S. J. Hollister, Porous scaffold design for tissue engineering, Nat. Mater, vol.4, 2005.

M. M. Stevens and J. H. George, Exploring and engineering the cell surface interface, Science, vol.310, pp.1135-1138, 2005.

I. Manavitehrani, A. Fathi, H. Badr, S. Daly, A. Shirazi et al., Biomedical applications of biodegradable polyesters, vol.8, 2016.

V. D. Palumbo, A. Bruno, G. Tomasello, G. Damiano, L. Monte et al., Bioengineered vascular scaffolds: the state of the art, Int. J. Artif. Organs, vol.37, pp.503-512, 2014.

B. P. Tripathi, P. Das, F. Simon, and M. Stamm, Ultralow fouling membranes by surface modification with functional polydopamine, Eur. Polym. J, vol.99, pp.80-89, 2018.

Y. Xiao, D. Li, X. Chen, and J. Lu, Hongsong Fan, Xingdong Zhang, Preparation and cytocompatibility of chitosan-modified polylactide, J. Appl. Polym. Sci, vol.110, pp.408-412, 2008.

R. S. Teotia, D. Kalita, A. K. Singh, S. K. Verma, S. S. Kadam et al., Bifunctional polysulfone-chitosan composite hollow fiber membrane for bioartificial liver, ACS Biomater. Sci. Eng, vol.1, pp.372-381, 2015.

M. Prabaharan, M. A. Rodriguez-perez, J. A. De-saja, and J. F. Mano, Preparation and characterization of poly(L-lactic acid)-chitosan hybrid scaffolds with drug release capability, J. Biomed. Mater. Res. B Appl. Biomater, vol.81, pp.427-434, 2007.

F. Chen, X. Li, X. Mo, C. He, H. Wang et al., Electrospun chitosan-P(LLA-CL) nanofibers for biomimetic extracellular matrix, J. Biomater. Sci. Polym. Ed, vol.19, pp.677-691, 2008.

A. D. Martino, M. Sittinger, and M. V. Risbud, Chitosan: a versatile biopolymer for orthopaedic tissue-engineering, Biomaterials, vol.26, pp.5983-5990, 2005.

X. Zhou, M. Kong, X. J. Cheng, C. Feng, J. Li et al., In vitro and in vivo evaluation of chitosan microspheres with different deacetylation degree as potential embolic agent, Carbohydr. Polym, vol.113, pp.304-313, 2014.

S. Hong and G. Kim, Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells, Carbohydr. Polym, vol.83, pp.940-946, 2011.

Q. F. Dang, S. H. Zou, X. G. Chen, C. S. Liu, J. J. Li et al., Characterizations of chitosan-based highly porous hydrogel-the effects of the solvent, J. Appl. Polym. Sci, vol.125, pp.88-98, 2012.

X. Zhou, X. J. Cheng, W. F. Liu, J. Li, L. H. Ren et al., Optimization and characteristics of preparing chitosan microspheres using response surface methodology, J. Appl. Polym. Sci, vol.127, pp.4433-4439, 2013.

X. Zhou, M. Kong, X. Cheng, J. Li, J. Li et al., Investigation of acetylated chitosan microspheres as potential chemoembolic agents, Colloids Surfaces B Biointerfaces, vol.123, pp.387-394, 2014.

Q. Q. Wang, M. Kong, Y. An, Y. Liu, J. J. Li et al., Hydroxybutyl chitosan thermo-sensitive hydrogel: a potential drug delivery system, J. Mater. Sci, vol.48, pp.5614-5623, 2013.

A. R. Costa-pinto, A. M. Martins, M. J. Castelhano-carlos, M. Vitor, P. C. Correlo et al., Mrinal Battacharya, Rui L. Reis, Nuno M. Neves, In vitro degradation and in vivo biocompatibility of chitosan-poly

W. F. Liu, H. D. Zang, X. Zhou, C. Z. Kang, Y. Li et al., The primary culture and subculture of lymphoid cells from shrimp, Penaeus chinensis on thermo-sensitive CS/?, ?-GP hydrogel, Aquacult. Res, vol.45, pp.334-340, 2014.

A. Cooper, N. Bhattarai, and M. Zhang, Fabrication and cellular compatibility of aligned chitosan-PCL fibers for nerve tissue regeneration, Carbohydr. Polym, vol.85, pp.149-156, 2011.

V. N. Malheiro, S. G. Caridade, N. M. Alves, and J. F. Mano, New poly(?-caprolactone)/ chitosan blend fibers for tissue engineering applications, Acta Biomater, vol.6, pp.418-428, 2010.

D. M. Cruz, J. L. Gomez-ribelles, M. Salmerón, and . Sánchez, Blending polysaccharides with biodegradable polymers. I. Properties of chitosan/polycaprolactone blends, J. Biomed. Mater. Res. B Appl. Biomater, vol.85, pp.303-313, 2008.

F. Du, H. Wang, W. Zhao, D. Li, D. Kong et al., Gradient nanofibrous chitosan/poly ?-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering, Biomaterials, vol.33, pp.762-770, 2012.

Y. Yao, J. Wang, Y. Cui, R. Xu, Z. Wang et al., Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization, Acta Biomater, vol.10, pp.2739-2749, 2014.

A. Cooper, N. Bhattarai, F. M. Kievit, M. Rossol, and M. Zhang, Electrospinning of chitosan derivative nanofibers with structural stability in an aqueous environment, Phys. Chem. Chem. Phys, vol.13, pp.9969-9972, 2011.

T. Honma, T. Senda, and Y. Inoue, Thermal properties and crystallization behaviour of blends of poly(?-caprolactone) with chitin and chitosan, Polym. Int, vol.52, pp.1839-1846, 2003.

S. D. Vrieze, P. Westbroek, T. V. Camp, and L. V. Langenhove, Electrospinning of chitosan nanofibrous structures: feasibility study, J. Mater. Sci, vol.42, pp.8029-8034, 2007.

R. Jayakumar, M. Prabaharan, S. V. Nair, and H. Tamura, Novel chitin and chitosan nanofibers in biomedical applications, Biotechnol, Adv, vol.28, pp.142-150, 2010.

L. Wu, H. Li, S. Li, X. Li, X. Yuan et al., Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning, J. Biomed. Mater. Res. A, vol.92, pp.563-574, 2010.

M. Rahmouni, F. Chouinard, F. Nekka, V. Lenaerts, and J. C. Leroux, Enzymatic degradation of cross-linked high amylose starch tablets and its effect on in vitro release of sodium diclofenac, Eur. J. Pharm. Biopharm, vol.51, pp.127-135, 2001.

M. Dufresne, P. Bacchin, G. Cerino, J. C. Remigy, G. N. Adrianus et al., Human hepatic cell behavior on polysulfone membrane with double porosity level, J. Membr. Sci, vol.428, pp.454-461, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00788387

T. Honma, L. Zhao, N. Asakawa, and Y. Inoue, Poly(?-Caprolactone)/Chitin and poly(?caprolactone)/chitosan blend films with compositional gradients: fabrication and their biodegradability, Macromol. Biosci, vol.6, pp.241-249, 2006.

K. T. Shalumon, K. H. Anulekha, C. M. Girish, R. Prasanth, S. V. Nair et al., Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture, Carbohydr. Polym, vol.80, pp.413-419, 2010.

I. Olabarrieta, D. Forsström, U. W. Gedde, and M. S. Hedenqvist, Transport properties of chitosan and whey blended with poly(?-caprolactone) assessed by standard permeability measurements and microcalorimetry, Polymer, vol.42, pp.680-687, 2001.

A. Sarasam and S. V. Madihally, Characterization of chitosan-polycaprolactone blends for tissue engineering applications, Biomaterials, vol.26, pp.5500-5508, 2005.

A. R. Sarasam, P. Brown, S. S. Khajotia, J. J. Dmytryk, and S. V. Madihally, Antibacterial activity of chitosan-based matrices on oral pathogens, J. Mater. Sci. Mater. Med, vol.19, pp.1083-1090, 2008.

A. R. Sarasam, R. K. Krishnaswamy, and S. V. Madihally, Blending chitosan with Polycaprolactone: effects on physicochemical and antibacterial properties, Biomacromolecules, vol.7, pp.1131-1138, 2006.

A. R. Sarasam, A. I. Samli, L. Hess, M. A. Ihnat, and S. V. Madihally, Blending chitosan with polycaprolactone: porous scaffolds and toxicity, Macromol. Biosci, vol.7, pp.1160-1167, 2007.

H. She, X. Xiao, and R. Liu, Preparation and characterization of polycaprolactonechitosan composites for tissue engineering applications, J. Mater. Sci, vol.42, pp.8113-8119, 2007.

L. Van-der-schueren, B. De, Ö. I. Schoenmaker, K. D. Kalaoglu, and . Clerck, An alternative solvent system for the steady state electrospinning of polycaprolactone, Eur. Polym. J, vol.47, pp.1256-1263, 2011.

L. Van-der-schueren, I. Steyaert, B. De, K. D. Schoenmaker, and . Clerck, Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system, Carbohydr. Polym, vol.88, pp.1221-1226, 2012.

H. Strathmann, K. Kock, P. Amar, and R. W. Baker, The formation mechanism of asymmetric membranes, Desalination, vol.16, pp.82092-82097, 1975.

W. S. Rasband and U. S. Imagej, National Institutes of Health

, References (butylene succinate) fiber mesh scaffolds, J. Bioact. Compat Polym, vol.29, pp.137-151, 2014.

L. Benavente, C. Coetsier, A. Venault, Y. Chang, C. Causserand et al., FTIR mapping as a simple and powerful approach to study membrane coating and fouling, J. Membr. Sci, vol.520, issue.12, pp.477-489, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01417896

P. Das, S. Salerno, J. Remigy, J. Lahitte, P. Bacchin et al., Double porous poly (?-caprolactone)/chitosan membrane scaffolds as niches for HUMAN Mesenchymal Stem CellS, Colloids Surfaces B Biointerfaces, vol.184, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02298729

P. Das, A. D. Van-der-meer, A. Vivas, Y. B. Arik, J. Remigy et al., Tunable microstructured membranes in organs-onchips to monitor transendothelial hydraulic resistance, Tissue Eng. A, 2019.

M. N. Kumar, R. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, Chitosan chemistry and pharmaceutical perspectives, Chem. Rev, vol.104, pp.6017-6084, 2004.

P. J. Flory, Principles of Polymer Chemistry, 1953.

C. Vogel, E. Wessel, and H. W. Siesler, FT-IR imaging spectroscopy of phase separation in blends of poly(3-hydroxybutyrate) with poly(l-lactic acid) and poly(?-caprolactone), Biomacromolecules, vol.9, pp.523-527, 2008.

Y. Wan, X. Lu, S. Dalai, and J. Zhang, Thermophysical properties of polycaprolactone/ chitosan blend membranes, Thermochim. Acta, vol.487, pp.33-38, 2009.

H. Zhang, X. Luo, X. Lin, X. Lu, Y. Zhou et al., Polycaprolactone/chitosan blends: simulation and experimental design, Mater. Des, vol.90, pp.396-402, 2016.

M. Borjigin, C. Eskridge, R. Niamat, B. Strouse, P. Bialk et al., Electrospun fiber membranes enable proliferation of genetically modified cells, Int. J. Nanomed, vol.8, pp.855-864, 2013.

V. M. Correlo, L. F. Boesel, M. Bhattacharya, J. F. Mano, N. M. Neves et al., Properties of melt processed chitosan and aliphatic polyester blends, Mater. Sci. Eng. A, vol.403, pp.57-68, 2005.

N. Niamsa, A. Puntumchai, V. Sutthikhum, Y. Srisuwan, and Y. Baimark, Preparation and characterization of biodegradable chitosan and methoxy poly(ethylene glycol)-b-poly (?-caprolactone) blend homogeneous films, J. Appl. Polym. Sci, vol.109, pp.418-423, 2008.

Y. Chatani, Y. Okita, H. Tadokoro, and Y. Yamashita, Structural studies of polyesters. III. Crystal structure of poly-?-caprolactone, Polym. J, vol.1, 1970.

S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers, 2005.

F. S. Kittur, K. V. Harish-prashanth, K. Sankar, and R. N. Tharanathan, Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry, Carbohydr. Polym, vol.49, pp.185-193, 2002.

M. Mucha and A. Pawlak, Thermal analysis of chitosan and its blends, Thermochim. Acta, vol.427, pp.69-76, 2005.

T. Nishi and T. T. Wang, Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)-Poly(methyl methacrylate) mixtures, Macromolecules, vol.8, pp.909-915, 1975.

H. S. Azevedo, F. M. Gama, and R. L. Reis, In vitro assessment of the enzymatic degradation of several starch based biomaterials, Biomacromolecules, vol.4, pp.1703-1712, 2003.

H. S. Azevedo and R. L. Reis, Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate, Biodegrad. Syst. Tissue Eng. Regen. Med, pp.177-201, 2005.

J. S. Chawla and M. M. Amiji, Biodegradable poly(?-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen, Int. J. Pharm, vol.249, pp.127-138, 2002.

A. M. Martins, Q. P. Pham, P. B. Malafaya, R. A. Sousa, M. E. Gomes et al., The role of lipase and alpha-amylase in the degradation of starch/poly(epsilon-caprolactone) fiber meshes and the osteogenic differentiation of cultured marrow stromal cells, Tissue Eng. A, vol.15, pp.295-305, 2009.

K. Tomihata and Y. Ikada, In vitro and in vivo degradation of films of chitin and its deacetylated derivatives, Biomaterials, vol.18, issue.96, pp.167-173, 1997.

K. M. Vårum, M. M. Myhr, R. J. Hjerde, and O. Smidsrød, In vitro degradation rates of partially N-acetylated chitosans in human serum, Carbohydr. Res, vol.299, pp.332-333, 1997.

H. Sashiwa, H. Saimoto, Y. Shigemasa, R. Ogawa, and S. Tokura, Lysozyme susceptibility of partially deacetylated chitin, Int. J. Biol. Macromol, vol.12, pp.295-296, 1990.

S. Hirano, H. Tsuchida, and N. Nagao, N-acetylation in chitosan and the rate of its enzymic hydrolysis, Biomaterials, vol.10, issue.89, pp.90066-90071, 1989.

X. Zhong, C. Ji, A. K. Chan, S. G. Kazarian, A. Ruys et al., Fabrication of chitosan/poly(?-caprolactone) composite hydrogels for tissue engineering applications, J. Mater. Sci. Mater. Med, vol.22, pp.279-288, 2011.

R. Jin, N. Sultana, S. Baba, S. Hamdan, and A. F. Ismail, Porous PCL/chitosan and nHA/PCL/chitosan scaffolds for tissue engineering applications: fabrication and evaluation, J. Nanomater, 2015.

C. Hansen, Hansen Solubility Parameters: A User's Handbook, Second, 2007.

R. Ravindra, K. R. Krovvidi, and A. A. Khan, Solubility parameter of chitin and chitosan, Carbohydr. Polym, vol.36, pp.20-24, 1998.

R. J. Lehnert and A. Kandelbauer, Comments on "solubility parameter of chitin and chitosan, carbohydrate polymers, vol.36, pp.601-602, 1998.

C. Bordes, V. Fréville, E. Ruffin, P. Marote, J. Y. Gauvrit et al., Determination of poly(?-caprolactone) solubility parameters: application to solvent substitution in a microencapsulation process, Int. J. Pharm, vol.383, pp.236-243, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01958060

C. N. Costa, V. G. Teixeira, M. C. Delpech, J. V. Souza, and M. A. Costa, Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride, Carbohydr. Polym, vol.133, pp.245-250, 2015.

H. Strathmann and K. Kock, The formation mechanism of phase inversion membranes, Desalination, vol.21, pp.88244-88246, 1977.

G. R. Guillen, Y. Pan, M. Li, and E. M. Hoek, Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review, Ind. Eng. Chem. Res, vol.50, pp.3798-3817, 2011.

J. C. Remigy, M. Meireles, and X. Thibault, Morphological characterization of a polymeric microfiltration membrane by synchrotron radiation computed microtomography, J. Membr. Sci, vol.305, pp.27-35, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00323055

P. Das, J. Lahitte, J. Remigy, B. Garmy-susini, S. Desclaux et al., Artificial membranes tuning for lymphatic wall repair, Eur. Chapter Meet. Tissue Eng. Regen. Med. Int. Soc, TERMIS-EU, p.13, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01360666

S. M. Casillo, A. P. Peredo, S. J. Perry, H. H. Chung, and T. R. Gaborski, Membrane pore spacing can modulate endothelial cell-substrate and cell-cell interactions, ACS Biomater. Sci. Eng, vol.3, pp.243-248, 2017.

S. H. Ranganath, O. Levy, M. S. Inamdar, and J. M. Karp, Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease, Cell Stem Cell, vol.10, pp.244-258, 2012.

F. A. Fierro, N. Magner, J. Beegle, H. Dahlenburg, J. L. White et al., Mesenchymal stem/stromal cells genetically engineered to produce vascular endothelial growth factor for revascularization in wound healing and ischemic conditions, Transfusion, pp.893-897, 2019.

F. Yang, S. Cho, S. M. Son, S. R. Bogatyrev, D. Singh et al., Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles, Proc. Natl. Acad. Sci, vol.107, pp.3317-3322, 2010.

F. A. Eskens and J. Verweij, The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; A review, Eur. J. Cancer, vol.42, pp.3127-3139, 2006.

A. Di-luca, B. Ostrowska, I. Lorenzo-moldero, A. Lepedda, W. Swieszkowski et al., Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds, Sci. Rep, vol.6, 2016.

P. Kasten, I. Beyen, P. Niemeyer, R. Luginbühl, M. Bohner et al., Porosity and pore size of ?-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study, Acta Biomater, vol.4, pp.1904-1915, 2008.

R. Kramann, C. Goettsch, J. Wongboonsin, H. Iwata, R. K. Schneider et al., Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease, Cell Stem Cell, vol.19, pp.628-642, 2016.

X. Zhang, M. P. Bendeck, C. A. Simmons, and J. P. Santerre, Deriving vascular smooth muscle cells from mesenchymal stromal cells: evolving differentiation strategies and current understanding of their mechanisms, Biomaterials, vol.145, pp.9-22, 2017.

M. Floren, W. Bonani, A. Dharmarajan, A. Motta, C. Migliaresi et al., Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype, Acta Biomater, vol.31, pp.156-166, 2016.