence du dispositif Frost Guard, le dispositif Frost Buster est tracté par tracteur. Un parcours de circulation dans la parcelle doit être établi pour revenir au même endroit au maximum toutes les 10 minutes avec une vitesse de passage comprise entre 4 et 8 km/h.

Plusieurs modèles sont proposés, se distinguant par le nombre de 1 à 2 sorties d’airs et leur positionnement (position haute ou basse).

<table>
<thead>
<tr>
<th>Efficacité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retour expérimentations CTIFL : agit par effet « sèche-cheveux » qui confère une meilleure résistance du végétal au gel en limitant le dépôt de rosée et donc la prise en glace. Efficace maximale en cas de gel radiatif avec une forte hygrométrie.</td>
</tr>
<tr>
<td>Données constructeur : Efficace sur tout type de gel si les passages sont réguliers. Protection d’environ 8 ha. Gain de 1 à 2 °C.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Avantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispositif mobile.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inconvénient</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Coût</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environ 18 000 € pour un appareil couvrant 5 ha</td>
</tr>
<tr>
<td>Coût de fonctionnement (dont recharge de gaz) et main d’œuvre à ajouter</td>
</tr>
</tbody>
</table>
Heat Ranger

Ce système, développé en Nouvelle Zélande et peu déployé en France hormis en situation de tests, consiste en un canon oscillant fixe qui propulse de l’air chaud à partir d’un brûleur à gaz. La présence d’une citerne pour alimenter en gaz le dispositif est nécessaire. D’après le constructeur, un appareil permet de protéger de 10 à 20 ha selon la topographie et l’intensité du gel en délivrant un air d’environ 30 °C en sortie du dispositif.

Ce dispositif est proposé pour la lutte contre le gel en viticulture et en arboriculture, mais manque de référence technico-économique et d’évaluations de son efficacité. D’après les fournisseurs, l’investissement avoisine 100 000 € par dispositif, avec des coûts de fonctionnement par nuit d’environ 25 à 50 € selon le temps de fonctionnement.

Aspersion

Principe : Ce moyen de protection consiste à projeter de l’eau par aspersion sur la culture lors des phases de risque de gel, qui gèlera au contact des parties végétales et en particulier du bourgeon qui est à protéger. Le passage de l’eau de l’état liquide à l’état solide va produire de la chaleur, empêchant l’air emprisonnée entre le bourgeon et la glace de descendre en dessous de -1 °C. De même, aux premiers rayons du soleil, la fonte progressive de la couche de glace entourant les bourgeons permettra une remontée en température lente, évitant les risques de brûlures à la suite d’une fonte trop rapide d’une fine couche de glace créée par le gel.

Le déclenchement de l’aspersion est délicat, car l’évaporation initiale au début de l’arrosage peut contribuer à diminuer la température et accentuer le gel (gel par évaporation). Le seuil de déclenchement dépendra des température humides limites (caractérisables dans des abaques mettant en rapport l’humidité relative de l’air et la température sèche) en dessous desquelles la culture, en fonction de son stade phénologique, présente un risque de dégâts au gel par évaporation.
Un dispositif de pompage alimente un réseau d’arroseurs qui quadrille la parcelle. En vigne et en arboriculture, selon les modèles, les distances entre les arroseurs de type sprinkler permettant une aspersion sur frondaison, sont généralement comprises entre 15 et 24 m. Un arrosage homogène d’au moins 4 mm/h (début de 40 à 60 m³/ha/h) et continu est impératif afin que la couche de glace formée soit constamment humidifiée. Dans le cas contraire, la surgélation (i.e. un refroidissement rapide) de la couche de glace pourra provoquer des dégâts importants à la végétation.

Il est également possible de collectiver les installations de prélèvement en eau, avec pour contrainte de devoir déclencher simultanément l’aspersion des parcelles pour garantir un débit suffisant dans le réseau.

| Efficacité | Le niveau de protection dépend de la quantité d’eau appliquée : elle doit garantir la formation d’une couche de glace suffisante autour des organes à protéger, qui devra être plus épaisse pour protéger de froids intenses (possibilité d’augmenter le débit pour protéger de froids intenses). Protection jusqu’à -9 °C en conditions sèches et -7 °C en conditions humides, en maintenant la végétation entre -1 et 0 °C au sein de la couche de glace. Efficace contre les gels radiatifs et advectifs, tant que les conditions météorologiques, vent en particulier, permet un arrosage homogène de la végétation. |
| Avantage | Dispositif de protection contre des gels intenses. Déclicenche de l’aspersion par micro-aspersion, avec le même principe d’action que pour une aspersion classique, permet une moindre consommation en eau (de 20 à 30 m³/ha) mais une moindre efficacité face à des températures trop basses, inférieures à -4 °C. Ce type |
d’aspersion nécessite une filtration accrue de l’eau et un déclenchement anticipé afin d’éviter la formation de glace dans le réseau d’alimentation et au niveau des asperseurs.

L’aspersion sous frondaison permet également de réduire les volumes d’eau apportés (de 10 à 20 m3/ha/h) avec un gain de 1 à 2 °C dans le cas d’un gel radiatif. L’eau apportée, en se transformant en glace au niveau du sol, produit un réchauffement de l’air sur une hauteur de 1,5 à 2 m. Il est nécessaire d’avoir un sol enherbé ou mulché pour faciliter la prise en glace. Ce système permet de limiter le risque d’asphyxie racinaire.

Autres dispositifs

D’autres dispositifs proposent également une protection contre le gel en vigne et en arboriculture, en mettant en avant des modes d’actions variés.

Voile de fumée et brouillard

Il s’agit dans ce cas de créer un voile opaque de fumée ou de brouillard durant la nuit d’apparition du gel pour limiter le rayonnement du sol et donc la baisse de température et durant le lever du soleil pour limiter le réchauffement rapide des parties végétatives pouvant être source de brûlure (effet loupe). Le voile peut être obtenu par combustion au sein ou en abord de la parcelle de matériau type paille, vieux cepes, chutes de bois, bottes de paille, ou par la mise en œuvre de dispositifs plus récents destinés à créer un brouillard artificiel. Ces derniers dispositifs, attelés au tracteur afin d’être mobile au sein des parcelles, consiste à produire des gouttelettes ultra-fines à 40 °C à partir d’oligo-éléments et de glycérine afin de constituer un brouillard opaque sur l’ensemble de la zone à protéger. Ces dispositifs sont très majoritairement utilisés en viticulture. En verger, un dispositif mobile de génération de fumée, par la combustion de déchet vert (chambre de combustion permettant de contenir une balle de paille) est également commercialisé en France.

Efficacité

L’efficacité d’un voile de fumée sur les pertes radiatives n’est pas avérée car la taille des particules de fumée est trop petite pour réduire de manière significative les pertes thermiques du sol par radiation. L’effet le plus significatif en matière de protection permis par ce type de méthode fait suite à l’apport de chaleur offert par la combustion.

Les constructeurs de dispositifs de brouillard artificiel mettent en avant un gain de température allant jusqu’à 5 °C en cas de conditions optimales (qui ne sont pas pour autant définies). Manque de données fiables pour juger de l’efficacité de ces dispositifs. Dispositifs non efficaces en cas de gel advectif.
Avantage

- Coûts réduits par rapport à d'autres dispositifs de protection.
- Facilité de mise en œuvre dans le cas de la création d'un voile de fumée.

Inconvénient

- Besoin d'une autorisation de brûlage de la part de la mairie et restriction possible selon l'environnement adjacent de la parcelle (bois à proximité etc.) et les arrêtés préfectoraux en vigueur.
- Pollution de l'air et gêne olfactive importante si la fumée est générée par combustion, pouvant rendre ce dispositif de moins en moins accepté par les riverains.
- Difficulté de maintenir le voile au-dessus de la zone à protéger selon les flux d'airs.
- Risque de brouillard ou de fumée sur les voies de circulation.
- Manutention et veille nocturne nécessaires.

Coût

- Très variable selon le combustible utilisé, les déchets verts de l'exploitation pouvant être utilisés pour les dispositifs de brouillard artificiel, investissement d'environ 20 000 € par dispositifs et de 100 à 120 €/ha de consommable pour une nuit de protection, n'incluant pas le coût de main d'œuvre du conducteur.

Bâche antigel

Ce dispositif de couverture des cultures, utilisé en vigne, a été interdit en vigne en AOC par l'INAO en 2003 car il modifie les caractéristiques du milieu naturel et tend à artificialiser le système de culture comme « sous serre ». Il consiste en l'installation de bâches d'avril (avant le débourrement) à la mi-mai environ et nécessite d'avoir fini les travaux de taille avant son installation. Certains modèles repliables sont également proposés. Les toiles tissées en polyéthylène laissent passer l'eau et la lumière. Elles emmagasinent la chaleur pendant la journée, qui se retrouve bloquée durant la nuit, maintenant les cepes à une température supérieure à l'air ambiant.

![Bâche antigel](https://example.com/bache-antigel.jpg)

Efficacité

- Dans le cas d'une expérimentation portée par la Chambre d'agriculture de l'Yonne de 1997 à 2001, ce dispositif avait montré une bonne efficacité contre les gels radiatifs.
- En cas de gel advectif, ce dispositif peut cependant la situation en provoquant une accumulation d'air froid sous la bâche et donc une aggravation de la situation.
- De nouvelles expérimentations en vignobles ont été initiées pour acquérir de nouvelles références.

Inconvénient

- Complexité du déploiement.

Coût

- Peu de références disponibles
- Environ 1,2 €/m² de bâche
- Coût de main d’œuvre à ajouter

Ces dispositifs, et en particulier les systèmes repliables, sont également mis en avant comme offrant un moyen de lutte contre la grêle.

Bactérie antigel

Cette méthode consiste en l'utilisation de bactérie pour protéger les vergers et les vignobles contre le gel. Il est dès à présent à noter que sa mobilisation en qualité de moyen de lutte contre le gel n’a pas été éprouvé et fait l'objet de recherche.
La formation de glace autour des organes végétatifs est favorisée par la présence de noyaux de congélation (particules minérales, poussières...), qui agissent comme des noyaux de formation de cristaux de glace à partir de l'humidité de l'air. Si ces noyaux sont majoritairement actifs pour des températures inférieures à -10 °C, certains composés organiques (acides aminés, protéines...) sont actifs à des températures de l'ordre de -8 à -4 °C, provoquant la prise en glace. Il a été démontré que des bactéries, dites glaçogènes, appartenant à l'espèce Pseudomonas syringae disposent dans leur membrane de protéines antigel capables de provoquer une prise en glace à des températures « plus chaudes » de l'ordre de -2 à -4 °C. La présence de cette bactérie est avérée en verger et vigne et est également source de dommage aux cultures (débourrement ralenti ou bloqué, nécrose des feuilles, des écorces ou des fleurs...).

La méthode de lutte proposée consiste à maintenir les populations de Pseudomonas syringae en dessous d'un seuil de nuisibilité par l'application d'antibactériens (cuivre ou bactérie Pseudomonas fluorescens A5O6. Si certains essais, menés en laboratoire et sur le terrain en Californie, mettent en avant une augmentation de 3 °C de la résistance au froid des parties végétatives de la vigne en régulant la population de Pseudomonas syringae par Pseudomonas fluorescens A5O6 ou par application de cuivre, d'autres essais sur fruitiers ne permettant de conclure à des résultats probants. Il est en particulier mis en avant la difficulté de maîtriser le phénomène de prise en glace au niveau des plantes et toutes les espèces fruitières ne seraient pas non plus sensibles de la même manière au rôle de Pseudomonas syringae.

Cette méthode ne constituerait également pas un moyen de protection contre le gel à elle seule et serait à mobiliser en complément d’autres dispositifs.

Eliciteurs

Il s'agit de pulvériser avant l'épisode de gel une substance élicitrice composée d'oligosaccharides destinée à renforcer les défenses naturelles de la plante et ainsi à limiter les nécroses foliaires causées par le gel. Actuellement, seul le PEL 101 – GV®, classé en tant que produit de biocontrôle (cuivre ou bactérie Pseudomonas fluorescens A5O6 ou par application de cuivre, d’autres essais sur fruitiers ne permettant de conclure à des résultats probants. Il est en particulier mis en avant la difficulté de maîtriser le phénomène de prise en glace au niveau des plantes et toutes les espèces fruitières ne seraient pas non plus sensibles de la même manière au rôle de Pseudomonas syringae.

Cette méthode ne constituerait également pas un moyen de protection contre le gel à elle seule et serait à mobiliser en complément d’autres dispositifs.

Eliciteurs

Il s'agit de pulvériser avant l'épisode de gel une substance élicitrice composée d'oligosaccharides destinée à renforcer les défenses naturelles de la plante et ainsi à limiter les nécroses foliaires causées par le gel. Actuellement, seul le PEL 101 – GV®, classé en tant que produit de biocontrôle (cuivre ou bactérie Pseudomonas fluorescens A5O6 ou par application de cuivre, d’autres essais sur fruitiers ne permettant de conclure à des résultats probants. Il est en particulier mis en avant la difficulté de maîtriser le phénomène de prise en glace au niveau des plantes et toutes les espèces fruitières ne seraient pas non plus sensibles de la même manière au rôle de Pseudomonas syringae.

Cette méthode ne constituerait également pas un moyen de protection contre le gel à elle seule et serait à mobiliser en complément d’autres dispositifs.

Eliciteurs

Il s'agit de pulvériser avant l'épisode de gel une substance élicitrice composée d'oligosaccharides destinée à renforcer les défenses naturelles de la plante et ainsi à limiter les nécroses foliaires causées par le gel. Actuellement, seul le PEL 101 – GV®, classé en tant que produit de biocontrôle (cuivre ou bactérie Pseudomonas fluorescens A5O6 ou par application de cuivre, d’autres essais sur fruitiers ne permettant de conclure à des résultats probants. Il est en particulier mis en avant la difficulté de maîtriser le phénomène de prise en glace au niveau des plantes et toutes les espèces fruitières ne seraient pas non plus sensibles de la même manière au rôle de Pseudomonas syringae.

Cette méthode ne constituerait également pas un moyen de protection contre le gel à elle seule et serait à mobiliser en complément d’autres dispositifs.

Eliciteurs

Il s’agit de pulvériser avant l’épisode de gel une substance élicitrice composée d’oligosaccharides destinée à renforcer les défenses naturelles de la plante et ainsi à limiter les nécroses foliaires causées par le gel. Actuellement, seul le PEL 101 – GV®, classé en tant que produit de biocontrôle (cuivre ou bactérie Pseudomonas fluorescens A5O6 ou par application de cuivre, d’autres essais sur fruitiers ne permettant de conclure à des résultats probants. Il est en particulier mis en avant la difficulté de maîtriser le phénomène de prise en glace au niveau des plantes et toutes les espèces fruitières ne seraient pas non plus sensibles de la même manière au rôle de Pseudomonas syringae.

Cette méthode ne constituerait également pas un moyen de protection contre le gel à elle seule et serait à mobiliser en complément d’autres dispositifs.

Eliciteurs

Il s’agit de pulvériser avant l’épisode de gel une substance élicitrice composée d’oligosaccharides destinée à renforcer les défenses naturelles de la plante et ainsi à limiter les nécroses foliaires causées par le gel. Actuellement, seul le PEL 101 – GV®, classé en tant que produit de biocontrôle (cuivre ou bactérie Pseudomonas fluorescens A5O6 ou par application de cuivre, d’autres essais sur fruitiers ne permettant de conclure à des résultats probants. Il est en particulier mis en avant la difficulté de maîtriser le phénomène de prise en glace au niveau des plantes et toutes les espèces fruitières ne seraient pas non plus sensibles de la même manière au rôle de Pseudomonas syringae.

Cette méthode ne constituerait également pas un moyen de protection contre le gel à elle seule et serait à mobiliser en complément d’autres dispositifs.

Eliciteurs

Il s’agit de pulvériser avant l’épisode de gel une substance élicitrice composée d’oligosaccharides destinée à renforcer les défenses naturelles de la plante et ainsi à limiter les nécroses foliaires causées par le gel. Actuellement, seul le PEL 101 – GV®, classé en tant que produit de biocontrôle (cuivre ou bactérie Pseudomonas fluorescens A5O6 ou par application de cuivre, d’autres essais sur fruitiers ne permettant de conclure à des résultats probants. Il est en particulier mis en avant la difficulté de maîtriser le phénomène de prise en glace au niveau des plantes et toutes les espèces fruitières ne seraient pas non plus sensibles de la même manière au rôle de Pseudomonas syringae.

Cette méthode ne constituerait également pas un moyen de protection contre le gel à elle seule et serait à mobiliser en complément d’autres dispositifs.

Eliciteurs

Il s’agit de pulvériser avant l’épisode de gel une substance élicitrice composée d’oligosaccharides destinée à renforcer les défenses naturelles de la plante et ainsi à limiter les nécroses foliaires causées par le gel. Actuellement, seul le PEL 101 – GV®, classé en tant que produit de biocontrôle (cuivre ou bactérie Pseudomonas fluorescens A5O6 ou par application de cuivre, d’autres essais sur fruitiers ne permettant de conclure à des résultats probants. Il est en particulier mis en avant la difficulté de maîtriser le phénomène de prise en glace au niveau des plantes et toutes les espèces fruitières ne seraient pas non plus sensibles de la même manière au rôle de Pseudomonas syringae.

Cette méthode ne constituerait également pas un moyen de protection contre le gel à elle seule et serait à mobiliser en complément d’autres dispositifs.

Eliciteurs

Il s’agit de pulvériser avant l’épisode de gel une substance élicitrice composée d’oligosaccharides destinée à renforcer les défenses naturelles de la plante et ainsi à limiter les nécroses foliaires causées par le gel. Actuellement, seul le PEL 101 – GV®, classé en tant que produit de biocontrôle (cuivre ou bactérie Pseudomonas fluorescens A5O6 ou par application de cuivre, d’autres essais sur fruitiers ne permettant de conclure à des résultats probants. Il est en particulier mis en avant la difficulté de maîtriser le phénomène de prise en glace au niveau des plantes et toutes les espèces fruitières ne seraient pas non plus sensibles de la même manière au rôle de Pseudomonas syringae.

Cette méthode ne constituerait également pas un moyen de protection contre le gel à elle seule et serait à mobiliser en complément d’autres dispositifs.

Eliciteurs

Il s’agit de pulvériser avant l’épisode de gel une substance élicitrice composée d’oligosaccharides destinée à renforcer les défenses naturelles de la plante et ainsi à limiter les nécroses foliaires causées par le gel. Actuellement, seul le PEL 101 – GV®, classé en tant que produit de biocontrôle (cuivre ou bactérie Pseudomonas fluorescens A5O6 ou par application de cuivre, d’autres essais sur fruitiers ne permettant de conclure à des résultats probants. Il est en particulier mis en avant la difficulté de maîtriser le phénomène de prise en glace au niveau des plantes et toutes les espèces fruitières ne seraient pas non plus sensibles de la même manière au rôle de Pseudomonas syringae.

Cette méthode ne constituerait également pas un moyen de protection contre le gel à elle seule et serait à mobiliser en complément d’autres dispositifs.

Eliciteurs

Il s’agit de pulvériser avant l’épisode de gel une substance élicitrice composée d’oligosaccharides destinée à renforcer les défenses naturelles de la plante et ainsi à limiter les nécroses foliaires causées par le gel. Actuellement, seul le PEL 101 – GV®, classé en tant que produit de biocontrôle (cuivre ou bactérie Pseudomonas fluorescens A5O6 ou par application de cuivre, d’autres essais sur fruitiers ne permettant de conclure à des résultats probants. Il est en particulier mis en avant la difficulté de maîtriser le phénomène de prise en glace au niveau des plantes et toutes les espèces fruitières ne seraient pas non plus sensibles de la même manière au rôle de Pseudomonas syringae.

Cette méthode ne constituerait également pas un moyen de protection contre le gel à elle seule et serait à mobiliser en complément d’autres dispositifs.
De nombreux moyens de protection contre le gel existent et sont d'ores et déjà mobilisés dans les vignobles et vergers français. Qu'ils relèvent d'une lutte passive ou active, aucun de ces moyens ne peut cependant prétendre à protéger à 100 % les cultures des dégâts du gel et la combinaison de plusieurs dispositifs ne permet que d'en améliorer l'efficacité et d'en cumuler les effets de la protection. Leur efficacité reste intrinsèquement dépendante de l'intensité des épisodes de gel, à laquelle s'ajoute la complexité de leur mise en œuvre qui devra être bien maîtriser pour garantir une protection optimale. Dès lors, la prévention des épisodes de gel ainsi que la caractérisation du type de gel (advectif, radiatif – gelées blanches ou noires) et de son intensité s'avèrent être indispensables pour déclencher une lutte efficace, tant à des échelles régionale voire nationale qu'à l'échelle locale.

Ces dispositifs représentent également un investissement financier et en main d'œuvre lourd pour les exploitations. Si des investissements collectifs permettent de mutualiser les moyens lutte entre plusieurs producteurs, le coût des dispositifs intégrant l'investissement, les coûts de fonctionnement et de main d'œuvre reste un facteur limitant à leur déploiement au regard de leurs efficacités variables.

Le déploiement des dispositifs à l'échelle nationale et régionale est également un sujet pour lequel peu de données sont disponibles. Pour exemple, une enquête réalisée en 2016 auprès de l'ensemble des viticulteurs de la région Centre – Val de Loire par le Conseil régional met en avant les disparités existantes entre les exploitations en matière de taux d'équipement avec des dispositifs de lutte contre le gel et le taux de couverture du vignoble, ainsi qu'entre les dispositifs mobilisés. La satisfaction des viticulteurs vis-à-vis de l'efficacité de la protection est également très variable selon les dispositifs mobilisés. Cette enquête met également en avant le caractère collectif des projets d'équipement – en particulier tours anti-gel, aspersion et bougies – et la diversité des dispositifs déployés ou en cours de déploiement dans les différents secteurs viticoles.

Les moyens de lutte passive, notamment par le choix des sites de plantations ou la mise en place de haies de protection, participent également à la limitation des dégâts de gel. S'ils ne constituent pas, à eux seuls, des moyens de protection suffisants pour faire face aux épisodes de gel intenses, ils représentent cependant des moyens de protection complémentaires à la lutte active qu'il convient de ne pas négliger.
Dispositifs de lutte contre la grêle
Caractérisation climatique de la grêle

Le phénomène de grêle consiste en la précipitation de grêlons d’un diamètre généralement compris en 5 et 50 mm. Cette précipitation sous forme de glace se différencie de la neige par sa densité, proche de 0,9 g/cm³, qui est plus importante que celle des flocons.

La grêle se forme au sein de nuages dits convectifs de type cumulus. La base de ces nuages reste à une altitude à peu près constante d’environ 2 km au-dessus du sol et leur sommet s’élève progressivement de plus en plus haut, pouvant atteindre les 12 km au-dessus du sol. Ils se caractérisent par des phénomènes de convection – ici des courants verticaux ascendants –, qui déplacent des masses d’airs humides en altitude. Dans le cas où l’isotherme 0 °C est dépassé, l’eau présente à l’état gazeux se condense sous forme de gouttelettes puis pourra geler sous l’effet d’un refroidissement rapide. Pour geler, les gouttelettes doivent disposer d’une température sous le point de congélation (qui dépend de la température et de la pression du milieu) et rencontrer un noyau de congélation, ou noyau glaçogène. Ces noyaux proviennent d’impuretés naturelles (poussières…) ou artificielles (particules fines…) et permettent aux grêlons de croître par l’accumulation et la congélation des gouttelettes. Les grêlons peuvent également fusionner entre eux par accrétion pour former des grêlons de plus gros diamètre. Par gravité, les grêlons ainsi formés redescendent et commencent à fondre lorsqu’ils repassent sous l’altitude de l’isotherme 0 °C. Cependant, dans le cas où les mouvements de convection ascendants au sein du cumulus permettent aux grêlons de remonter en altitude et de gagner en diamètre tant que le courant vertical est suffisamment puissant pour les maintenir en suspension. La précipitation des grêlons sous forme d’averse se produit le plus couramment lorsque les courants ascendants au sein du nuage ne permettent plus d’en assurer la suspension ou de manière plus ponctuelle lorsque les grêlons sont jetés latéralement du nuage ou verticalement par le sommet. Météo-France estime que moins de 10 % des cumulonimbus (nuage du type « cumulus » le plus couramment rencontré dans le cas des orages de grêle) donnent de la grêle atteignant le sol.

Les précipitations de grêle sont des phénomènes rares comparées aux précipitations de pluie. Si ce phénomène peut apparaître à toutes les saisons, c’est cependant entre le mois d’avril et le mois d’octobre – en journée et la nuit – qu’il est le plus courant du fait des météorologiques plus favorables à son apparition : masses d’air instables (i.e. avec d’importants gradients de températures du sol jusqu’en altitude), humidité relativement élevée en surface et air sec en altitude. La présence de reliefs (collines, montagnes) pouvant induire un soulèvement des masses d’air proches de la surface et donc des mouvements d’ascendance est également un facteur favorisant l’apparition d’orages de grêles (la présence de ces reliefs n’est cependant pas nécessaire à la formation de tels orages).
Prévision des orages avec risque de grêle

Systèmes de détection

Seule l’observation à l’aide de radars météorologiques permet de détecter la présence de grêle. Météo-France dispose d’une trentaine de radars, répartis sur l’ensemble du territoire métropolitain (8 en outre-mer en 2017) au sein du réseau ARAMIS, et d’une portée de 200 km maximum. La majorité d’entre eux sont équipés d’une technologie permettant d’acquérir en temps réel des informations sur le type de précipitation (pluie, neige ou grêle). La prévision de la présence de grêle dans un nuage est cependant soumise à des difficultés d’interprétation du signal reçu par le radar car la grêle, selon sa composition, est un très inégal réflecteur du signal radar. Aussi, outre la capacité du radar à identifier la présence de grêle au sein d’un nuage, une prévision précise de la localisation de la précipitation de grêle n’est pas permise, les averses de grêle étant des phénomènes spatialement localisés.

En complément du réseau de surveillance de Météo-France, l’implantation locale de radars individuels d’une portée moindre de l’ordre de 50 km, plus petits et équipés d’une technologie dite de radar en bande X (en comparaison aux radars en bande C ou S selon la bande de fréquence utilisée) permet d’affiner la prévision et d’améliorer la localisation des risques potentiels de grêle. Plusieurs sociétés en proposent l’installation pour un coût d’environ 30 000 à 35 000 € par radar, auquel s’ajoute l’abonnement à une interface numérique permettant d’en exploiter les données recueillies par le radar.

Services d’alerte

Pour prévenir et alerter les exploitants de potentiels orages avec risque de grêle, des bulletins d’alertes sont édités par les services de Météo-France. Ces bulletins, à l’échelle du territoire français, ne délivrent pas une prévision locale. D’autres sources d’informations, le plus souvent fournies par des cabinets d’étude, proposent également la consultation de bulletin de prévisions ou de veille météorologique et l’envoi d’alertes, par mail ou SMS.

s’agit dès lors de prestations payantes pour les professionnels, mais qui, en fonction des dispositifs de protection choisis contre la grêle (cas des dispositifs de perturbation du climat), sont indispensables pour déclencher lesdits dispositifs de manière efficace en anticipant le risque à l’échelle locale. Certains prestataires, comme la société SELERYS (www.selerys.fr), proposent également de coupler des outils d’aide à la décision des solutions d’alertes météorologiques à des dispositifs de protection qu’ils commercialisent eux-mêmes et dont l’efficacité reste à prouver de manière indépendante.

Impacts de la grêle en arboriculture et en viticulture

L’intensité d’une averse de grêle dépend de plusieurs paramètres, dont le diamètre de grêlons et leur masse, qui déterminera la vitesse de la chute, ainsi que la durée de l’averse. Pour disposer d’un ordre de grandeur de l’intensité d’un épisode de grêle, l’Association nationale d’étude et de lutte contre les fléaux atmosphériques (Anelfa) propose une échelle d’intensité se basant sur le diamètre maximal des grêlons, exprimés en cm.

Cette échelle suggère que les dégâts causés par la grêle aux vignes et aux vergers débutent pour des diamètres compris entre 1 et 2 cm.

Cependant, les dégâts causés par la grêle sont variables et ne sont pas forcément proportionnels à l’intensité du phénomène de grêle. Ils dépendent en premier lieu du stade phénologique atteint par la culture considérée (une averse de faible intensité pourra avoir des conséquences importantes pour des cultures proches de la récolte). La présence de vent lors de l’averse peut également être un facteur aggravant, en précipitant les grêlons avec un angle plus ou moins important par rapport à la verticale et augmentant ainsi la surface végétative potentiellement touchée par la grêle.

En vigne, les dégâts peuvent aller de dommages sur les grappes jusqu’à la défoliation complète, avec des impacts sur le vieux bois. Au-delà des pertes potentielles pour la récolte de la campagne en cours, les conséquences peuvent affecter le potentiel de production de l’année suivante en cas de grêle à partir du mois de juillet en occasionnant des difficultés pour tailler les futurs sarments et des diminutions de rendements à la suite de problèmes de mise en réserve, de destruction des bourgeons etc. La taille de formation de l’année en cours ou des années précédentes pour les jeunes plantations peut également être affectée.

En arboriculture, les blessures aux fruits causés aux fruits par les grêlons peuvent provoquer leur chute ou des dommages dont la gravité sera fonction du choc, allant d’une blessure qui pourra cicatriser – mais dégrader le potentiel de commercialisation –, à la destruction du fruit...

Lutte passive

Contrairement à la lutte contre le gel, il n’existe pas de moyens de lutte passive contre la grêle qui puissent en limiter significativement les dégâts. En France également, la couverture régionale en grêlimètre permet d’observer une relation forte entre l’apparition de l’aléa de grêle et la sinistralité constatée par les assureurs, mettant en avant l’importance et la régularité des dommages qu’il occasionne.

L’imprévisibilité des phénomènes de grêles en termes de localisation sur le territoire ne permet pas d’identifier de zones qui ne puissent pas, avec certitude, être épargnées par ce phénomène. Une carte des risques de grêle en France métropolitaine, datant des années 2000 et non mise à jour depuis, identifie les zones à faible et fort risques.

S’il n’existe pas de zones qui puissent être épargnées, on constate cependant une forte corrélation entre les bassins de productions arboricoles majeurs (sud-ouest et bassin rhodanien) et les zones où le risque est le plus important, du fait de la présence de vallées (Garonne, vallée du Rhône, vallée de la Durance) favorisant la thermoconvection favorable à la création de cellules orageuses.

A l’échelle locale, le rôle des particularités géographiques (topographie, présence de forêts, …) ainsi que l’orientation des rangs parallèlement aux vents dominants semble jouer un rôle dans la réduction des risques mais ne sont pas établis, principalement du fait de la difficulté de leur quantification.

Une méthode de lutte passive, réduisant fortement le risque de dégâts engendrés par les épisodes grêlitifères consiste en la dispersion des parcelles d’une même exploitation afin de ne pas en exposer l’ensemble de la production à une même averse de grêle. A l’échelle de la production agricole française et en particulier arboricole, on peut également noter un processus de concentration spatiale des cultures vulnérables et à forts enjeux financiers à partir des années 1980 dans des régions connues pour être exposées à l’aléa grêle. Cette concentration dans des zones à risque implique pour la filière arboricole une augmentation mécanique du risque face à la grêle (équation risque = aléa * vulnérabilité).
Lutte active et mécanique

Deux moyens de lutte, active et mécanique, sont à disposition des agriculteurs pour réduire les risques liés aux phénomènes grêlifères : la protection par des dispositifs de type filet (lutte mécanique), et la protection par perturbation du climat (lutte active), par le biais de dispositifs censés limiter, voire éviter, la formation de grêlons.

On peut d'ores et déjà mentionner que l'efficacité des méthodes de lutte contre la grêle par perturbation du climat ne fait pas l'objet d'un consensus scientifique, au contraire des méthodes de protection mécanique des vergers et des vignobles.

Lutte mécanique par des dispositifs type filet

Ces dispositifs consistent à déployer des filets ou des bâches, dits paragrêle, pour protéger les parties végétatives de la tombée des grêlons. Les toiles sont généralement conçues à partir de polypropylène haute densité tissé, qui présente de bonnes propriétés mécaniques de résistance à la tension ou à partir de polypropylène extrudé, moins résistant. Plusieurs filets sont proposés dans le commerce, dont les caractéristiques (porosité, poids, solidité) dépendront également de la distance entre les fils (de 2,5 à 4 mm pour les filets paragrêle). La présence de filets implique un ombrage plus important des cultures, dont l'importance varie selon la couleur du filet (noire, verte ou transparente)

A noter qu'il existe des filets biodégradables en amidon, plus rares du fait de leur coût et de leur plus faible durée de vie.

La durée de vie des filets varie selon leur structure, la composition des fils, de l'environnement extérieur (résistance aux UV, pouvant faire l'objet d'utilisation d'additifs chimique anti-UV lors de leur fabrication) et des épisodes de grêle subis. Une filière de recyclage des filets paragrêle a été mise en place par ADIVALOR pour récupérer voire recycler, s'ils sont correctement préparés et triés, les filets usagés. Il est estimé que les filets ont une durée de vie d'environ 10 ans.

Étant donné la barrière physique qu'ils constituent entre la culture et les éléments extérieurs, ces dispositifs sont les plus efficaces pour parer aux risques de grêle s'ils sont déployés avant les épisodes grêlifères. S'ils ont pour inconvénients communs leur coût d'installation et le temps de mise en œuvre, chaque dispositif présente des spécificités en matière de protection selon les modèles choisis et la filière concernée.

On distingue deux types de dispositifs de protection par filets contre la grêle : les filets assurant une couverture totale de la parcelle et les filets monorang.

En arboriculture

Le recours à des dispositifs de protection par filets en arboriculture n'est pas réservé à la lutte contre la grêle. Ils sont également mobilisés pour lutter contre la présence de ravageurs, comme le carpopcape ou de la tordeuse orientale en vergers de pommes et de poiriers (filet Alt'carpo), contre la mouche de la cerise (filet Alt'mouche) ou la pluie favorisant l'apparition de
tavelure (bâche anti-pluie) ou le vent. Les infrastructures nécessaires à la pose des filets peuvent accueillir plusieurs filets selon la lutte souhaitée, filets dont les effets peuvent être complémentaires.

Couverture totale de la parcelle

Ces dispositifs consistent en la mise en place de filets au-dessus de la frondaison du verger, pour assurer une couverture totale de la parcelle. La hauteur des dispositifs sera à adapter à celle des arbres fruitiers à protéger. On distingue majoritairement 2 systèmes : en chapiteau (ou en chapelle) et à élastiques (ou superposé).

- Pour le système en chapelle, les filets sont accrochés à des colonnes placées en bout de rang et sont reliés par des câbles tendus au-dessus des rangs. Des câbles disposés en inter-rang permettent de fixer les filets, permettant, par la disposition en chapiteau, de laisser s’évacuer la grêle au niveau de l’inter-rang.
- Le système à élastiques consiste à tendre le filet à plat au-dessus de la parcelle, relié à des colonnes présentent au niveau des rangs par des fixations élastiques permettent un recouvrement des filets au niveau de l’inter-rang. Les élastiques permettent au filet de se déformer lors de l’épisode grêlifère pour évacuer la grêle. Ce système est moins coûteux que le système en chapelle.

La présence de filets au-dessus du verger modifie l’environnement et peut avoir des conséquences sur la qualité de la production, pouvant entraîner une légère perte de sucre, de coloration et de fermeté des fruits, d’autant plus que le filet est sombre et a un effet d’ombrage. La taille des arbres peut être adaptée pour favoriser la pénétration de la lumière à l’intérieur de l’arbre. La présence de filet induit également un taux d’hygrométrie plus important dans la parcelle, diminuant les besoins d’apports en eau (la demande d’irrigation sous filet blanc est inférieure de 10 % et sous filet noir de 20 %). Toutefois, l’augmentation des durées d’humectation, du fait de la réduction du vent, a montré une plus grande sensibilité des fruits à certaines maladies : tavelure, black rot sur certaines variétés (Pink lady). Certaines observations mettent en avant une plus grande sensibilité à certains parasites, acariens notamment.

<table>
<thead>
<tr>
<th>Efficacité</th>
<th>En théorie, protection totale de la parcelle. La résistance des filets (selon le système d’installation adopté et le type de filet – maille, tissu) face à des grêlons de gros diamètre, pouvant potentiellement endommager les filets, et face à des épisodes orageux très violents n’est pas documentée.</th>
</tr>
</thead>
</table>
Inconvénient

<table>
<thead>
<tr>
<th></th>
<th>Effet d'ombrage impactant la qualité du fruit. Besoin important en main d'œuvre pour les opérations d'installation et de déploiement/refermeture des filets.</th>
</tr>
</thead>
</table>
| Coût | Investissement matériel de 10 000 à 15 000 €/ha
L'installation du filet la première année nécessite en moyenne 200 h/ha et 100 h/ha les années suivantes |

Filet monorang

La mise en place de filets monorang en tant que moyen de lutte contre la grêle fait l'objet de peu de références techniques, les dispositifs monorang étant davantage déployés pour lutter contre les ravageurs et en premier lieu contre le carpocapse. Dans ce cas, les filets enveloppent chaque rang. Un palissage peut être mise en place au niveau du rang afin de soutenir le filet au-dessus de la frondaison. Dans le cas de jeunes vergers pour lesquels la frondaison est encore peu développée, un système écartant le filet des arbres peut être mis en place.

Une installation plus rudimentaire et plus économique (3 000 €/ha) peut consister également à simplement poser le filet sur les arbres, ce qui convient davantage aux arbres de grande envergure qui supportent l'accumulation de grêle dans le filet sur les branches supérieures. L'efficacité de ce dispositif ne fait pas l'objet de références précises.

Efficacité	Pas d'évaluation précise de son efficacité (protection jugée « bonne »). Le filet fait office de parapluie lors des épisodes de grêle.
Avantage	Fait également office de protection contre certains ravageurs dans le cas de filets adaptés. Plus simple à mettre en place que les filets monoparcelles.
Inconvénient	Le filet peut frotter et abimer les fruits. Applications moins efficaces des produits phytosanitaires. Il peut être observé sous le filet un développement d'une faune non souhaitée (pucerons). Difficulté d'accès aux arbres lors des interventions d'éclaircissage manuel, nécessitant l'ouverture et la refermeture du dispositif.
Coût	Références non trouvées pour les filets monorang contre la grêle
Coût indicatif filet monorang Alt'carpo : de 6 000 à 10 000 €/ha de matériel (temps d'installation de 120 h/ha la première année et 70 h/ha les années suivantes) |
En vigne

Selon l’écartement entre les rangs, deux types de dispositifs sont proposés en vigne : soit le filet est positionné au-dessus de la culture, par couverture totale de la parcelle, soit il est positionné directement contre la vigne, rang par rang.

Couverture totale de la parcelle

Ces dispositifs, semblables aux dispositifs anti-grêle couramment utilisés en arboriculture, consiste à disposer le filet à l’horizontale au-dessus des rangs. Ce système est adapté aux vignes ayant un espacement large, d’au moins 3 mètres, entre les rangs, afin de pouvoir s’ouvrir pour déverser la grêle accumulée entre les rangs en cas de poids trop important.

Comme en verger, plusieurs systèmes sont proposés : en chapiteau (ou en chapelle) et à élastiques (ou superposé). Les hauteurs des poteaux sera adaptée pour convenir au travail de la vigne.

Ces dispositifs ne sont actuellement pas autorisés pour les vignes en production AOC, l'INAO n'a pas reçu de demande en ce sens et ne s’est pas prononcé sur leur éventuel impact sur des modifications du mésoclimat de la vigne et sur les caractéristiques du milieu.

<table>
<thead>
<tr>
<th>Efficacité</th>
<th>En théorie, protection totale de la parcelle. La résistance des filets (selon le système d’installation adopté et le type de filet – maille, tissu) face à des grêlons de gros diamètre, pouvant potentiellement endommager les filets, et face à des épisodes orageux très violents n’est pas documentée.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avantage</td>
<td>Facilite les interventions manuelles et mécaniques au sein de la parcelle.</td>
</tr>
<tr>
<td>Coût</td>
<td>Investissement de 20 000 à 25 000 €/ha (MO inclus)</td>
</tr>
</tbody>
</table>
Ce dispositif, adapté pour les vignes d'écartement moyen ou étroit consiste à protéger la vigne rang par rang. Il consiste à installer un filet de chaque côté du rang et à la verticale, de sorte à couvrir la végétation et les grappes sur la hauteur de la vigne (de 0,5 à 1 m). Ils sont installés en hiver. Les modèles relevables peuvent être enroulés avant les vendanges et déroulés au début du cycle végétatif, après l'opération d'ébourgeonnage. Ils sont accrochés grâce à des tendeurs de chaque côté du rang, sur les poteaux de palissage et des écarteurs permettent de laisser un espace entre la végétation et le filet.

Selon le modèle, le filet peut être fixe ou relevable, grâce à des supports enrouleur permettant le remontage du filet grâce à une manivelle.

Ces dispositifs ont été autorisés en 2018 par l'INAO suite à l'expérimentation réalisée dans les AOC de la région bourguignonne. Les conditions expérimentales n'ont montré qu'une influence très limitée sur le mésoclimat en ne modifiant pas les caractéristiques du milieu naturel de manière significative. L'INAO préconise cependant, pour limiter les effets d'ombrage, de choisir des maillages laissant passer suffisamment le rayonnement lumineux et d'opter pour une application des filets limitée dans le temps afin de réduire également la pression des bioagresseurs liée à l'entassement de la végétation.

Ces dispositifs sont régulièrement employés pour les vignobles de raisin de table sous AOP, la commercialisation du raisin de table exigeant des grappes sans aucun dommage. Il faut cependant noter l'influence du type de filets utilisé sur la coloration des raisins.

Efficacité

Contrairement aux filets de couverture totale de la vigne, la protection offerte par les filets monorang n'est pas totale.

Sur 2 épisodes de grêle en 2016 (Solutré) et 2017 (Morey-Saint-Denis), les dégâts constatés étaient respectivement de 6 % en modalité avec filet monorang (contre 60 % sans) et d'une intensité de 93 % moins intense entre la modalité avec et sans filet monorang (résultats CA 21).

Avantage

Plus facile à installer que le filet de couverture totale. Dirige la pousse des tiges vers le haut, limitant le temps de palissage.

Autorisé par l'INAO, sous réserve d'établissement de règles d'utilisation.

Protection des grappes du soleil, par effet d'ombrage, ayant un impact sur la concentration des baies en sucres, tannins et anthocyanes (non perçu sur le plan gustatif par rapport à un vin issu d'une vigne non protégée).
On peut également noter une possible réduction de l’impact du gel, constatée en 2016 entre 20 et 45 % selon le modèle de filet monorang (des résultats inverses ont été constatés en 2017).

Lutte active par perturbation du climat

Ce mode de lutte contre la grêle consiste à agir, en amont de l’averse de grêle, sur les nuages potentiellement vecteurs de phénomènes grêlifères. Il s’agit dès lors, soit de limiter le diamètre des grêlons en augmentant le nombre de noyaux glaçogènes au sein des nuages, grâce à des dispositifs dits d’ensemencement, soit de limiter la formation des grêlons par des dispositifs de protection par propagation d’ondes de choc.

Ces dispositifs de protection sont similaires selon qu’ils soient déployés pour la lutte contre la grêle en arboriculture ou en vigne, tout en notant des niveaux de déploiement pouvant être variables sur le territoire. Ils peuvent également être déployés pour protéger des aires de production mêlant vignobles, vergers, etc.

Protection par propagation d’ondes de choc

Ce dispositif consiste à propager une série d’ondes de choc vers les nuages potentiellement générateurs de grêle, par déclenchement d’une explosion au sol. En se propageant dans le nuage, l’onde de choc est censée empêcher les noyaux glaçogènes de grossir en cristallisant la couche externe des grêlons et d’éviter ainsi leur agglomération.

Canon SPAG sans (à gauche) et avec silencieux (à droite)
Ces canons, dont la commercialisation en France a repris dans les années 1970, trouvent leurs origines à la fin des années 1800 (voir encadré ci-dessous : Un déploiement ancien des canons anti-grêle) et plusieurs sociétés proposent aujourd'hui leur installation. L’onde de choc est générée par la combustion d’un mélange d’acétylène (ou de butane), d’oxygène sous pression et d’azote, dans une chambre d’explosion le plus souvent présent au sein d’un bâtiment en béton ou d’un conteneur. Elle se propage grâce à un diffuseur conique, de plusieurs mètres de hauteur, dépassant de la chambre d’explosion. Le dispositif est placé au centre de la zone à protéger, qui est estimée à environ 80 ha autour du canon. Selon certains fournisseurs, les ondes de choc se propageraient jusqu’à 15 000 mètres d’altitude et couvriraient donc la totalité de la hauteur des nuages de type « cumulus ».

Les explosions, qui se répètent toutes les 5 à 15 secondes, doivent être déclenchées environ 20 à 30 minutes avant l’arrivée de l’orage, car les dispositifs deviendraient inefficaces si face à des grêles déjà constitués et de taille trop importante.

Avantage	Dispositif pouvant être mobilisé à titre individuel ou en collectif (investissement répartis entre les producteurs d’un territoire à protéger). Automatisation possible des déclenchements par couplage avec un système de détection d’orages.
Inconvénient	Nuisance sonore pour les riverains du fait des explosions répétées (jusqu’à 130 dB au pied du canon) suite au déclenchement des dispositifs (potentiellement la nuit).
Coût	Investissement de 30 000 à 40 000 € pour l’installation d’un canon Coût de fonctionnement de 1 000 à 1 300 €/an par canon

D’après les constructeurs, ces dispositifs n’ont aucun impact environnemental (faune, flore, cycle des nuages) sans que ces propos ne soient étayés de références scientifiques. Les nuisances sonores provoquées par les explosions ont également fait l’objet de plaintes de riverains dans certains territoires (cas de la commune de Mercurol-Veaunes où 42 producteurs disposent d’un réseau de 11 canons). L’installation de silencieux sur les canons, d’un coût d’environ 12 000 € par canon, permettrait selon les constructeurs de réduire à 85 dB le bruit des détonations.

Un déploiement ancien des canons anti-grêle

Des dispositifs de protection ayant un mode d’action similaire aux canons à onde de choc ont été développés à la fin du XIXème siècle, suite à des travaux expérimentaux débutés dans les années 1880 en Italie. Ces canons anti-grêle, répartis en réseau sur le territoire à protéger, dont la hauteur du diffuseur conique des plus gros formats pouvait dépasser 9 m, ont fait l’objet d’un engouement du monde agricole pour protéger les cultures en Europe, du fait de l’absence à l’époque de système d’assurance et de protection. Également, l’observation de l’absence de grêle les années où ces prototypes sont expérimentés tend à prouver leur efficacité. Leur production s’étant industrialisée autour des années 1898 et 1899, avec parfois un appui de milieux politiques, de nombreux pays européens sont équipés et on peut compter près de 10 000 canons en Italie, pour environ 10 millions de coups de canon tirés en 1900. Toutefois, l’observation de cas de grêle sur des territoires
pourtant censés être protégés par les canons ainsi que le manque d’arguments scientifiquement fondés démontrant l’efficacité de ces dispositifs et de la méthode employée pour lutter contre la formation de la grêle remettent en cause la pertinence de ce moyen de lutte. A partir de 1905, les canons sont largement abandonnés à travers l'Europe, faute de démonstration de leur efficacité dans le cas d’expérimentations sur le terrain qui subissent d’importants dégâts de grêle malgré la présence de canons.

Protection par ensemencement

Les méthodes de protection par ensemencement des nuages consistent à en modifier la structure pour réduire les impacts des précipitations sur les cultures. On procède soit par ensemencement avec des particules d'iode d'argent afin d'introduire artificiellement davantage de noyaux glaçogènes qui généreront de grêlons de diamètres plus faibles. Ces plus petits grêlons auront des impacts en surface plus limités ou bien auront déjà fondu et précipiteront sous forme de pluie avant d'atteindre le sol. Soit on procède par ensemencement avec des sels hygroscopiques, pour favoriser des précipitations sous forme de pluie plutôt que de grêle.

Générateurs à iodure d’argent

Ce système est proposé par l’Association nationale d’étude et de lutte contre les fléaux atmosphériques (Anelfa) depuis plus de 60 ans en France. Il repose sur un réseau de générateurs à vortex qui permettent la diffusion d'iode d'argent depuis le sol. En 2015, le réseau comptait 838 stations tenues par des opérateurs bénévoles, couvrant une superficie d'environ 70 000 km² sur le territoire métropolitain.

L’Anelfa réalise chaque année une campagne de prévention contre la grêle qui s’étend d’avril à octobre. Elle conseille une mise en service des générateurs 3 à 4 heures avant une chute probable de grêle. Une convention nationale passée entre l’association et Météo-France permet aux permanents départementaux de Anelfa d’être alertés de la présence d’un risque d’orage. En fonction de la consultation des bulletins Météo-France, le permanent peut déclencher le
système VIAPPEL qui avertit chaque opérateur en charge d’un générateur les heures durant lesquelles les générateurs devront fonctionner.

Les générateurs, mis au point par Anelfa, consistent à vaporiser une molécule d’iodure présente dans une solution d’acétone sur une flamme permettant sa combustion au sein d’une chambre de combustion présente à la base d’une cheminée d’environ 1m50 de hauteur. La solution utilisée et fournie par Anelfa est composée à 99 % d’acétone et à 1 % d’iodure d’argent et dont la combustion génère de l’eau, du CO\(_2\) et des particules d’iodure d’argent. Un générateur consomme environ 1,2 l de solution par heure de fonctionnement et émet de l’ordre de 100 g d’iodure d’argent au cours d’une alerte (environ 45 g d’argent).

Le principe d’action de ce dispositif repose sur le fait que les particules d’iodure d’argent atteignent la base des nuages et qu’ils sont ensuite ingérés par les courants ascendants. Leur présence au sein des cellules convectives dans lesquelles pourra se former la grêle multipliera artificiellement le nombre de noyaux glaçogènes et limitera de fait la taille des grêlons produits. Lors de leur chute, ces grêlons pourront soit fondre pour précipiter sous forme de pluie, soit atteindre la surface avec un diamètre réduit par rapport à celui qu’ils auraient sans ensemencement.

![Générateur à iodure d’argent – © Anelfa](image)

Efficacité	D’après un rapport (2010) de l’Organisation météorologique mondiale, « les preuves scientifiques ne sont pas concluantes et […] les effets demeurent controversés » pour les techniques d’ensemencement par des noyaux glaçogènes. L’Anelfa a mis en évidence une diminution de 50 % de l’intensité des chutes de grêle dans les territoires couverts par des générateurs et une diminution de 15 à 20 % des surfaces grêlées.
Inconvénient	Automatisation possible de l’allumage des générateurs par smartphone mais non privilégiée par l’Anelfa, car plus coûteuse et présente un risque de déresponsabilisation des membres du réseau. Nécessité d’anticiper en amont le risque d’orage, faisant reposer la réussite du dispositif sur la fiabilité des prévisions. Nécessité de mettre en œuvre plusieurs générateurs, une action isolée n’ayant pas d’effet, d’où l’importance d’un maillage de générateurs et d’un réseau d’opérateurs fiables (en amont de la zone à protéger et qui ne sont pas concernés « directement » par la protection en cours).
Coût	Investissement de 1 500 € par générateur (soit 4 à 5 €/ha, pour le réseau Bourgogne Beaujolais) Coût de fonctionnement : 730 €/an de consommable par générateur (soit 8 €/ha/an de cotisation pour le réseau Bourgogne Beaujolais)
Diffusion de sels hygroscopiques par ballon

Ce système consiste à ensemencer les nuages potentiellement vecteurs de grêle à l'aide de sels hygroscopiques (chlorure de calcium et chlorure de sodium) qui agissent comme des noyaux de condensation et favorisent la formation de gouttelettes d’eau pour déclencher des précipitations dans les parties du nuage où la température demeure positive. L’eau ayant précipité n’aura alors pas encore atteint les conditions de formation de la grêle.

De la même manière que le système d’ensemencement par iodure d’argent, il est important d’intervenir en amont de la formation de la cellule orageuse et de la génération de grêle, nécessitant de fait de disposer de systèmes de détection d’orages. En France, la société Selerys propose un service couplant un dispositif de détection des risques orageux (par installation de radars de 30 km de portée) à un système de diffusion des sels hygroscopiques par ballon sonde. L’agriculteur est automatiquement alerté par SMS ou mail, entre 30 minutes et 1 heure avant l’arrivée de l’orage sur son exploitation et doit alors opérer la mise en œuvre du dispositif d’ensemencement jusqu’à 15 minutes avant les précipitations.

La diffusion de sels hygroscopiques était jusqu’en 2015 assurée par des fusées tirées depuis le sol, jusqu’à l’abandon de ce système par le fournisseur de fusée (groupe LACROIX) du fait des difficultés techniques, juridiques et du coût trop élevé. Les sels hygroscopiques sont dorénavant contenus dans des torches embarquées par un ballon sonde gonflé à l’hélium et équipé d’une puce électronique. La libération des sels est déclenchée par un système pyrotechnique dans la zone susceptible de générer de la grêle, entre 450 et 1 000 mètres d’altitude. L’ensemencement d’un nuage par ce dispositif nécessite l’utilisation à minima d’une vingtaine de ballon pour disposer de l’ordre de 2 à 4 kg de sels par nuage (et de 5 à 10 kg par orage). Ce dispositif est donc à mobiliser au sein d’un réseau d’agriculteurs.

Tableau des points forts et faibles

<table>
<thead>
<tr>
<th>Efficacité</th>
<th>D’après un rapport (2010) de l’Organisation météorologique mondiale, « les tentatives d’ensemencement des nuages par des sels hygroscopiques […] n’ont pas apportées de résultats démontrables ».</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avantage</td>
<td>Couplage possible avec un dispositif d’alerte (payant) pour déclencher les lâchers de ballons.</td>
</tr>
<tr>
<td>Coût</td>
<td>Investissement de 1 800 € par poste de tir Coût de fonctionnement : 350 € par ballon tiré auquel se rajoute le coût de l’abonnement au système d’alerte (environ 800 €/an)</td>
</tr>
</tbody>
</table>

Système de tir d’un ballon sonde équipé – © SELERYS
Efficacité des dispositifs de protection par ensemencement

Il est à noter que le déploiement et la recherche autour de solutions de lutte contre la grêle par ensemencement avec des sels hygroscopiques ou d'iodure d'argent remonte aux années 1950 à travers le monde (Etats-Unis, URSS, Europe) et une diversité de dispositifs d'ensemencement ont été employés et testés : tirs de torches dans des fusées depuis le sol, largage de torches par avion au-dessus des nuages, jusqu'aux dispositifs décrits ci-dessus. Ces dispositifs ont également fait l'objet en France du développement d'associations organisées à l'échelle nationale (Anelfa) ou régionales (Association climatologique de la Moyenne-Garonne et du Sud-Ouest par exemple) destinées à mettre en œuvre ces moyens de lutte voire à mener des recherches et des expérimentations.

Cependant il y a un consensus de la communauté scientifique sur le fait que l'efficacité sur le terrain de ces dispositifs n'est pas démontrée, du fait de la complexité des phénomènes atmosphériques qui se jouent et qui aboutissent ou non à la formation de grêle au sein des nuages orageux – il est estimé que seul 10 % des nuages orageux génèrent des précipitations de grêle. De nombreux paramètres (pression, températures, vitesse et orientation des vents, topographie, etc.) ainsi que la grande variabilité dans le temps et l’espace de l’apparition de ces phénomènes rendent impossible la mise en évidence par des expérimentations standardisées de l’efficacité des dispositifs. L’analyse de séries historiques ou de mesures au sol, si elles font parfois état de résultats positifs, font encore l'objet de discussion entre les scientifiques et sont parfois contredites par des études mettant en avant des conclusions contraires.

Cette incertitude s'explique du fait que les principes de ce type de dispositifs dans la lutte contre la grêle sont basés sur des hypothèses, plutôt que sur des faits avérés. On peut citer en particulier l'incertitude que les particules destinées à ensemencer les nuages, quel que soit le dispositif mobilisé, atteignent de manière effective les parties des nuages convectifs dans lesquelles la grêle pourra se former. Le déploiement de ces dispositifs au sein de collectifs de producteurs et gérés en réseaux, de sorte à densifier la couverture au sol de dispositifs d’ensemencement est une solution apportée pour optimiser l’efficacité de l’ensemencement.

De la même manière, l’Organisation météorologique mondiale juge ainsi, dans un rapport de 2010, que « la capacité à influence la microstructure des nuages a été démontrée en conditions contrôlées et vérifiée par des mesures physiques dans certains systèmes naturels comme […] les nuages de type « cumulus ». Cependant, les preuves physiques directes que les précipitations de grêle […] peuvent être modifiées par des dispositifs artificiels sont limitées. »

Innocuité des dispositifs de protection par ensemencement

La mobilisation de ces dispositifs, qui consistent à propager artificiellement des composés chimiques – iodure d’argent et sels hygroscopiques – dans l’atmosphère questionne également leur innocuité vis-à-vis de la santé humaine et de l’environnement.
Iodure d’argent

L’Anelfa met en avant que les concentrations d’iodure d’argent à 100 m d’un générateur et dans l’atmosphère au sein d’un réseau de générateurs sont respectivement évaluées à 10 µg/m³ et à 10⁻⁴ µg/m³ (en appliquant les lois de diffusion des panaches et en considérant la concentration de 1 % d’iodure d’argent dans la solution brûlée). Ces chiffres, comparées à la concentration de 10 µg/m³ admise aux Etats-Unis et au Royaume Uni pour les composés de l’argent pour un risque professionnel avec une exposition de 8 h consécutives laissent supposer une absence de risque pour la santé humaine. Il est également à considérer que les ensemencements ne sont pas chroniques (uniquement en cas de déclenchement d’une alerte) et que le panache du générateur est porté en altitude. Toutefois, et sachant que l’argent sous certaines formes est toxique pour les micro-organismes, certaines études mettent en avant le risque de pénétration des nanoparticules d’argent dans les voies respiratoires, tout en concluant que les effets à courts à long terme sont mal connus.

L’Organisation météorologique mondiale, sur la base des études publiées, a conclu « qu’il n’y a pas d’impact significatif sur le plan de la santé humaine de l’iodure d’argent tel qu’il est utilisé dans les opérations de modification du temps » et que « des impacts environnementaux et écologiques non attendus des techniques d’ensemencement n’ont pas été démontrés mais ne peuvent être exclus ».

Sels hygroscopiques

La concentration dans l’atmosphère de sels hygroscopiques – chlorure de calcium et chlorure de sodium – à la suite des ensemencements est estimée être inférieure à 0,01 g/m³. Cette concentration est jugée, par la société Lacroix qui commercialise les torches contenant ces sels, comme négligeable et sans effet sur l’environnement. Si le chlorure de calcium peut être irritant pour les yeux sous forme solide, il ne présente a priori pas d’éléments de risque pour la santé humaine dans le cadre de son utilisation. Toutefois, il peut être accompagné d’autres composés et notamment des métaux tels que l’aluminium, dont la dispersion dans l’atmosphère peut représenter un risque à long terme du fait de leur accumulation.

De la même manière que pour l’iodure d’argent, l’Organisation météorologique mondiale a conclu que « des impacts environnementaux et écologiques non attendus des techniques d’ensemencement n’ont pas été démontrés mais ne peuvent être exclus », sans s’exprimer sur l’impact des sels hygroscopiques sur la santé humaine.
Bilan sur les dispositifs de protection contre la grêle

Le caractère aléatoire et potentiellement fortement destructeur de la grêle représente une source d’inquiétude pour les arboriculteurs et les viticulteurs. Si des prédispositions régionales sont constatées – et concernent en particulier des régions où se concentrent et se sont concentrées des cultures arboricoles et légumières à plus forte vulnérabilité –, l’ensemble du territoire français peut être confronté à cet aléa. Les productions ne sont également pas égales face aux dégâts occasionnés selon le débouché envisagé, les fruits ou grappes de raisin de table marqués ne pouvant être commercialisés tandis que des grappes marquées mais destinées à être vinifiées ne seront pas systématiquement écartées lors des vendanges.

De la même manière que pour la lutte contre le gel, les exploitants disposent actuellement de moyens diversifiés de lutte physique contre la grêle mais dont l’utilisation ne permet de garantir une protection totale face à un phénomène dont la prévention reste complexe et l’intensité aussi variable. Si les méthodes de protection par filets ont pu faire l’objet d’essais dont les résultats sont immédiatement observables par les producteurs, les méthodes de protection par perturbation du climat souffrent toujours d’un manque de preuves scientifique justifiant leur rôle direct dans l’atténuation des dégâts de la grêle sur les cultures, voire sur leur capacité à éviter les épisodes grêlifères. Les dispositifs de canons à ondes font quant à eux l’objet d’une position claire de la communauté scientifique et leur action supposée de protection contre la grêle ne repose sur aucune base scientifique crédible.

En termes d’efficacité de la protection, la stratégie de lutte par filet est la seule qui puisse se satisfaire à elle-même, tandis que les dispositifs de perturbation du climat ne peuvent constituer une stratégie satisfaisante. La prévention des épisodes de grêle et l’amélioration des systèmes de prévision vient également compléter les stratégies de lutte adoptée par les exploitants.

Le niveau de déploiement de chacun des dispositifs de lutte contre la grêle reste aussi un point à investiguer pour permettre de mieux caractériser, dans leur diversité, les niveaux de protection en arboriculture et en viticulture sur le territoire français. L’attitude des agriculteurs confrontés à des dégâts de grêle est également un facteur conditionnant le déploiement de dispositifs de protection les années suivantes. Toutefois, l’absence de dégâts les années suivantes ne saurait justifier à elle seule de l’efficacité de dispositifs mis en place du fait de la variabilité pluriannuelle et de l’imprévisibilité des épisodes de grêle.

On notera pour conclure que la conviction, parfois collective, d’être protégé reste un facteur rassurant face à un phénomène pouvant être aussi dévastateur et aléatoire que la grêle, vis-à-vis duquel les agriculteurs peuvent se retrouver démunis. Cette conviction, que l’on retrouve parfois au travers de certains dispositifs disposant de peu voir d’aucune base scientifique, se déclinait autrefois en croyance lorsque l’on sonnait le tocsin pour éloigner les orages.
Conclusion

Cet état des lieux des dispositifs de protection des vignobles et vergers contre les risques de gel et de grêle met en évidence la diversité des solutions actuellement disponibles pour les exploitants français. Les méthodes de lutte active s’appuient sur différents modes d’action dont aucun ne permet d’offrir une protection totale des productions face aux aléas considérés. Leurs niveaux d’efficacité sont également variables et restent fortement dépendant des modes d’action envisagés, de la technicité requise pour mener à bien la lutte, de sa mise en œuvre et également des conditions climatiques.

Dans ce contexte, la stratégie de gestion des risques climatiques doit se construire sur un ensemble de dispositions relevant de méthodes de lutte passives et actives pouvant être gérées individuellement ou collectivement et en aborder les aspects techniques, financiers, environnementaux et commerciaux pour mettre en cohérence cette stratégie au regard des contraintes et caractéristiques propres à chaque exploitation.

Ceci met en exergue le besoin de pouvoir discriminer les niveaux d’efficacité des dispositifs face à la diversité des spécificités locales des exploitations et selon leurs modes d’action. En cela, il convient de poursuivre l’expérimentation sur le terrain, pour déterminer le niveau d’efficacité des dispositifs récents et pour mieux maîtriser l’efficacité des dispositifs plus anciens – comme les tours antigel. Dans le cas de la lutte contre le gel par exemple, il apparait qu’au-delà de la constatation de l’efficacité des dispositifs par comparaison avec des parcelles non protégées ou protégées par d’autres dispositifs, il est nécessaire de disposer d’une compréhension plus poussée des impacts des dispositifs testés en lien avec l’influence du microclimat. Concernant l’aléa grêle, on constate également une connaissance imparfaite des phénomènes de croissance des orages, sur lesquels certains dispositifs de lutte se proposent d’intervenir.

On pourra enfin noter l’importance de disposer de prévisions climatiques fiables et ce jusqu’à plusieurs jours à l’avance. Il s’agit là d’un enjeu majeur pour limiter les déclenchements aux situations présentant un risque réel – et optimiser par ailleurs l’utilisation de consommables pour les dispositifs –, et pour piloter avec précision la mise en œuvre de la lutte afin d’optimiser l’efficacité. On notera ainsi l’intérêt de disposer de capteurs de mesure fiables et de mettre en réseau les stations pour en partager les acquisitions en temps réel et fournir des alertes fiables.

Rochard J. *Aléas climatiques de la vigne. La grêle et le gel de printemps comment s’en protéger ?* IFV, Itinéraires n°27. 35 p.

Rochard J. et al., 2019. *Stratégie et équipements de prévention vis-à-vis du gel de printemps et de la grêle. Perspectives en lien avec les changements climatiques,*
projet ADVICLIM. 41st World Congress of Vine and Wine, Bio Web of Conferences, Vol 12, 11 p.

Webographie complémentaire

IFV, Gel et dégâts de gel sur vigne
https://www.vignevin-occitanie.com/fiches-pratiques/gel-et-degats-de-gel-sur-vigne/

INRAE, Gelées sur Vigne
http://ephytia.inra.fr/fr/C/7062/Vigne-Gelees

OMAFRA, Méthodes de protection des cultures contre le gel
http://www.omafra.gov.on.ca/french/crops/facts/96-156.htm#les

Rapport d’information du Sénat sur la gestion des risques climatiques et l’évolution de nos régimes d’indemnisation, juillet 2019
https://www.senat.fr/rap/r18-628/r18-628.html
Références Grêle

Berthomieu J.-F., 2015. L'histoire de la lutte anti-grêle de l'ACMG. Association Climatologique de la Moyenne-Garonne

Dessens J. et al., 2016. Hail prevention by ground-based silver iodide generators: Results of historical and modern field projects. Atmospheric Research., Vol 170, pp. 98-111

Le Corre M., 2018. Réduire le risque de grêle. REUSSIR Fruits & Légumes n° 385, pp. 24-26

Webographie complémentaire

Association national d’Etude et de Lutte contre les Fléaux Atmosphériques
http://www.anelfa.asso.fr

Météo France, La grêle

Météo France, Les radars météorologiques

Adivalor, Collecte et recyclage des filets paragrêle
https://www.adivalor.fr/collectes/Filets_paragrele.html

Rapport d'information du Sénat sur la gestion des risques climatiques et l’évolution de nos régimes d’indemnisation, juillet 2019
Acta – les instituts techniques agricoles
149, rue de Bercy
75595 Paris cedex 12
France
tél. +33 1 40 04 50 10
www.acta.asso.fr

Suivez l’Acta

@Acta_asso
www.acta.asso.fr/linkedin