R. Leary and A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis, Carbon, vol.49, issue.3, pp.741-772, 2011.

J. L. Faria and W. Wang, Carbon Materials for Catalysis, vol.13, 2009.

A. Gomis-berenguer and C. O. Ania, Metal-Free Nanoporous Carbons in Photocatalysis, Carbon-Based Metal-Free Catalysts, vol.2, pp.501-527, 2018.

I. Online, Index, Carbon-Based Metal-Free Catalysts, pp.699-717, 2018.

Y. Zhang, Z. R. Tang, X. Fu, and Y. J. Xu, TiO2?Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO2?Graphene Truly Different from Other TiO2?Carbon Composite Materials?, ACS Nano, vol.4, issue.12, pp.7303-7314, 2010.

S. Sharma, V. Dutta, P. Singh, P. Raizada, A. Rahmani-sani et al., Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: A review, Journal of Cleaner Production, vol.228, pp.755-769, 2019.

A. S. Mestre and A. P. Carvalho, Photocatalytic Degradation of Pharmaceuticals Carbamazepine, Diclofenac, and Sulfamethoxazole by Semiconductor and Carbon Materials: A Review, Molecules, vol.24, issue.20, p.3702, 2019.

H. T. Yu, X. Quan, S. Chen, and H. Zhao, TiO2?Multiwalled Carbon Nanotube Heterojunction Arrays and Their Charge Separation Capability, The Journal of Physical Chemistry C, vol.111, issue.35, pp.12987-12991, 2007.

G. Williams, B. Seger, and P. V. Kamat, TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide, ACS Nano, vol.2, issue.7, pp.1487-1491, 2008.

W. Wang, P. Serp, P. Kalck, and J. L. Faria, Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol?gel method, Journal of Molecular Catalysis A: Chemical, vol.235, issue.1-2, pp.194-199, 2005.

T. J. Bandosz, J. Matos, M. Seredych, M. S. Islam, and R. Alfano, Photoactivity of S-doped nanoporous activated carbons: A new perspective for harvesting solar energy on carbon-based semiconductors, Applied Catalysis A: General, vol.445-446, pp.159-165, 2012.

J. Matos, A. García, L. Zhao, and M. M. Titirici, Solvothermal carbon-doped TiO2 photocatalyst for the enhanced methylene blue degradation under visible light, Applied Catalysis A: General, vol.390, issue.1-2, pp.175-182, 2010.

A. Gomis-berenguer, M. Seredych, J. Iniesta, J. C. Lima, T. J. Bandosz et al., Sulfur-mediated photochemical energy harvesting in nanoporous carbons, Carbon, vol.104, pp.253-259, 2016.

J. Matos, J. Laine, and J. M. Herrmann, Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon, Applied Catalysis B: Environmental, vol.18, issue.3-4, pp.281-291, 1998.

N. G. Asenjo, R. Santamaría, C. Blanco, M. Granda, P. Álvarez et al., Correct use of the Langmuir?Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon, Carbon, vol.55, pp.62-69, 2013.

Y. Luo, Y. Heng, X. Dai, W. Chen, and J. Li, Preparation and photocatalytic ability of highly defective carbon nanotubes, Journal of Solid State Chemistry, vol.182, issue.9, pp.2521-2525, 2009.

L. F. Velasco, V. Maurino, E. Laurenti, I. M. Fonseca, J. C. Lima et al., Photoinduced reactions occurring on activated carbons. A combined photooxidation and ESR study, Applied Catalysis A: General, vol.452, pp.1-8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02124952

I. Velo-gala, J. J. López-peñalver, M. Sánchez-polo, and J. Rivera-utrilla, Role of activated carbon surface chemistry in its photocatalytic activity and the generation of oxidant radicals under UV or solar radiation, Applied Catalysis B: Environmental, vol.207, pp.412-423, 2017.

H. Bassler, Excitonic Model versus Band Gap Model in Organic Materials: Theory, Encyclopedia of Materials: Science and Technology, pp.2825-2829, 2001.

M. Knupfer, Exciton binding energies in organic semiconductors, Applied Physics A, vol.77, issue.5, pp.623-626, 2003.

J. Robertson and E. P. O?reilly, Electronic and atomic structure of amorphous carbon, Physical Review B, vol.35, issue.6, pp.2946-2957, 1987.

D. Dasgupta, F. Demichelis, C. F. Pirri, and A. Tagliaferro, ? bands and gap states from optical absorption and electron-spin-resonance studies on amorphous carbon and amorphous hydrogenated carbon films, Physical Review B, vol.43, issue.3, pp.2131-2135, 1991.

P. D. Fochs, The Measurement of the Energy Gap of Semiconductors from their Diffuse Reflection Spectra, Proceedings of the Physical Society. Section B, vol.69, issue.1, pp.70-75, 1956.

A. R. Zanatta and I. Chambouleyron, Absorption edge, band tails, and disorder of amorphous semiconductors, Physical Review B, vol.53, issue.7, pp.3833-3836, 1996.

R. W. Frei and J. D. Macneil, Diffuse Reflectance Spectroscopy in Environmental Problem-Solving, 2019.

A. R. Zanatta, Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination, Scientific Reports, vol.9, issue.1, 2019.

A. Escobedo-morales, I. I. Ruiz-lopez, M. L. Ruiz-peralta, L. Tepech-carrillo, M. Sanchez-cantu et al., Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy, Heliyon, vol.5, 2019.

R. López and R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol?gel and commercial TiO2: a comparative study, Journal of Sol-Gel Science and Technology, vol.61, issue.1, pp.1-7, 2011.

S. Bock, C. Kijatkin, D. Berben, and M. Imlau, Absorption and Remission Characterization of Pure, Dielectric (Nano-)Powders Using Diffuse Reflectance Spectroscopy: An End-To-End Instruction, Applied Sciences, vol.9, issue.22, p.4933, 2019.

P. Kubelka and F. Munk, Ein beitrag zur optik der farbanstriche, Z. Techn. Physik, vol.12, pp.593-601, 1931.

R. J. Carmona, L. F. Velasco, M. C. Hidalgo, J. A. Navío, and C. O. Ania, Boosting the visible-light photoactivity of Bi2WO6 using acidic carbon additives, Applied Catalysis A: General, vol.505, pp.467-477, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02124933

L. F. Velasco, M. Haro, J. Parmentier, R. Gadiou, C. Vix-guterl et al., Tuning the Photocatalytic Activity and Optical Properties of Mesoporous TiO2 Spheres by a Carbon Scaffold, Journal of Catalysts, vol.2013, pp.1-9, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02124953

L. F. Velasco, I. M. Fonseca, J. B. Parra, J. C. Lima, and C. O. Ania, Photochemical behaviour of activated carbons under UV irradiation, Carbon, vol.50, issue.1, pp.249-258, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02124974

L. F. Velasco and C. O. Ania, Understanding phenol adsorption mechanisms on activated carbons, Adsorption, vol.17, issue.1, pp.247-254, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02124976

C. O. Ania, B. Cabal, C. Pevida, A. Arenillas, J. B. Parra et al., Effects of activated carbon properties on the adsorption of naphthalene from aqueous solutions, Applied Surface Science, vol.253, issue.13, pp.5741-5746, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02125028

A. Gomis-berenguer, J. Iniesta, A. Moro, V. Maurino, J. C. Lima et al., Boosting visible light conversion in the confined pore space of nanoporous carbons, Carbon, vol.96, pp.98-104, 2016.

J. B. Parra, C. O. Ania, A. Arenillas, and J. J. Pis, Textural characterisation of activated carbons obtained from poly(ethylene terephthalate) by carbon dioxide activation, Characterization of Porous Solids VI, Proceedings of the 6th International Symposium on the Characterization of Porous Solids (COPS-VI), vol.24, pp.537-543, 2002.

A. B. Murphy, Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting, Solar Energy Materials and Solar Cells, vol.91, issue.14, pp.1326-1337, 2007.

J. Tauc, R. Grigorovici, and A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, physica status solidi (b), vol.15, issue.2, pp.627-637, 1966.

A. Dolgonos, T. O. Mason, and K. R. Poeppelmeier, Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method, Journal of Solid State Chemistry, vol.240, pp.43-48, 2016.

N. Satoh, T. Nakashima, K. Kamikura, and K. Yamamoto, Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates, Nature Nanotechnology, vol.3, issue.2, pp.106-111, 2008.

E. M. Vinod, K. Ramesh, and K. S. Sangunni, Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys, Scientific Reports, vol.5, issue.1, 2015.

K. M. Reddy, S. V. Manoramaa, and A. R. Reddy, Bandgap studies on anatase titanium dioxide nanoparticles, vol.78, pp.239-245, 2003.

M. Anpo and M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation, Journal of Catalysis, vol.216, issue.1-2, pp.505-516, 2003.

R. Ocampo-pérez, M. Sánchez-polo, J. Rivera-utrilla, and R. Leyva-ramos, Enhancement of the catalytic activity of TiO2 by using activated carbon in the photocatalytic degradation of cytarabine, Applied Catalysis B: Environmental, vol.104, issue.1-2, pp.177-184, 2011.

V. V. Strelko, V. S. Kuts, and P. A. Thrower, On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions, Carbon, vol.38, issue.10, pp.1499-1503, 2000.

G. H. Chan, B. Deng, M. Bertoni, J. R. Ireland, M. C. Hersam et al., Syntheses, Structures, Physical Properties, and Theoretical Studies of CeMxOS (M = Cu, Ag;x? 0.8) and CeAgOS, Inorganic Chemistry, vol.45, issue.20, pp.8264-8272, 2006.

J. F. Yu, T. S. Chen, H. C. Lin, and S. T. Shiue, The effect of rapid thermal annealing on characteristics of carbon coatings on optical fibers, physica status solidi (a), vol.207, issue.2, pp.379-385, 2009.

A. Foulain, Annealing effects on optical and photoluminescence properties of a-C : H films, Journal of Physics D: Applied Physics, vol.36, issue.4, pp.394-398, 2003.

A. Gomis-berenguer, I. Eliani, V. F.-lourenço, R. J.-carmona, L. F.-velasco et al., Insights on the Use of Carbon Additives as Promoters of the Visible-Light Photocatalytic Activity of Bi2WO6, Materials, vol.12, issue.3, p.385, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02108669

M. A. Rashid-yusoff, Graphene Optoelectronics, Graphene Optoelectronics: Synthesis, Characterization, Properties, and Applications, 2014.

A. Jorio and G. Dresselhaus, Carbon Nanotubes, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Topics in Applied Physics), vol.111, 2008.

T. J. Bandosz and C. O. Ania, Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons, Advanced Science, vol.5, issue.9, p.1800293, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01898427

I. Velo-gala, J. J. López-peñalver, M. Sánchez-polo, and J. Rivera-utrilla, Surface modifications of activated carbon by gamma irradiation, Carbon, vol.67, pp.236-249, 2014.

B. Karvaly and I. Hevesi, Investigations on Diffuse Reflectance Spectra of V2O5 Powder, Zeitschrift für Naturforschung A, vol.26, issue.2, pp.245-249, 1971.

J. Robertson, Mechanical properties and coordinations of amorphous carbons, Physical Review Letters, vol.68, issue.2, pp.220-223, 1992.

A. D. Modestov, J. Gun, and O. Lev, Graphite photoelectrochemistry study of glassy carbon, carbon-fiber and carbon-black electrodes in aqueous electrolytes by photocurrent response, Surface Science, vol.417, issue.2-3, pp.311-322, 1998.

S. Adhikari, H. R. Aryal, D. C. Ghimire, G. Kalita, and M. Umeno, Optical band gap of nitrogenated amorphous carbon thin films synthesized by microwave surface wave plasma CVD, Diamond and Related Materials, vol.17, issue.7-10, pp.1666-1668, 2008.

N. Ahmad, N. A. Tahir, and M. Rusop, Amorphous carbon thin films deposited by Thermal CVD using camphoric carbon as precursor, Adv. Mater. Res, pp.646-650, 2012.

G. Fanchini, S. C. Ray, and A. Tagliaferro, Optical properties of disordered carbon-based materials, Surface and Coatings Technology, vol.151-152, pp.233-241, 2002.

M. Theye and V. Paret, Spatial organization of the sp2-hybridized carbon atoms and electronic density of states of hydrogenated amorphous carbon films, Carbon, vol.40, issue.8, pp.1153-1166, 2002.

D. A. Anderson, The electrical and optical properties of amorphous carbon prepared by the glow discharge technique, Philosophical Magazine, vol.35, issue.1, pp.17-26, 1977.

B. Dischler, A. Bubenzer, and P. Koidl, Hard carbon coatings with low optical absorption, Applied Physics Letters, vol.42, issue.8, pp.636-638, 1983.

J. Fink, T. Müller-heinzerling, J. Pflüger, A. Bubenzer, P. Koidl et al., Structure and bonding of hydrocarbon plasma generated carbon films: An electron energy loss study, Solid State Communications, vol.47, issue.9, pp.687-691, 1983.

B. Meyerson and F. W. Smith, Electrical and optical properties of hydrogenated amorphous carbon films, Journal of Non-Crystalline Solids, vol.35-36, issue.80, pp.435-440, 1980.

Y. Miyajima, Y. Tison, C. E. Giusca, V. Stolojan, H. Watanabe et al., Probing the band structure of hydrogen-free amorphous carbon and the effect of nitrogen incorporation, Carbon, vol.49, issue.15, pp.5229-5238, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01564401

S. Kaplan, F. Jansen, and M. Machonkin, Characterization of amorphous carbon?hydrogen films by solid?state nuclear magnetic resonance, Applied Physics Letters, vol.47, issue.7, pp.750-753, 1985.

G. D. Gesesse, A. Gomis-berenguer, M. Barthe, and C. O. Ania, On the analysis of diffuse reflectance measurements to estimate the optical properties of amorphous porous carbons and semiconductor/carbon catalysts, Journal of Photochemistry and Photobiology A: Chemistry, vol.398, p.112622, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02746386