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In this work, we perform the weakly nonlinear analysis of the reflection process of a thin
oscillating wave beam on a non-critical surface in a fluid rotating and stratified along a
same vertical axis in the limit of weak viscosity, i.e. small Ekman number E. We assume
that the beam has the self-similar viscous structure obtained by Moore & Saffman (Phil.
Trans. R. Soc. A 264, 597-634 (1969)) and Thomas & Stevenson (J. Fluid Mech. 54,
495-506 (1972)). Such a solution describes the viscous internal shear layers of width
O(E1/3) generated by a localized oscillating source. We first show that the reflected
beam conserves at leading order the self-similar structure of the incident beam and is
modified by a O(E1/6) correction with a different self-similar structure. We then analyse
the nonlinear interaction of the reflected beam with the incident beam of amplitude ε and
demonstrate that a second-harmonic beam and localized meanflow correction, both of
amplitude ε2E−1/3 are created. We further show that for the purely stratified case (resp.
the purely rotating case), a non-localized meanflow correction of amplitude ε2E−1/6 is
generated, except when the boundary is horizontal (resp. vertical). In this latter case,
the meanflow correction remains localized but exhibits a triple layer structure with a
large O(E4/9) viscous layer.

1. Introduction

Waves are ubiquitous in rotating and stratified fluids and participate in the dynamics
of a very large variety of geophysical and astrophysical flows. In addition to transport-
ing momentum, they are expected to be involved in mixing and dissipation processes.
Of special interest are the viscous harmonic wave beams that are created from critical
surfaces, and boundary singularities because they are very thin and possess a univer-
sal transverse structure (Moore & Saffman, 1969; Thomas & Stevenson, 1972; Le Dizès
& Le Bars, 2017). The goal of the present article is to analyse the reflection of such
beams on a flat boundary in order to understand how second-harmonic and meanflow
corrections are created during the reflection process.

In the ocean, the tidal motion of water on submarine topography is an important
source of waves (Wunsch, 1975). Supercritical topographies, that is topographies steeper
than the direction of propagation of the waves, are of particular interest because they are
known to create strong concentrated beams. These beams and their role in the tidal con-
version have been studied experimentally (Zhang et al., 2007; King et al., 2009; Echeverri
& Peacock, 2010) as well as theoretically (St Laurent et al., 2003; Llewellyn Smith &
Young, 2003; Balmforth & Peacock, 2009). Similar concentrated wave beams are also
found in rotating fluids (Kerswell, 1995; Le Dizès & Le Bars, 2017). They have mainly
been studied in spherical geometries (Calkins et al., 2010; Koch et al., 2013; Cébron
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et al., 2019; Lin & Noir, 2020) in the context of planetary applications (Le Bars et al.,
2015). These wave beams are the temporal equivalent of the thin shear layers found
at the periphery of Taylor-Proudman columns between differentially rotating disks or
spheres (Proudman, 1956; Stewartson, 1966). They have been the subject of works by
Walton (1975); Kerswell (1995); Tilgner (2000) and Le Dizès (2015) among others. Moore
& Saffman (1969) and Thomas & Stevenson (1972) found independently for a rotating
fluid and a stratified fluid respectively a self-similar viscous solution describing such a
wave beam. These solutions were further studied and used by Peat (1978); Voisin (2003);
Tabaei & Akylas (2003); Cortet et al. (2010); Machicoane et al. (2015). In Le Dizès &
Le Bars (2017), it was shown that these self-similar solutions are able to describe the
wave beams that are created at the edge of a librating disk and at the critical latitude
of a librating sphere in an open domain.

As soon as the domain is closed, the problem becomes more complex as beams reflect
on boundaries. Depending on the geometry, concentrated beams can then also be formed
as the result of a focusing process on an attractor (Maas et al., 1997; Rieutord et al.,
2001; Grisouard et al., 2015; Beckebanze et al., 2018).

The reflection process of a wave beam is documented in textbook (e.g. Phillips, 1966).
Contrarily to beams of light, a wave beam conserves its angle of propagation with re-
spect to the direction of stratification or of the rotation axis. The beam structure is
also expected to be conserved during the reflection process (Kistovich & Chashechkin,
1994) except in the critical situation where the boundary is aligned with the direction
of propagation of the reflected beam (Dauxois & Young, 1999). A viscous correction is
also created during the reflection process that was first calculated by Beckebanze et al.
(2018).

Although a plane wave is known to be generically unstable by triadic resonance (Davis
& Acrivos, 1967; Staquet & Sommeria, 2002), a thin wave beam is less sensible to such
an instability (McEwan & Plumb, 1977; Dauxois et al., 2018). Moreover, they are also
very weakly affected by nonlinear effects (Tabaei & Akylas, 2003). Nonlinearities seem to
be created mainly when two beams interact (Lamb, 2004). This interaction process has
been analysed theoretically by Tabaei et al. (2005) and Jiang & Marcus (2009) in order
to determine the amplitude and direction of propagation of the nonlinearly generated
waves. The case of a reflected beam is a particular case because the interacting beams
have the same frequency. The first-order interaction therefore creates meanflow and
second-harmonic corrections. In 2D, the meanflow correction tend to remain localized
(Tabaei et al., 2005) so many works have focused on the second-harmonic wave beam
generated during the reflection process (Peacock & Tabaei, 2005; Gostiaux et al., 2006;
Rodenborn et al., 2011). Yet, non-local meanflow corrections could a priori be created in
a stratified fluid, or a rotating fluid. In a stratified fluid, they take the form of horizontal
layers. Bretherton (1969); Bordes et al. (2012) and Kataoka & Akylas (2015) have shown
they are amplified by 3D effects. In a rotating fluid, they take the form of columnar flows.
They seem to be generated by the nonlinear interaction occurring in the viscous boundary
layer. They have been documented for precession (Busse, 1968; Hollerbach & Kerswell,
1995; Noir et al., 2001), libration (Busse, 2010; Sauret et al., 2010; Sauret & Le Dizès,
2013; Lin & Noir, 2020), and tides (Tilgner, 2007; Morize et al., 2010; Favier et al., 2014).

In the present paper, we consider the generic situation of an axisymmetric (or 2D)
oscillating viscous beam, described by the self-similar solution of Moore & Saffman (1969)
and Thomas & Stevenson (1972), impacting an axisymmetric (or planar) surface in a
stratified and rotating fluid. Our objective is to analyse the weakly nonlinear structure
of the solution generated during the reflection process. More specifically, we shall provide
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the scalings and the equations governing the meanflow and second-harmonic corrections
in the limit of small Ekman numbers.

The paper is organised as follows. In section §2, we provide the theoretical framework
and describe the reflection process of the self-similar wave beam solution. We show that
a viscous correction is created during the reflection. The Reynolds stress responsible for
the generation of a second-harmonic and of a meanflow correction is also provided in
this section. In section §3, we analyse the second-harmonic correction while section §4 is
devoted to the meanflow correction. The structure of the meanflow correction is found
to be particular when the fluid is non-rotating or non-stratified. These cases are treated
in the subsections §4.2 and 4.3. The results are briefly summarized in section §5 and
compared to other works in section §6.

2. Framework

We consider an incompressible viscous fluid, rotating around an axis Ox with an angu-
lar velocity Ω and stably stratified along this axis with a constant buoyancy frequency N .
The fluid is characterized by a kinematic viscosity ν and a diffusivity κ. In the rotating
frame, the velocity field v = (vr, vφ, vz), the pressure p and the buoyancy b of the fluid
perturbations are governed, under the Boussinesq approximations, by the equations

Dv

Dt
+ 2Ωez × v = −∇p− bez + ν∇2v, (2.1a)

∇ · v = 0, (2.1b)

Db

Dt
= N2vz + κ∇2b, (2.1c)

where D/Dt = (∂/∂t + v.∇). Vanishing buoyancy and no-slip boundary conditions are
assumed on solid boundaries.

We consider a thin oscillating wave beam in the form of an oscillating viscous internal
shear layer. Its frequency ω is related to the angle θ of propagation with respect to the
horizontal plane by the relation:

ω2 = N2 sin2 θ + 4Ω2 cos θ2. (2.2)

We consider a generic case for which 0 < θ < π/2. As explained in the introduction, these
internal shear layers are generated from oscillating objects or supercritical topographies
in typical situations illustrated in figure 1. In this work, we are interested in the reflection
of such a wave beam on an axisymmetric boundary making an angle α with respect to
the horizontal plane. Our objective is to quantify the nonlinear corrections which are
created during the reflection process. The presentation is provided for an axisymmetric
beam in a cylindrical geometry but the same analysis can be done if the beam possesses
another azimuthal symmetry, or if the beam and the boundary have a planar geometry.

2.1. Incident beam structure

The incident beam is assumed to be described by the similarity solution of Moore &
Saffman (1969) and Thomas & Stevenson (1972).

Using the notation introduced in Le Dizès & Le Bars (2017), this harmonic solution can

be written as X(i) = <e((v(i), b(i), p(i))e−iωt) where the velocity v
(i)
‖ along the direction
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Figure 1. Sketches of the typical applications. Left: Reflection on the outer boundary of a
wave beam generated by the libration of the inner core; Right: Reflection on a mountain of a
wave beam generated by a tidal wave on a supercritical topography.

of propagation, the azimuthal velocity v
(i)
φ and the buoyancy b(i) are all proportional to

Hµ(x
(i)
⊥ , x

(i)
‖ , r) =

1
√
r(x

(i)
‖ )µ/3

hµ

 x
(i)
⊥

(L2
dx

(i)
‖ )1/3

 (2.3)

with

v
(i)
‖ = ε(i)Hµ , v

(i)
φ = −2Ωi cos θ

ω
ε(i)Hµ , b(i) =

N2i sin θ

ω
ε(i)Hµ . (2.4)

In (2.3), r is the radial coordinate, x
(i)
‖ and x

(i)
⊥ are the coordinates parallel and normal

to the direction of propagation of the incident wave beam in the (r, z) plane [see figure
2(left)].

The function hµ is given by

hµ(ζ) =
e−iµπ/2

(µ− 1)!

∫ +∞

0

eipζ−p3pµ−1 dp. (2.5)

The index µ characterises the nature of the singularity which has given birth to the beam
(Moore & Saffman, 1969; Thomas & Stevenson, 1972). For instance, an axisymmetric
Dirac source is known to be associated with an index µ = 1 (Tilgner, 2000; Le Dizès,
2015). Stronger singularities associated with larger values of µ can also be found. Le Dizès
& Le Bars (2017) demonstrated that the singularity associated with the critical latitude
on a sphere gives rise to an index µ = 5/4 (this situation is illustrated in figure 1(left)).
Expression (2.4) is also encountered in the far-field of any localized source (Voisin, 2003).
In that case, the index µ characterises the multipole order of the source (Machicoane
et al., 2015); it is an integer in two dimensions, with µ = 1 for a dipole, but an half-
integer in three dimensions, with µ = 3/2 for a dipole (Voisin, 2003).

The constant Ld is given by

L2
d =

N2 sin2 θ(ν + κ) + 8Ω2ν cos2 θ

2 sin θ cos θ(4Ω2 −N2)ω
. (2.6)

Its norm defines a characteristic diffusion scale. In the non-stratified case (N = 0),
L2
d = ν/(2Ω sin θ). In the non-rotating case (Ω = 0), L2

d = −(ν + κ)/(2N cos θ). When

L2
d < 0, the quantity (L2

dx
(i)
‖ )1/3 in (2.3) is defined as −|L2

dx
(i)
‖ |

1/3.
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(a) (b)

Figure 2. Reflection process. (a) Definition of the coordinate systems for 0 < θ < α < π − θ.
Here the reflected beam is contracted because π/2 < α < π − θ. The relationships between
the various coordinate systems are provided in appendix A. (b) Characteristic of the reflection
process according to α (assuming 0 < θ < π/2).

The beam gets wider and wider as it propagates. We consider its characteristics at

a typical distance lc = x
(i)
‖c from its source. If we use a characteristic frequency fc (say

max(2Ω, N)) and define the Ekman number by

E =
ν

fcl2c
, (2.7)

the characteristic width of the beam is given by

L(i) = E1/3Λlc (2.8)

where Λ is a positive dimensionless number given by

Λ =

∣∣∣∣N2fc sin2 θ(1 + Pr−1) + 8Ω2fc cos2 θ

2 sin θ cos θ(4Ω2 −N2)ω

∣∣∣∣1/3 , (2.9)

and Pr = ν/κ is the Prandtl number.
In the following, we assume that E � 1 and that Λ is neither zero nor infinite. The

Prandtl number Pr is assumed to be a fixed non-zero constant. The beam is therefore thin
with a width scaling as E1/3. This similarity solution is a leading order approximation

of a viscous solution in the limit E → 0. The pressure p(i) and the normal velocity v
(i)
⊥

are O(E1/3) as the first order correction to the similarity solution.
Note that the present similarity solution is a special case of a general expression of the

form

v‖ =
1√
r

∫ +∞

0

G(k)eiεokx⊥/L
(i)

e−k
3x‖/lcdk (2.10)

which describes a viscous beam propagating in the direction of positive x‖. For our

similarity solution, G(k) = ε(i)e−iµπ/2kµ−1/(µ − 1)!. With the frame convention shown
in figure 2(a), the parameter εo is equal to 1 if N < 2Ω and to -1 if N > 2Ω. The singular
case N = 2Ω is not considered in the present work.
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In the sequel, all the spatial and temporal variables are assumed to have been non-
dimensionalized using lc and fc.

2.2. Reflection on an inclined boundary

After having covered a distance lc, the incident beam reaches an inclined boundary
and is reflected as illustrated in figure 2(a). This reflection process is analogous to that
described by Phillips (1966) for a plane wave in a non-rotating fluid, and further analysed
by Kistovich & Chashechkin (1994) and Tabaei et al. (2005). According to the boundary
inclination angle α, the beam is expected to expand or contract (see figure 2(b)). As in
Kistovich & Chashechkin (1994), we assume that the beam keeps its self-similar structure

(2.3) with new variables x
(r)
‖ and x

(r)
⊥ associated with the direction of the reflected beam.

We consider the situation illustrated in figure 2(a) where θ(i) = θ and θ(r) = π − θ and
look for a solution X(r) = <e((v(r), b(r), p(r))e−iωt) with

v
(r)
‖ = ε(r)Hµ , v

(r)
φ =

2Ωi cos θ

ω
ε(r)Hµ , b(r) =

N2i sin θ

ω
ε(r)Hµ . (2.11)

The reflected beam amplitude ε(r) and the value x
(r)
‖c of x

(r)
‖ at the impact point Ic(rc, zc)

should be chosen such that the sum of incident and reflected beams satisfies the condition
of non-penetrability on the surface. To apply this condition, it is convenient to introduce
local variables tangent and normal to the boundary (see figure 2(a)):

xt = cosα(r − rc) + sinα(z − zc) , xn = − sinα(r − rc) + cosα(z − zc) , (2.12)

such that the condition vn(xn = 0) = 0 gives

− sin(α− θ)ε(i)Hµ(sin(α− θ)xt, x(i)
‖c , rc) + sin(α+ θ)ε(r)Hµ(sin(α+ θ)xt, x

(r)
‖c , rc) = 0.

(2.13)
This equation is satisfied if and only if

x
(i)
‖c

x
(r)
‖c

= K3 ,
ε(i)

ε(r)
= Kµ−1 , (2.14)

with

K =
sin(α− θ)
sin(α+ θ)

. (2.15)

Equations (2.14) were already obtained by Kistovich & Chashechkin (1994). They noted
that the reflected beam can be interpreted as a beam generated by a virtual source of

same nature as the incident beam but located at a distance x
(r)
‖c from the reflection point

given by (2.14). Close to the impact point, the width of the reflected beam is given by
L(r) = L(i)/K. The coefficient K is therefore the contraction factor of the reflected beam.
We can indeed check that the reflected beam expands (0 < K < 1) for θ < α < π/2 and
contracts (K > 1) for π/2 < α < π − θ in agreement with figure 2(b). This formula for
the contraction factor is not new and is related to the wavelength contraction factor that
a plane wave experiences at reflection (Phillips, 1966).

In a region of order E1/3 around the impact point that we shall call “interaction
region”, a compact expression of the total harmonic field composed of the incident and

reflected beams can be obtained. If we redefine ε = ε(i)/r
1/2
c /(x

(i)
‖c )µ/3, and introduce

the local variables r̃ = (r − rc)/E1/3 and z̃ = (z − zc)/E1/3, we can write the leading
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order expression of the velocity and buoyancy fields in the interaction region as

(v, b) ∼ ε(ṽ0, b̃0) = ε(ṽ
(i)
0 + ṽ

(r)
0 , b̃

(r)
0 + b̃

(i)
0 ) (2.16)

where

ṽ0r = cos θ(h̃(i)
µ − h̃(r)

µ ), (2.17a)

ṽ0φ = −2Ω cos θ

ω
(h̃(i)
µ − h̃(r)

µ ), (2.17b)

ṽ0z = sin θ(h̃(i)
µ + h̃(r)

µ ), (2.17c)

b̃0 = i
N2 sin θ

ω
(h̃(i)
µ + h̃(r)

µ ), (2.17d)

and

h̃(i)
µ = hµ

(
− sin θr̃ + cos θz̃

Λ

)
, h̃(r)

µ = Khµ

(
K

sin θr̃ + cos θz̃

Λ

)
. (2.18)

Note that in terms of local boundary layer variables x̃t = xt/E
1/3 and x̃n = xn/E

1/3,

h̃
(i)
µ and h̃

(r)
µ can also be written as

h̃(i)
µ = hµ

(
sin(α− θ)

Λ
(x̃t + cot(α− θ)x̃n)

)
, (2.19a)

h̃(r)
µ = Khµ

(
sin(α− θ)

Λ
(x̃t + cot(α+ θ)x̃n)

)
, (2.19b)

and the tangential and normal velocity components read

ṽ0t = cos(α− θ)h̃(i)
µ − cos(α+ θ)h̃(r)

µ , (2.20a)

ṽ0n = − sin(α− θ)h̃(i)
µ + sin(α+ θ)h̃(r)

µ . (2.20b)

It is worth mentioning that the above solution is a leading order approximation ob-
tained by applying slip boundary conditions. This solution does not satisfy the vanishing
buoyancy and no-slip boundary conditions. This means that a viscous/diffusive bound-
ary layer is expected close to boundary. In the next subsection, we show that this viscous
boundary layer is responsible for a viscous correction to the reflected beam. More pre-
cisely, we shall see that the reflected beam expands in the interaction region as

(v(r), b(r)) = ε
[
(ṽ

(r)
0 , b̃

(r)
0 ) + E1/6(ṽ

(r)
1 , b̃

(r)
1 ) +O(E1/3)

]
, (2.21)

whereas the incident beam is just

(v(i), b(i)) = ε
[
(ṽ

(i)
0 , b̃

(i)
0 ) +O(E1/3)

]
. (2.22)

2.3. Viscous correction to the reflected beam

As long as the slope inclination is not critical, that is α is different from θ and π − θ,
the width of the viscous boundary layer is O(E1/2). In the viscous boundary layer, the
relevant variables are the local tangent variable x̃t and the viscous boundary variable
x̄n = E−1/6x̃n = E−1/2xn. The form of the solution can be obtained by expanding
the leading order expression (2.17) as x̃n → 0 using the viscous boundary variable.
Using (2.20), we observe that ṽ0t, ṽ0φ, b̃0 remains O(1) whereas ṽ0n ∼ x̃n∂x̃n

ṽ0n(x̃t, 0) =
E1/6x̄n∂x̃n

ṽ0n(x̃t, 0) as x̃n → 0. It follows that one can look for a viscous boundary
solution of the form

vt = ε(ṽ0t0(x̃t) + v̄0t(x̃t, x̄n)) , (2.23a)
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vn = εE1/6v̄1n(x̃t, x̄n) , (2.23b)

vφ = ε(ṽ0φ0(x̃t) + v̄0φ(x̃t, x̄n)) , (2.23c)

b = ε(b̃00(x̃t) + b̄0(x̃t, x̄n)) , (2.23d)

p = εE1/3(p̃00(x̃t) + E1/6p̄1(x̃t, x̄n))), (2.23e)

where ṽ0t0, ṽ0φ0, b̃00 and p̃00 are the expressions as x̃n goes to 0 of the leading order
solution in the interaction region. Only p̃0 has not been provided above. Its exact
expression will turn out not to be necessary for the analysis.

The governing equations reduce to

−iωv̄0t − 2Ωv̄0φ cosα− b̄0 sinα− ∂2v̄0t

∂x̄2
n

= 0, (2.24a)

−iωv̄0φ + 2Ωv̄t0 cosα− ∂2v̄0φ

∂x̄2
n

= 0, (2.24b)

2Ωv̄0φ sinα− b̄0 cosα+
∂p̄1

∂x̄n
= 0, (2.24c)

−iωb̄0 − 2Ωv̄0φ cosα−N2v̄0t sinα− 1

Pr

∂2b̄0
∂x̄2

n

= 0, (2.24d)

∂v̄1n

∂x̄n
+
∂(ṽ0t0 + v̄0t)

∂x̃t
= 0, (2.24e)

which gives[(
iω +

∂2

∂x̄2
n

)2(
iω +

1

Pr

∂2

∂x̄2
n

)
+ 4Ω2 cos2 α

(
iω +

1

Pr

∂2

∂x̄2
n

)
+N2 sin2 α

(
iω +

∂2

∂x̄2
n

)]
v̄0t = 0 .

(2.25)

Among the six independent solutions, three correspond to exponentially decreasing so-
lutions of the form e−λj x̄n , j = 1, 2, 3 with <e(λj) > 0. The solution for v̄0t can then be

written as v̄0t =
∑3
j=1 āj(x̃t)e

−λj x̄n , which gives similar expressions for v̄0φ and b̄0 using
(2.24a,b,d). The conditions that vt, vφ and b vanish at x̄n = 0 then provide the functions

āj , j = 1, 2, 3 as linear combinations of ṽ0t0, ṽ0φ0 and b̃00. Note that if Pr =∞, equation
(2.25) is of fourth order. There is then two unknown functions, which are obtained by
applying the boundary conditions at x̄n = 0 on vt and vφ only.

To get v̄1n, we use (2.24e) which gives

v̄1n = −ṽ′0t0(x̃t)x̄n −
3∑
j=1

ā′j(x̃t)
1− e−λj x̄n

λj
. (2.26)

The first term automatically matches the expression of the normal velocity in the in-
teraction region as x̃n → 0. It is the second term which gives the viscous correc-
tion that we are looking for. As x̄n → ∞, this term tends to a function ū∞1n(x̃t) =

−
∑3
j=1 ā

′
j(x̃t)/λj that should match a contribution in the interaction region. Using the

fact that āj(x̃t), j = 1, 2, 3 are linear combination of ṽ0t0, ṽ0φ0 and b̃00, they can be
written as Cjhµ(sin(α−θ)x̃t/Λ) [see (2.17) and (2.19)]. It then immediately follows that

ū∞1n(x̃t) = C∞1nhµ+1(sin(α− θ)x̃t/Λ) (2.27)

where C∞1n is a complex constant. Such a normal flow can be matched in the interaction
region to a solution of the same form as the reflected beam (2.11) by changing µ into
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µ + 1. More precisely, if we have (2.27), the viscous correction to the reflected beam
would read in the interaction region as

v
(r)
1r

v
(r)
1φ

v
(r)
1z

b
(r)
1

 = εE1/6C∞1n


cos θ
(2iΩ/ω) cos θ
sin θ
(iN2/ω) sin θ

 h̃
(r)
µ+1, (2.28)

where h̃
(r)
µ has been defined in (2.19b). It is worth mentioning that this O(E1/6) viscous

correction is larger than the first viscous correction to the similarity solution describing
the beam, which is O(E1/3).

A viscous correction to the reflected beam was calculated by Beckebanze et al. (2018)
in the purely stratified case. By comparing their expression (6.9) with ours, one can see
that both expressions are similar. They obtained that the spectral density of the viscous
correction is kÛ(k) if the spectral density of the incident beam is Û(k) (our function
G(k) in (2.10)): this corresponds to the passage from hµ to hµ+1 in our analysis.

2.4. Reynolds stress

In this section, our objective is to estimate the nonlinear terms v.∇v and v.∇b, or
Reynolds stress, that appear in the governing equations (2.1a-c). Owing to the particular
form of the similarity solution, it is straightforward to show that these terms are at most
O(ε2) everywhere except close to the source, the rotation axis and the reflection point.
As already mentioned, our interest is in a reflection point distinct from the beam source
and the rotation axis.

In the interaction region, the two beams interact with each other, making the Reynolds
stress of order ε2E−1/3. Simple expressions for the Reynolds stress can be obtained using
(2.17a-d) and (2.28). As expected, the Reynolds stress is composed of a steady and a
second-harmonic part:

N = N (0) +
(
N (2)e−2iωt + c.c.

)
(2.29)

where

N (0) = v.∇


v∗r
v∗φ
v∗z
b∗

+ c.c. ; N (2) = v.∇


vr
vφ
vz
b

 , (2.30)

the superscript ∗ denoting the complex conjugate. The expressions of N (0) = ε2E−1/3(N (0)
0 +

E1/6N (0)
1 + · · ·) and N (2) = ε2E−1/3N (2)

0 + · · · are given in appendix B.

2.5. Notation

We have introduced a number of notation that we shall use in the rest of the paper.
Whereas the harmonic solution is denoted without superscript, the second harmonic

correction, as well as the amplitude of the terms oscillating at the frequency 2ω, such as
the second harmonic part of the Reynolds stress N (2) will be denoted with the superscript
(2). The meanflow correction, and the steady terms such as N (0) will always be indicated
by the superscript (0).

The subscripts will be of three types. The letters and special characters ⊥ and ‖ will
indicate the system of coordinates used for the velocity components. Three different
systems of coordinates are used: (r, φ, z) for the global cylindrical coordinate system,
(xt, φ, xn) for the boundary coordinate system, (x‖, φ, x⊥) for the beam associated coor-
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dinate system [see figure 2(a) and appendix A for the relations between the coordinate
systems]. In this last case, the superscript (i), (r), (2) or (0) indicate whether it corre-
sponds to the incident, reflected, second-harmonic or steady beam. For the Reynolds
stress, the subscript b will indicate the fourth component of the vector N .

The first subscript number will be associated with the order of the expansion. The sub-
script 0 will always indicate the leading order expression; larger numbers will correspond
to higher order terms ordered in decreasing amplitude order. A second subscript number

0 or ∞ will exceptionally be used to indicate the value taken as one of the variables goes
to zero or infinity.

The symbols placed above the characters will correspond to the regions where the
solution is considered

- tilde ˜ for the interaction region,
- overbar ¯ for the viscous boundary layer,
- check ˇ for the E4/9 viscous layer,
- without symbol for the outer region, that is in a beam region far from the inter-

action region.
For the spatial variables, it will imply a particular rescaling with respect to the global
outer variable, by E1/3 in the interaction region (i.e. x̃n = xn/E

1/3, r̃ = (r − rc)/E1/3,
etc), by E1/2 in the viscous boundary layer for the normal variable (x̄ = xn/E

1/2), by
E4/9 in the E4/9 viscous layer for the normal variable (x̌n = xn/E

1/4 = ř = (r−rc)/E4/9

for a vertical boundary).

3. Second-harmonic correction

The second-harmonic Reynolds stress creates a second-harmonic correction X(2) =
<e((v(2), b(2), p(2))e−2iωt) that can be written in the interaction region as

v(2)
r ∼ ε2E−1/3ṽ

(2)
0r (r̃, z̃), (3.1a)

v
(2)
φ ∼ ε2E−1/3ṽ

(2)
0φ (r̃, z̃), (3.1b)

v(2)
z ∼ ε2E−1/3ṽ

(2)
0z (r̃, z̃), (3.1c)

b(2) ∼ ε2E−1/3b̃
(2)
0 (r̃, z̃), (3.1d)

p(2) ∼ ε2p̃
(2)
0 (r̃, z̃), (3.1e)

where they satisfy

−2iωṽ
(2)
0r − 2Ωṽ

(2)
0φ +

∂p̃
(2)
0

∂r̃
= −Ñ (2)

0r , (3.2a)

−2iωṽ
(2)
0φ + 2Ωṽ

(2)
0r = −Ñ (2)

0φ , (3.2b)

−2iωṽ
(2)
0z + b̃

(2)
0 +

∂p̃
(2)
0

∂z̃
= −Ñ (2)

0z , (3.2c)

−2iωb̃
(2)
0 −N2ṽ

(2)
0z = −Ñ (2)

0b , (3.2d)

∂ṽ
(2)
0r

∂r̃
+
∂ṽ

(2)
0z

∂z̃
= 0. (3.2e)

These equations do not contain any viscous terms, which all come at higher orders. As
seen below, these equations with a non-penetrability condition on the boundary com-
pletely define the leading order of the second-harmonic correction. This will allow us to
say that the generation process of the second-harmonic correction is essentially inviscid.
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The system (3.2) can be manipulated to give

(N2 − 4ω2)
∂ṽ

(2)
0z

∂r̃
− (4Ω2 − 4ω2)

∂ṽ
(2)
0r

∂z̃
= −2iω

∂2(h̃
(r)
µ h̃

(i)
µ )

∂r̃∂z̃
≡ A(2) . (3.3)

Using (3.2e), we then get for ṽ
(2)
0r and ṽ

(2)
0z :

L(2)ṽ
(2)
0r = −∂A

(2)

∂z̃
, L(2)ṽ

(2)
0z =

∂A(2)

∂r̃
, (3.4)

with

L(2) = (N2 − 4ω2)
∂2

∂r̃2
+ (4Ω2 − 4ω2)

∂2

∂z̃2
, (3.5)

which also give for the tangential and normal components of the velocity:

L(2)ṽ
(2)
0t = −∂A

(2)

∂x̃n
, L(2)ṽ

(2)
0n =

∂A(2)

∂x̃t
, (3.6)

where L(2) can also be written as

L(2) = (N2 sin2 α+ 4Ω2 cos2 α− 4ω2)
∂2

∂x̃2
n

+ (N2 cos2 α+ 4Ω2 sin2 α− 4ω2)
∂2

∂x̃2
t

− sin 2α(N2 − 4Ω2)
∂2

∂x̃t∂x̃n
.

(3.7)
When 2ω is not within 2Ω and N , equations (3.4) and (3.6) are elliptic equations:

oscillations with respect to one variable are evanescent with respect to the other. In that
case, we do not expect propagation outside the interaction region. The second-harmonic
correction is localized in that region.

The interesting case is when 2ω is within 2Ω and N . In other words, the second-
harmonic frequency corresponds to an inertia-gravity frequency. In that case, there
exists an angle θ2 (between 0 and π/2) that satisfies

4ω2 = N2 sin2 θ2 + 4Ω2 cos2 θ2, (3.8)

that corresponds to a direction of propagation of perturbations of frequency 2ω. The
other directions of propagation are π − θ2, π + θ2 and −θ2. This angle can be used to
write (3.7) as

L(2) = (N2−4Ω2)

(
sin(α+ θ2)

∂

∂x̃n
− cos(α+ θ2)

∂

∂x̃t

)(
sin(α− θ2)

∂

∂x̃n
− cos(α− θ2)

∂

∂x̃t

)
(3.9)

As shown by Tabaei et al. (2005), a general solution to (3.6) can then be obtained

using Fourier transforms. For ṽ
(2)
0n , we get

ṽ
(2)
0n =

∫ +∞
−∞ eik(x̃t+cot(α−θ2)x̃n)

(
A(k) +

∫ x̃n

+∞ e−ik cot(α+θ2)sF(k, s)ds
)
dk

+
∫ +∞
−∞ eik(x̃t+cot(α+θ2)x̃n)

(
B(k)−

∫ x̃n

+∞ e−ik cot(α−θ2)sF(k, s)ds
)
dk,

(3.10)

where F(k, x̃n) is

F(k, x̃n) =
1

2 sin 2θ2(N2 − 4Ω2)

∫ +∞

−∞
e−ikx̃tA(2)dx̃t. (3.11)

The unknown functions A(k) and B(k) are obtained by applying boundary conditions at
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(a) (b)

(c) (d)

Figure 3. Regions where the second-harmonic correction is O(ε2E−1/3); Outer region: light
gray, interaction region: gray, viscous boundary layer: dark gray. The red arrows indicate the
harmonic beam. Here θ < α < π − θ. (a) 2ω > max(N, 2Ω). No second-harmonic beam:
the second-harmonic correction is mainly confined in the interaction region and in the viscous
boundary layer. (b,c,d) 2ω < max(N, 2Ω). Second-harmonic beam: the second-harmonic cor-
rection extends in an outer region. (b) N > 2Ω and α > π − θ2. The beam propagates in the
direction −θ2. (c) N > 2Ω and α < π − θ2. The beam propagates in the direction π − θ2. (d)
N < 2Ω. The beam propagates in the direction π − θ2.

x̃n = 0 and x̃n =∞. It is first important to note that owing to the special form of A(2)

given in (3.3), the function F satisfies the following property:

F(k, x̃n) = 0 for εok < 0. (3.12)

This property was proved in a general setting by Tabaei et al. (2005).

The condition at infinity is a condition of radiation: as x̃n goes to ∞, the solution
should match an outgoing wave packet. This condition can be analysed by adding viscous
effects along the direction of propagation. Outgoing wave packets can be written as
(2.10), which gives for a perturbation oscillating at 2ω :

V
(2)
‖ =

1√
r

∫ +∞

0

G(2)(k)eiεokx
(2)
⊥ /Λ(2)/E1/3

e
−k3x(2)

‖ dk , (3.13)
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with

Λ(2) =

∣∣∣∣N2fc sin2 θ2(1 + Pr−1) + 8Ω2fc cos2 θ2

4 sin θ2 cos θ2(4Ω2 −N2)ω

∣∣∣∣1/3 . (3.14)

For large x̃n, expression (3.10) reduces to

ṽ
(2)
0n =

∫ +∞

−∞
eik(x̃t+cot(α−θ2)x̃n)A(k)dk +

∫ +∞

−∞
eik(x̃t+cot(α+θ2)x̃n)B(k)dk. (3.15)

Since x
(2)
⊥ = sin(α−θ2)(xt+cot(α−θ2)xn) for a wave packet propagating in the direction

θ2, the first term matches an outgoing wave packet of the form (3.13) propagating in the
direction θ2 if α < θ2 (resp. π + θ2 if α > θ2), only if

A(k) = 0, for εok > 0. (3.16)

Similarly, the second term matches an outgoing wave packet propagating in the direction
π − θ2 if α < π − θ2 (resp. −θ2 if α > π − θ2) only if

B(k) = 0, for εok < 0. (3.17)

The condition of non-penetrability ṽ
(2)
0n (x̃n = 0) = 0 gives a second condition on A(k)

and B(k). Using (3.12), (3.16) and (3.17), we immediately get from (3.10):

A(k) = 0, for εok < 0, (3.18a)

B(k) =

∫ +∞

0

(
e−ik cot(α+θ2)s − e−ik cot(α−θ2)s

)
F(k, s)ds, for εok > 0. (3.18b)

The functions A(k) and B(k) are thus fully determined.

As x̃n → +∞, expression (3.10) of ṽ
(2)
0n then reduces to

ṽ
(2)
0n ∼ εo

∫ +∞

0

eikεo(x̃t+cot(α+θ2)x̃n)B(εok)dk. (3.19)

Far from the interaction region, the solution is therefore propagating away in the direction
π − θ2 (or −θ2 if π − θ2 < α) and given by (3.13) with

G(2)(k) = ε2E−1/3 εo
Λ(2)

B

(
kεo| sin(α+ θ2)|

Λ(2)

)
ek

3

(3.20)

where B(k) is defined by (3.17), (3.18), (3.11) and (3.3), assuming x
(2)
‖ = 1 at the

generation point Ic. The different situations are illustrated in figure 3.
Note that contrarily to the reflected harmonic wave beam, the second-harmonic wave

beam does not possess a priori a self-similar structure.
In this section, we have obtained the leading order expression of the second harmonic

correction in the interaction region and in the beam where it propagates. In the viscous
boundary layer where viscous effects become important, the Reynolds stress takes a
different form and the no-slip boundary condition has to be apply. As for the harmonic
solution, solving this region is needed, if one is interested in finding the first O(E1/6)
viscous correction to the solution obtained above.

4. Meanflow correction

The meanflow correction corresponds to a perturbation with a frequency zero. In
a stratified and rotating fluid, this frequency is outside the inertia-gravity frequency
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(a) (b) (c)

(d) (e)

Figure 4. Regions where the meanflow correction is O(ε2E−1/3) (gray regions), or O(ε2E−1/6)
(hatched regions). The different levels of gray are associated with different regions (from light

to dark, interaction region, E4/9 viscous layer and viscous boundary layer). (a) Ω 6= 0, N 6= 0;
(b) Ω 6= 0, N = 0, α 6= π/2; (c) Ω 6= 0, N = 0, α = π/2; (d) Ω = 0, N 6= 0, α 6= 0; (e) Ω = 0,
N 6= 0, α = 0.

range, so we do not expect propagation. When N or Ω vanishes, this is no longer the
case: the frequency zero is within the inertia-gravity frequency range. The perturbation
propagates horizontally when Ω = 0 and vertically when N = 0. We therefore expect
different situations when N or Ω vanishes, and when the surface is vertical or horizontal
in those cases. What we get is actually illustrated in figure 4. The goal of the present
section is to justify the scaling shown in this figure and provide the structure of the
meanflow correction in the different regions for each case.

4.1. Generic configuration: rotating and stratified fluid (N 6= 0, Ω 6= 0)

In this section, we consider the generic configuration where neither N nor Ω vanishes.
The main contribution is obtained in the interaction region. In this region, the meanflow
correction is found to be given by the following ansatz

v(0)
r = ε2E−1/3(ṽ

(0)
0r (r̃, z̃) + E1/6ṽ

(0)
1r (r̃, z̃) + E1/3ṽ

(0)
2r (r̃, z̃)), (4.1a)

v
(0)
φ = ε2E−1/3(ṽ

(0)
0φ (r̃, z̃) + E1/6ṽ

(0)
1φ (r̃, z̃) + E1/3ṽ

(0)
2φ (r̃, z̃)), (4.1b)

v(0)
z = ε2E−1/3(ṽ

(0)
0z (r̃, z̃) + E1/6ṽ

(0)
1z (r̃, z̃) + E1/3ṽ

(0)
2z (r̃, z̃)), (4.1c)

b(0) = ε2E−1/3(b̃
(0)
0 (r̃, z̃) + E1/6b̃

(0)
1 (r̃, z̃) + E1/3b̃

(0)
2 (r̃, z̃))), (4.1d)

p(0) = ε2p̃
(0)
0 (r̃, z̃), (4.1e)
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where r̃ and z̃ are the local variables. Inserting (4.1) in (2.1) using expression (B 2) for
the Reynolds stress, the meanflow amplitudes are found to satisfy the equations

−2Ωṽ
(0)
0φ +

∂p̃
(0)
0

∂r̃
= −Ñ (0)

0r , (4.2a)

2Ωṽ
(0)
0r = −Ñ (0)

0φ , (4.2b)

b̃
(0)
0 +

∂p̃
(0)
0

∂z̃
= −Ñ (0)

0z , (4.2c)

−N2ṽ
(0)
0z = −Ñ (0)

0b , (4.2d)

∂ṽ
(0)
0r

∂r̃
+
∂ṽ

(0)
0z

∂z̃
= 0. (4.2e)

Equations (4.2b,d) readily give ṽ
(0)
0r and ṽ

(0)
0z . These expressions are compatible with

(4.2e) which is automatically satisfied thanks to (B 4a). They give normal and tangential
velocities as

ṽ
(0)
0n = sinα

Ñ (0)
0φ

2Ω
+ cosα

Ñ (0)
0b

N2
= −2 sin 2θ

∂

∂x̃t
=m(h̃(r)

µ h̃(i)∗
µ ) (4.3a)

ṽ
(0)
0t = − cosα

Ñ (0)
0φ

2Ω
+ sinα

Ñ (0)
0b

N2
= −2 sin 2θ

∂

∂x̃n
=m(h̃(r)

µ h̃(i)∗
µ ) (4.3b)

Using (2.19), it is immediate to see that ṽ
(0)
0n (x̃n = 0) = 0. The condition of non-

penetrability is therefore automatically satisfied at leading order. The first order correc-

tions ṽ
(0)
1r and ṽ

(0)
1z are also directly obtained from the governing equations at the next

order:

2Ωṽ
(0)
1r = −Ñ (0)

1φ , −N2ṽ
(0)
1z = −Ñ (0)

1b , (4.4)

which gives

ṽ
(0)
1n = −2 sin 2θ

∂

∂x̃t
=m(C∞1nh̃

(r)
µ+1h̃

(i)∗
µ ) , (4.5a)

ṽ
(0)
1t = −2 sin 2θ

∂

∂x̃n
=m(C∞1nh̃

(r)
µ+1h̃

(i)∗
µ ) . (4.5b)

Contrarily to ṽ
(0)
0n , ṽ

(0)
1n does not cancel as x̃n → 0.

Equations (4.2a,c) are not sufficient to determine the three other amplitudes ṽ
(0)
0φ , b̃

(0)
0

and p̃
(0)
0 . For this purpose, one should consider the governing equations at the third

order:

2Ωṽ
(0)
2r − ∇̄2ṽ

(0)
0φ = −Ñ (0)

2φ , (4.6a)

−N2ṽ
(0)
2z −

1

Pr
∇̄2b̃

(0)
0 = −Ñ (0)

2b , (4.6b)

∂ṽ
(0)
2r

∂r̃
+
∂ṽ

(0)
2z

∂z̃
+
ṽ

(0)
0r

rc
= 0, (4.6c)

where Ñ (0)
2φ and Ñ (0)

2b are second order corrections to the steady Reynolds stress. This

system gives the missing equation by plugging the expressions of ṽ
(0)
2r and ṽ

(0)
2z obtained

from the first two equations into the third one. If we then replace ṽ
(0)
0φ and b̃

(0)
0 by their

expression in terms of p̃
(0)
0 using (4.2a,c), we obtain a non-homogeneous fourth-order
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equation for p̃
(0)
0 of the form(

1

4Ω2

∂2

∂r̃2
+

1

N2 Pr

∂2

∂z̃2

)(
∂2

∂r̃2
+

∂2

∂z̃2

)
p̃

(0)
0 = M̃(r̃, z̃). (4.7)

The function M̃ can be expressed in terms of the components of Ñ (0)
0 , Ñ (0)

1 and Ñ (0)
2 .

We shall not provide its expression. For the present analysis, it is only important to know
that M̃ is a function localized in the interaction region (i.e. |M̃| → 0 exponentially fast
as r̃2 + z̃2 → ∞). Solutions to (4.7) localized in the interaction region therefore exists.

The solution is fully determined upon prescribing ∂r̃p̃
(0)
0 and ∂z̃ p̃

(0)
0 at the boundary

x̃n = 0. As shown in the appendix C, this last step can be made by applying a condition
of matching with the solution in the viscous boundary layer.

To summarize this section, we have seen that the radial and axial components are
directly forced by the azimuthal and buoyancy component of the Reynolds stress which is
of order ε2E−1/3 in the interaction region. The azimuthal velocity and the buoyancy turn
out to be also O(ε2E−1/3) but they depend on higher corrections of the Reynolds stress
and also on the solution in the viscous boundary layer. Velocity components and buoyancy
are all found to be localized in the interaction region. This property is also verified by the
first order meanflow correction. This garantees that no meanflow correction is generated
outside the interaction region (at least up to O(ε2) terms).

As we shall see in the next sections, a different conclusion is reached when either N or
Ω cancels.

4.2. Non-stratified case (N = 0)

In the non-stratified case, the flow is characterized by its velocity and pressure field only
and we have ω = 2Ω cos θ and L2

d = ν/(2Ω sin θ). The meanflow correction depends on
whether the boundary is vertical or not.

4.2.1. Non-vertical boundary (α 6= π/2)

When α 6= π/2, in the interaction region, the meanflow correction is still given by
an ansatz of the form (4.1) with N = 0. It follows that (4.2) applies. The previous

expressions for ṽ
(0)
0r and ṽ

(0)
0z are still solutions of the problem, and are such that ṽ

(0)
0n

vanishes on the boundary. However, the pressure p̃
(0)
0 and the azimuthal velocity ṽ

(0)
0φ

are now directly obtained from (4.2a,c) because b̃(0) = 0. We then obtain from these
equations

p̃
(0)
0 = −4 sin2 θ<e(h̃(r)

µ h̃(i)∗
µ ) + F (r̃), (4.8a)

ṽ
(0)
0φ = − 2

Ω

∂

∂r̃
<e(h̃(r)

µ h̃(i)∗
µ ) +

1

2Ω

∂F

∂r̃
, (4.8b)

where F (r̃) is an unknown function. The function F is obtained by considering the outer
region |z− zc| = O(1), |r− rc| = O(E1/3) where a meanflow could a priori be created. In
this region, the Reynolds stress is small and we expect the solution to be an homogeneous
solution of the governing equations. Such a solution is given by an ansatz of the form
(E1/3u(0), v(0), w(0), E1/3p(0)) and satisfies the homogeneous equations

−2Ωv(0) +
∂p(0)

∂r̃
= 0, (4.9a)

2Ωu(0) − ∂2v(0)

∂r̃2
= 0, (4.9b)
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∂p(0)

∂z
− ∂2w(0)

∂r̃2
= 0, (4.9c)

∂u(0)

∂r̃
+
∂w(0)

∂z
= 0. (4.9d)

This system leads to the following equation for p(0):

4Ω2 ∂
2p(0)

∂z2
+
∂6p(0)

∂r̃6
= 0. (4.10)

Using Fourier transform in r̃, and requiring the solution to vanish far from the boundary,
that is as z → −∞ assuming α > π/2, we get for p(0)

p(0) =

∫ ∞
−∞
P(k)e|k|

3(z−zc)/(2Ω)eikr̃ dk. (4.11)

The other components can all be expressed in terms of P(k):

u(0) =

∫ ∞
−∞

ik3P(k)/(2Ω)e|k|
3(z−zc)/(2Ω)eikr̃ dk, (4.12a)

v(0) = −
∫ ∞
−∞

ikP(k)/(2Ω)e|k|
3(z−zc)/(2Ω)eikr̃ dk, (4.12b)

w(0) =

∫ ∞
−∞
|k|P(k)/(2Ω)e|k|

3(z−zc)/(2Ω)eikr̃ dk. (4.12c)

As these expressions should match the forced solution in the interaction region, it is
immediate that F (r̃) = 0 and that the forced solution does not excite any outer mean
flow at the order ε2E−1/3. The meanflow in this region is created at the next order
and is such that P(k) = ε2E−1/6P1(k). To obtain P1(k), we must consider the solution
in the viscous boundary layer and the forced solution in the interaction region at the
next order. The viscous boundary layer solution is given in the appendix C. Equations
(C 1a,b,c), (C 5), (C 7) and (C 10) together with (C 6) still apply when N = 0. However,
these expressions do not fully define the solution. A second equation for the functions
at and bt is missing. Contrarily to the case N 6= 0, this equation is obtained by the
condition of matching of the azimuthal velocity component. In the viscous boundary
layer, the azimuthal velocity can be written as

v̄
(0)
0φ =

∫ x̄n

0

∫ s

+∞
(2Ω cosα ū

(0)
t (x̃t, x) + N̄ (0)

0φ (x̃t, x)) dxds

+
at(1− e(−1)3/4λx̄n)

iλ2
− bt(1− e(−1)5/4λx̄n)

iλ2
.

(4.13)

In the interaction region, this component is given by (4.1b) and (4.8b) with F = 0. The
condition of matching then reads

− 2

Ω

∂

∂r̃
<e(h̃(r)

µ h̃(i)∗
µ ))|

x̃n=0
=

∫ +∞

0

∫ s

+∞
(2Ω cosα ū

(0)
t + N̄ (0)

0φ )dxds− i

λ2
(at − bt). (4.14)

This is the second equation that fully determines the solution in the viscous boundary
layer. The weak meanflow which is created in the outer region is obtained by matching
the normal velocity. The two first orders of the solution in the interaction region are
needed to perform such a matching. By collecting the forced solution at the first and
second order given by (4.3a) and (4.5a), respectively, and an O(ε2E−1/6) homogeneous
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solution of the form (4.12) that gives a normal velocity component in the outer region:

v(0)
n = ε2E−1/6 cosα

2Ω

∫ +∞

−∞
|k|P1(k)e|k|

3(z−zc)/(2Ω)eikr̃ dk, (4.15)

we obtain, by matching normal velocities, the condition

−
∫ ∞

0

∂x̃t ū
(0)
t dx̄n +

a′t − ib′t
(−1)3/4λ

= ṽ
(0)
1n |x̃n=0 +

cosα

2Ω

∫ +∞

−∞
|k|P1(k)eikr̃ dk. (4.16)

This condition gives the function P1(k) that defines the homogeneous solution in the
outer region. In the outer region, we therefore expect an axial velocity and an azimuthal
velocity of order ε2E−1/6. The different regions for this case are summarized in figure
4(b).

4.2.2. Vertical boundary α = π/2

This case requires a special treatment because vertical boundaries correspond to critical
boundaries for meanflow corrections in a non-stratified fluid. In the interaction region,
the forced solution is unchanged and is still given by (4.1a-d) with N = 0 and

ṽ
(0)
0r = 2 sin 2θ

∂

∂z̃
=m(h̃(r)

µ h̃(i)∗
µ ), (4.17a)

ṽ
(0)
0φ = − 2

Ω

∂

∂r̃
<e(h̃(r)

µ h̃(i)∗
µ ), (4.17b)

ṽ
(0)
0z = 2 sin 2θ

∂

∂r̃
=m(h̃(r)

µ h̃(i)∗
µ ), (4.17c)

p̃
(0)
0 = −4 sin2 θ<e(h̃(r)

µ h̃(i)∗
µ ). (4.17d)

The difference appears at higher order and close to the boundary owing to a change of
nature of the viscous boundary layer solution (e.g. λ = 0 in (C 5) when α = π/2). A
larger viscous layer of width O(E4/9) appears close to the boundary. To find the solution
in this layer, we introduce the new boundary layer variable ř = (r − rc)/E4/9 and the
ansatz

v(0)
r = ε2E−2/9(∂r̃ṽ

(0)
0r |r̃=0

ř + v̌
(0)
0r (ř, z̃)), (4.18a)

v
(0)
φ = ε2E−1/3(ṽ

(0)
0φ |r̃=0

,+v̌
(0)
0φ (ř, z̃)), (4.18b)

v(0)
z = ε2E−1/3(ṽ

(0)
0z |r̃=0

,+v̌
(0)
0z (ř, z̃)), (4.18c)

p(0) = ε2(p̃
(0)
0 |r̃=0

+ E1/9(∂r̃p̃
(0)
0 |r̃=0

ř + p̌
(0)
1 (ř, z̃)), (4.18d)

where the functions v̌
(0)
0r , v̌

(0)
0φ , v̌

(0)
0z and p̌

(0)
1 vanish as ř → −∞ such that the matching

with the interaction region is guaranteed. We obtain the system

−2Ωv̌
(0)
0φ +

∂p̌
(0)
1

∂ř
= 0, (4.19a)

2Ωv̌
(0)
0r −

∂2v̌
(0)
0φ

∂ř2
= 0, (4.19b)

∂p̌
(0)
1

∂z̃
− ∂2v̌

(0)
0z

∂ř2
= 0, (4.19c)

∂v̌
(0)
0r

∂ř
+
∂v̌

(0)
0z

∂z̃
= 0, (4.19d)
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which gives

∂6p̌
(0)
1

∂ř6
+ 4Ω2 ∂

2p̌
(0)
1

∂z̃2
= 0. (4.20)

Note that this equation is similar to (4.10) in the outer region. When α = π/2, the E4/9

viscous layer thus plays the same role as the outer region. Here, because the boundary
corresponds to ř = 0, it is convenient to integrate this equation using Fourier transform
in z̃. It leads to

p̌
(0)
1 =

∫ +∞

−∞

(
a1(k)e−α1ř + a2(k)e−α2ř + a3(k)e−α3ř

)
eikz̃ dk, (4.21)

where αj , j = 1, 2, 3, are the three roots of α6
j = 4Ω2k2 with a negative real part (such

that p̌
(0)
1 does vanish as ř → −∞). The other components are then given by

v̌
(0)
0r = −

∫ +∞

−∞

 3∑
j=1

α3
jaj(k)

4Ω2
e−αj ř

 eikz̃ dk, (4.22a)

v̌
(0)
0φ = −

∫ +∞

−∞

 3∑
j=1

αjaj(k)

2Ω
e−αj ř

 eikz̃ dk, (4.22b)

v̌
(0)
0z =

∫ +∞

−∞

 3∑
j=1

ikaj(k)

α2
j

e−αj ř

 eikz̃ dk. (4.22c)

The functions aj , j = 1, 2, 3 are obtained by matching this solution with the solution
in the viscous boundary layer. In the viscous boundary layer, the solution expands, using
r̄ = r̃/E1/6 = ř/E1/18, as

v(0)
r = ε2E−1/6v̄

(0)
0r (r̄, z̃), (4.23a)

v
(0)
φ = ε2E−1/3v̄

(0)
0φ (r̄, z̃), (4.23b)

v(0)
z = ε2E−1/3v̄

(0)
0z (r̄, z̃), (4.23c)

p(0) = ε2(p̄
(0)
0 (z̃) + E1/6p̄

(0)
1 (r̄, z̃)), (4.23d)

and satisfies

−2Ωv̄
(0)
0φ +

∂p̄
(0)
1

∂r̄
= 0, (4.24a)

−∂
2v̄

(0)
0z

∂r̄2
+
∂p̄

(0)
0

∂z̃
= −Ñ (0)

0z |r̃=0 − N̄
(0)
0z , (4.24b)

−
∂2v̄

(0)
0φ

∂r̄2
= −N̄ (0)

0φ , (4.24c)

∂v̄
(0)
0r

∂r̄
+
∂v̄

(0)
0z

∂z̃
= 0. (4.24d)

It follows, using p̄
(0)
0 = p̃

(0)
0 |r̃=0

and the no-slip condition on the boundary, that

v̄
(0)
0φ =

∫ r̄

0

∫ s

+∞
N̄ (0)

0φ (x, z̃)dxds, (4.25a)

v̄
(0)
0z =

∫ r̄

0

∫ s

+∞
N̄ (0)

0z (x, z̃)dxds, (4.25b)
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which then gives

v̄
(0)
0r = −

∫ r̄

0

∂z̃ v̄
(0)
0z (x, z̃)dx. (4.26)

The matching of the three velocity components between the viscous boundary layer and
the E4/9 viscous layer gives

−
∫ +∞

−∞

 3∑
j=1

α3
jaj(k)

4Ω2

 eikz̃ dk = 0, (4.27a)

−
∫ +∞

−∞

 3∑
j=1

αjaj(k)

2Ω

 eikz̃ dk + ṽ
(0)
0φ |r̃=0

=

∫ ∞
0

∫ s

+∞
N̄ (0)

0φ (x, z̃)dxds, (4.27b)

∫ +∞

−∞

 3∑
j=1

ikaj(k)

α2
j

e−αj ř

 eikz̃ dk + ṽ
(0)
0z |r̃=0

=

∫ ∞
0

∫ s

+∞
N̄ (0)

0z (x, z̃)dxds. (4.27c)

These three equations permit to obtain the functions aj j = 1, 2, 3 and therefore the
solution in the E4/9 viscous layer. As the solution in the interaction region, this solution
vanishes as |z̃| → ∞. No solution is therefore created in the outer region for N = 0
when the boundary is vertical. The different regions where the meanflow correction is
important are summarized in figure 4(c).

4.3. Non-rotating case (Ω = 0)

This case is similar to the case N = 0, except that critical surfaces for the meanflow
correction are now horizontal surfaces. We should then consider the case α = 0 separately.
Both cases can be analysed exactly the same way as for N = 0. The characteristics
regions defining the solution for Ω = 0 are shown in figure 4(d,e).

5. Conclusion

In this work, we have analysed the nonlinear corrections generated by the reflection of
a thin axisymmetric beam of frequency ω on a solid axisymmetric surface. Although we
have focused on self-similar beams emitted by a localized source, the analysis and the
scaling remain the same for any other viscous beam of width E1/3. As also mentioned
in section §2, the same analysis can be performed for a thin 2D beam impacting a solid
planar surface. In that case, the 1/

√
r factor of the similarity solution (2.3) disappears

and every thing is identical upon replacing r by x and φ by y, the only exception being
equations (4.6a-c) where some curvature terms are present.

As expected, we have shown that a second-harmonic correction and a steady correction
are generated in the reflection process. However, both the structure and the scaling
of these corrections are different. For the second-harmonic correction, the generation
process is purely inviscid. If 2ω is in the inertial range (that is between 2Ω and N), a
strong beam of amplitude ε2E−1/3 is generated. Its structure is similar to the structure
obtained by Tabaei et al. (2005) for Ω = 0. It has no longer the self-similar structure
of the harmonic beam but has still a width O(E1/3) and a persistent length O(1). This
beam propagates in a particular direction that depends on the inclination angle of the
boundary and on whether N is larger or smaller than 2Ω. The different situations are
summarized in figure 3.

For the steady correction, the generation process is completely different. In the rotating



Internal shear layers reflection 21

and stratified case (Ω 6= 0 and N 6= 0), the steady correction is as large as the second-
harmonic correction (O(ε2E−1/3)) but is confined in the interaction region (O(E1/3)
region around the reflection point). The radial and axial components of the velocity are
found to be directly forced by the Reynolds stress by a inviscid mechanism similar to what
is known for the non-rotating case (Tabaei et al., 2005) while all the other components
are generated by a more complex mechanism involving viscous effects.

A steady beam is only observed when either Ω or N vanishes. In the non-stratified
case (N = 0), this beam is a column of width O(E1/3). In the non-rotating case, it is an
horizontal layer of width O(E1/3). In both case, their amplitude is O(ε2E−1/6), that is
smaller than the second-harmonic beam but larger than the correction generated in the
incident or reflected beam far from the interaction region. These beams are created by
the interaction of the incident beam with the viscous correction of the reflected beam.
When the boundary is vertical for the non-stratified case, or horizontal for the non-
rotating case, the beam is not observed. However, a thickening of the viscous boundary
layer to O(E4/9) is observed close the reflection point. The different configurations for
the meanflow correction are summarized in figure 4.

In the present paper, we have considered an axisymmetric beam impacting an axisym-
metric surface. It is worth mentioning that a similar analysis can be performed if the
beam exhibits a different azimuthal symmetry, for instance a m = 1 azimuthal symme-
try as in the case of precession, or a m = 2 azimuthal symmetry as for a tidal forcing
(Le Bars et al., 2015). In those cases, the phase factor associated with the azimuthal
symmetry is passive: the second-harmonic correction exhibits a 2m azimuthal symmetry
if the incident beam has a m azimuthal symmetry, and the meanflow correction remains
axisymmetric. The same conclusion is true for a 2D beam impacting a 2D surface: the
beam can exhibit a 3D modulation with a O(1) wavenumber without affecting the analy-
sis. In that case, a meanflow correction can indeed be generated during the propagation
of the incident beam as shown by Bordes et al. (2012) and Kataoka & Akylas (2015)
for a purely stratified fluid, but this meanflow correction remains of order ε2 and thus
smaller than the one computed here.

As both parameters E and ε are small, one can naturally address the question of
their relative smallness. By performing a weakly nonlinear analysis, we have implicitly
assumed that the nonlinear corrections remain small, and smaller than the magnitude of
the harmonic solution. This requires ε2E−1/3 � ε. Actually, the condition of validity of
the analysis is stricter. Indeed, the order of the first nonlinear correction oscillating at
the frequency ω can be estimated to ε3E−2/3 in the interaction region. For the analysis
to be valid, this correction must remain smaller than the first viscous correction of order
εE1/6. The condition of validity of the weakly nonlinear analysis is then ε� E5/12.

6. Comparison with existing results

Only a few studies have focused on thin viscous beams and analysed quantitatively
the scaling of the nonlinear corrections generated by the reflection of a wave beam on a
solid boundary. The most relevant studies have been performed for rotating flows in the
context of planetary applications.

Tilgner (2007) computed the meanflow generated by an oscillating tidal mode (az-
imuthal wavenumber m = 2) in a spherical rotating shell (without stratification). In this
geometry, the harmonic response depends on the forcing frequency but the wave beam
tangent to the inner core at the critical latitude is generally found to be an important
feature of the harmonic solution (e.g. Rieutord & Valdettaro, 2010). For ω = 0.88Ω,
Tilgner (2007) did observe that the Reynolds stress is mainly localized along this beam,
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with the largest contributions where the beam interacts with itself, that is near the points
of reflections on the outer boundary, and where beams cross. He computed the meanflow
correction but unfortunately used stress-free boundary conditions which makes any com-
parison with the present results hazardous. Indeed, with stress-free boundary conditions
the solution in the viscous boundary layers completely change. This affects the vis-
cous correction to the reflected beam, and consequently the meanflow that is generated.
Nevertheless, assuming that the normalized harmonic mode is concentrated on a single
beam of width E1/3 and length O(1), one can still estimate the two global quantities that

Tilgner (2007) considered: a characteristic length l = (
∫
|∇×N (0)|2dV )−1/5 and the ki-

netic energy associated with the azimuthal component of the meanflow Edr =
∫

(v
(0)
φ )2dV

for an harmonic mode of normalized kinetic energy. To get a kinetic energy equal to 1, ε
should scale as E−1/6. It follows from our results that N (0) should scale as ε2E−2/3 in
a small domain of volume proportional to E2/3, which gives l ∝ E4/15, that is close but
different from the estimate E1/3 given by Tilgner (2007). For the meanflow correction,
we expect a scaling in ε2E−1/6 = E−1/2, localized in a vertical beam of width E1/3. This
gives Edr ∝ E−2/3. This is clearly different from the proposal in E−3/2 of Tilgner, but
surprisingly not in contradiction with the value Edr ≈ 5 104 obtained for this quantity
for ω = 0.88 at E = 10−7.

More recently, Lin & Noir (2020) also computed the harmonic flow and the meanflow
correction generated by librating a rotating spherical shell. Interestingly, they considered
the frequency ω =

√
2Ω for which the ray trajectories, all inclined at 45◦ with respect

to the vertical, form simple patterns. In particular, the ray tangent to the inner core
closes on itself after a few reflections on the outer core. Lin & Noir (2020) did show
that the harmonic flow concentrates around this ray with a well-defined structure of
width O(E1/3) and amplitude ε = O(εlE

1/12) where εl is the amplitude of libration. As
this scaling corresponds to the prediction obtained by Le Dizès & Le Bars (2017) for the
similarity solution generated by a librating sphere in an open domain, one could naturally
think that the harmonic solution of Lin & Noir (2020) may not be far from our beam
solution. For the meanflow correction, they did observe vertical localized structures of
width scaling as E1/3 at the location where the beam reflects on the outer boundary, in
agreement with the present study. Our scaling for the amplitude would give a meanflow of
order ε2E−1/6 = ε2

l . Lin & Noir (2020) observed a weak increase with E of the meanflow
amplitude that is better fitted by a law in ε2

lE
−1/6. This may not be in contradiction

with our analysis. Indeed, Lin & Noir (2020) observed this scaling when the beam reflects
on a boundary that is librating. In that case, a harmonic flow stronger than the beam is
therefore present in the viscous boundary layer that could perhaps explain the enhanced
meanflow generation. Unfortunately, they did not document the much weaker meanflow
that is generated when only the inner boundary is librating.

Declaration of interests. The author reports no conflict of interest.

Appendix A. Relations between the systems of coordinates

In this work, several coordinate systems are considered in the (r, z) meridional plane
(or equivalently in the (x, z) plane)

- e
(i)
⊥ , e

(i)
‖ for the incident beam,

- e
(r)
⊥ , e

(r)
‖ for the reflected beam,

- et, en for the boundary.
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All can be expressed in terms of the vectors er and ez of the cylindrical basis. For the
situation illustrated in figure 2(a), that is for 0 < θ < α < π − θ, we have the relations

e
(i)
⊥ = − sin θ er + cos θ ez, (A 1a)

e
(i)
‖ = cos θ er + sin θ ez, (A 1b)

e
(r)
⊥ = sin θ er + cos θ ez, (A 1c)

e
(r)
‖ = − cos θ er + sin θ ez, (A 1d)

et = cosα er + sinα ez, (A 1e)

en = sinα er − cosα ez. (A 1f)

It also useful to know the relations between the vectors associated with the beam and
those associated with the boundary:

e
(i)
⊥ = sin(α− θ) et + cos(α− θ) en, (A 2a)

e
(i)
‖ = cos(α− θ) et − sin(α− θ) en, (A 2b)

e
(r)
⊥ = sin(α+ θ) et + cos(α+ θ) en, (A 2c)

e
(r)
‖ = − cos(α+ θ) et + sin(α+ θ) en. (A 2d)

Appendix B. Reynolds stress expressions

In the interaction region, the four components of the second-harmonic Reynolds stress

can be written as N (2) ∼ ε2E−1/3Ñ (2)
0 where


Ñ (2)

0r

Ñ (2)
0φ

Ñ (2)
0z

Ñ (2)
0b

 =



−2 cos2 θ
∂(h̃

(r)
µ h̃

(i)
µ )

∂r̃

−4iΩ cos2 θ

ω

∂(h̃
(r)
µ h̃

(i)
µ )

∂r̃

2 sin2 θ
∂(h̃

(r)
µ h̃

(i)
µ )

∂z̃

−2iN2 sin2 θ

ω

∂(h̃
(r)
µ h̃

(i)
µ )

∂z̃


. (B 1)

Similarily, the steady Reynolds stress expands (including O(E1/6) corrections) as

N(0) = ε2E−1/3(Ñ (0)
0 + E1/6Ñ (0)

1 + · · ·) where


Ñ (0)

0r

Ñ (0)
0φ

Ñ (0)
0z

Ñ (0)
0b

 =



−4 cos2 θ
∂<e(h̃(r)

µ h̃
(i)∗
µ )

∂r̃

−4Ω sin 2θ

ω

∂=m(h̃
(r)
µ h̃

(i)∗
µ )

∂z̃

4 sin2 θ
∂<e(h̃(r)

µ h̃
(i)∗
µ )

∂z̃

−2N2 sin 2θ

ω

∂=m(h̃
(r)
µ h̃

(i)∗
µ )

∂r̃


, (B 2)
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and


Ñ (0)

1r

Ñ (0)
1φ

Ñ (0)
1z

Ñ (0)
1b

 =



−2 cos2 θ
∂<e(C∞1nh̃

(r)
µ+1h̃

(i)∗
µ )

∂r̃

−2Ω sin 2θ

ω

∂=m(C∞1nh̃
(r)
µ+1h̃

(i)∗
µ )

∂z̃

2 sin2 θ
∂<e(C∞1nh̃

(r)
µ+1h̃

(i)∗
µ )

∂z̃

−N
2 sin 2θ

ω

∂=m(C∞1nh̃
(r)
µ+1h̃

(i)∗
µ )

∂r̃


. (B 3)

As above, the superscript ∗ denotes the complex conjugate.
Note in particular that

1

2Ω

∂Ñ (0)
jφ

∂r̃
− 1

N2

∂Ñ (0)
jb

∂z̃
= 0, (B 4a)

cos2 θ
∂Ñ (0)

jz

∂r̃
+ sin2 θ

∂Ñ (0)
jr

∂z̃
= 0, (B 4b)

for both j = 0 and j = 1.
The Reynolds stress has a different expression in the viscous boundary layer. The

expression of the steady Reynolds stress is useful to compute the meanflow correction in
section 4. It can be written as

N(0) = ε2E−1/3(Ñ (0)
0 |x̃n=0

+ N̄ (0)
0 (x̃t, x̄n) + · · ·), (B 5)

where

N̄ (0)
0 (x̃t, x̄n) = (v̄0t∂x̃t

+ v̄1n∂x̄n
)


v̄∗0r
v̄∗0φ
v̄∗0z
b̄∗0

+ c.c. (B 6)

Appendix C. Mean flow correction in the viscous boundary layer

The viscous boundary layer close to the reflection point extends on a distance O(E1/3)
along the boundary, and O(E1/2) normal to it. In this section, we compute the meanflow
correction in this region for a general configuration.

We introduce the boundary layer variable x̄n = (− sinα(r − rc) + cosα(z − zc))/E1/2

while keeping the local tangential variable x̃t = (cosα(r− rc) + sinα(z− zc))/E1/3. The
adequate ansatz for the meanflow correction is

v(0)
n = ε2E−1/6v̄

(0)
0n (x̃t, x̄n), (C 1a)

v
(0)
t = ε2E−1/3v̄

(0)
0t (x̃t, x̄n), (C 1b)

v
(0)
φ = ε2E−1/3v̄

(0)
0φ (x̃t, x̄n), (C 1c)

b(0) = ε2E−1/3b̄
(0)
0 (x̃t, x̄n), (C 1d)

p(0) = ε2(p̄
(0)
0 (x̃t) + E1/6p̄

(0)
1 (x̃t, x̄n)). (C 1e)

The governing equations reduce to

2Ω sinα v̄
(0)
0φ − cosα b̄

(0)
0 +

∂p̄
(0)
1

∂x̄n
= 0, (C 2a)
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−2Ω cosα v̄
(0)
0φ − sinα b̄

(0)
0 −

∂2v̄
(0)
0t

∂x̄2
n

+
∂p̄

(0)
0

∂x̃t
= −Ñ (0)

0t |x̃n=0
− N̄ (0)

0t , (C 2b)

2Ω cosα v̄
(0)
0t −

∂2v̄
(0)
0φ

∂x̄2
n

= −Ñ (0)
0φ |x̃n=0

− N̄ (0)
0φ , (C 2c)

−N2 sinα v̄
(0)
0t −

1

Pr

∂2b̄
(0)
0

∂x̄2
n

= −Ñ (0)
0b |x̃n=0

− N̄ (0)
0b , (C 2d)

∂v̄
(0)
0n

∂x̄n
+
∂v̄

(0)
0t

∂x̃t
= 0 (C 2e)

where we have used the expressions (B 5) and (B 6) of the Reynolds stress. By definition,

the nonlinear terms Ñ (0)
0t |x̃n=0 , Ñ (0)

0φ |x̃n=0 and Ñ (0)
0b |x̃n=0 are functions of x̃t only, obtained

from the expressions of the nonlinear terms in the interaction region as x̃n → 0, while

N̄ (0)
0t , N̄ (0)

0φ and N̄ (0)
0b are functions of x̃t and x̄n that vanish as x̄n →∞.

This system gives for v̄
(0)
0t

∂4v̄
(0)
0t

∂x̄4
n

+ (4Ω2 cos2 α+N2 Pr sin2 α2)v̄
(0)
0t = Q̄+ Q̃|

x̃n=0
, (C 3)

with

Q̃|x̃n=0 = −2Ω cosα Ñ (0)
0φ |x̃n=0 − Pr sinα Ñ (0)

0b |x̃n=0 , (C 4a)

Q̄ = −2Ω cosα N̄ (0)
0φ − Pr sinα N̄ (0)

0b +
∂2N̄ (0)

0t

∂x̄2
n

. (C 4b)

A general solution that matches the solution in the interaction region as x̄n → ∞ is
obtained in the form

v̄
(0)
0t = ūt∞ + ū

(0)
t + ate

(−1)3/4λx̄n + bte
(−1)5/4λx̄n , (C 5)

with λ = (4Ω2 cos2 α + N2 Pr sin2 α2)1/4, ūt∞ = Q̃|
x̃n=0

/λ4, where at(x̃t) and bt(x̃t)

are arbitrary functions and ū
(0)
t (x̃t, x̄n) is a particular solution of (C 3) with only Q̄ on

the right-hand side, that vanishes as x̄n goes to infinity and such that ū
(0)
t (x̄n = 0) =

∂x̄n
ū

(0)
t (x̄n = 0) = 0 . The condition that v̄

(0)
0t vanishes at x̄n = 0 gives a first condition

on at and bt:

ūt∞ + at + bt = 0 . (C 6)

The expression of v̄
(0)
0n that cancels at x̄n = 0 is obtained from (C 2e) as

v̄
(0)
0n = −(∂x̃t

ūt∞)x̄n −
∫ x̄n

0

∂x̃t
ū

(0)
t (x̃t, x)dx+

a′t(1− e(−1)3/4λx̄n)

(−1)3/4λ
+
b′t(1− e(−1)5/4λx̄n)

(−1)5/4λ
.

(C 7)

As x̄n → ∞, v̄
(0)
0t ∼ ūt∞ and v̄

(0)
0n ∼ −(∂x̃t ūt∞)x̄n. These expressions automatically

match the leading order expressions of ṽ
(0)
0t and ṽ

(0)
0n obtained from (4.3a,b) as x̃n → 0.

To obtain a second condition on at and bt, one then has to consider the next order. This

means, we must match the next term in the expansion of v̄
(0)
0n as x̄n →∞ with the first

order correction ṽ
(0)
1n of the normal velocity in the interaction region as x̃n → 0. This

gives:

−
∫ ∞

0

∂x̃t
ū

(0)
t dx̄n +

a′t − ib′t
(−1)3/4λ

= ṽ
(0)
1n (x̃n = 0), (C 8)
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which can be integrated once in x̃t to give, using (4.5a),

−
∫ ∞

0

ū
(0)
t dx̄n +

at − ibt
(−1)3/4λ

= −2 sin 2θ=m(C∞1nh̃
(r)
µ+1h̃

(i)∗
µ ). (C 9)

This equation together with (C 6) allows us to get at and bt, and therefore v̄
(0)
0t and v̄

(0)
0n .

Expressions for v̄
(0)
φ and b̄

(0)
0 are now deduced from v̄

(0)
0t using (C 2c,d):

v̄
(0)
0φ =

∫ x̄n

0

∫ s

+∞
(2Ω cosα v̄

(0)
0t (x̃t, x) + Ñ (0)

0φ |x̃n=0(x̃t) + N̄ (0)
0φ (x̃t, x))dx ds, (C 10a)

b̄
(0)
0 = Pr

∫ x̄n

0

∫ s

+∞
(−N2 sinα v̄

(0)
0t (x̃t, x) + Ñ (0)

0b |x̃n=0
(x̃t) + N̄ (0)

0b (x̃t, x))dx ds . (C 10b)

As x̄n → ∞, these expressions must tend to the limits of ṽ
(0)
0φ and b̃

(0)
0 as x̃n → 0

respectively. Using (4.2a,c), they therefore also provide the values of ∂r̃p̃
(0)
0 and ∂z̃ p̃

(0)
0

at x̃n = 0.
Note that if Pr =∞ the resolution of the system (C 2) is easier. We immediately get

v̄
(0)
0t from (C 2d), then v̄

(0)
0n from (C 2e) with v̄

(0)
0n (x̄n = 0) = 0. The function v̄

(0)
0φ is still

given by (C 10a). We then get ∂r̃p̃
(0)
0 (x̃n = 0) from (4.2a) which is the only condition

needed to solve (4.7) in that case.
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