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Abstract

This paper addresses the efficient finite element solution of exterior acoustic problems with trun-
cated computational domains surrounded by perfectly matched layers (PMLs). The PML is a popular
non-reflecting technique that combines accuracy, computational efficiency and geometric flexibility.
Unfortunately, the effective implementation of the PML for convex domains of general shape is
tricky because of the geometric parameters that are required to define the PML medium. In this
work, a comprehensive implementation strategy is proposed. This approach, which we call the au-
tomatically matched layer (AML) implementation, is versatile and fully automatic for the end-user.
With the AML approach, the mesh of the layer is extruded, the required geometric parameters are
automatically obtained during the extrusion step, and the practical implementation relies on a sim-
ple modification of the Jacobian matrix in the element-wise integrals. The AML implementation
is validated and compared to other implementation strategies using numerical benchmarks in two
and three dimensions, considering computational domains with regular and non-regular boundaries.
A three-dimensional application with a generally-shaped domain generated using a convex hull is
proposed to illustrate the interest of the AML approach for realistic industrial cases.

1 Introduction
Finite element methods (FEMs) are widely used in academia and industry to simulate acoustic wave
propagation phenomena. With these methods, high-frequency oscillatory fields can be represented accu-
rately in realistic settings with complicated geometries thanks to unstructured meshes, curved elements,
high-order basis functions and hp−adaptivity [48]. Nevertheless, for many applications occuring in the
free space, the computational domain must be truncated, and a specific non-reflecting technique must
be used at the artifical boundary of the finite element mesh to represent the outward propagation of
waves. Many approaches have been proposed and studied over the time. The basic impedance boundary
condition is the simplest and cheapest approach, but it provides a rather poor accuracy. High-order
absorbing boundary conditions (e.g. [1, 3, 19, 27, 47, 34, 36]), infinite elements (e.g. [17, 21, 25]) and
perfectly matched layers (e.g. [5, 38, 9, 26, 49]) constitute families of more accurate techniques. In par-
ticular, the perfectly matched layers (PMLs) are easy to use and accurate for a limited computational
cost, which makes them attractive for large-scale industrial simulations. They are frequently used in the
aeroacoustic community [4, 32].

With the PML technique, the computational domain is surrounded with an artificial layer where the
outgoing waves are damped. The governing equations are modified in such a way that any outgoing
wave is perfectly transmitted from the domain to the layer, whatever the angle of incidence, which is
the key property of this approach. The PML has been introduced by Bérenger [5] for time-dependent
simulations of electromagnetic waves with rectangular truncated domains. It has been rapidly applied
to other physical waves and to time-harmonic problems. In the frequency domain, the PML equations
are simply obtained by performing a complex coordinate stretch in the governing equations [12, 40],
which has been reinterpreted as a modification of the metric tensor [46, 31] and as a modification of the
material properties [20, 41]. Mathematical analyses of the Helmholtz problem with a PML have been
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proposed in [8, 10, 14, 28, 30, 31]. The selection of the absorbing function of the PML, which is critical
for practical applications, has been studied in [9, 13, 15, 35]. In particular, it has been shown in [9, 13, 35]
that specific unbounded absorbing functions provide high-fidelity solutions without requiring the tuning
of parameters, in contrast with commonly-used polynomial functions, for which some free parameters
must be adjusted.

Most of the PML formulations have been derived for truncated domains with simple shapes, such
as cuboids, spheres and cylinders. With the standard approach, the complex coordinate stretch is
performed in a specific coordinate system, i.e. the Cartesian, spherical and cylindrical coordinate systems,
respectively (see e.g. [14, 44, 45]). Nevertheless, in many applications, an unnecessarily large free-space
region must be discretized between the PML and the object under investigation should the truncated
domain have one of these shapes. In order to improve the geometric flexibility of the PML, Teixeira
and Chew [44, 45] proposed a conformal PML that is suited to convex truncated domains with regular
boundary. They used a specific local curvilinear coordinate system based on a local parametrization of
the boundary, with normal and tangent coordinates. The conformal PML was studied for the Helmholtz
equation in [31]. The approach has been applied to time-domain simulations with a discontinuous
Galerkin scheme [37] and to time-harmonic simulations with Bernstein-Bézier finite elements [18].

Unfortunately, the conformal PML requires the exact knowledge of some geometric information that
may not be available in practical cases, which limits the applicability of the approach. In three dimen-
sions, the principal curvatures, the principal directions and the normal of the surface between the domain
and the layer must be known, as well as the distance between any point of the layer and that surface.
These data are easily derived for simple geometries, such as spherical and ellipsoidal surfaces, but it is
not the case for more complicated surfaces. The data could be estimated a priori by computational
procedures, but it would be at the price of additional processing steps. The conformal PML is a priori
not suited to polyhedric domains with non-regular boundary, which is another drawback of the approach.
Indeed, in some applicative cases, only polyhedric meshed domains are available.

To address truncated domains of general shape, few alternative PML realizations have been investi-
gated. Zschiedrich et al. [50] proposed a two-dimensional PML implementation for polygonal domains
where the complex coordinate stretch is performed in a local prismatoidal coordinate system. In [38, 39],
Ozgun and Kuzuoglu proposed a locally-conformal PML finite-element implementation suited to convex
domains of any shape. With their approach, the distance to the interface is estimated by solving a mini-
mization problem, and the coordinate stretch is performed directly on the coordinates of the mesh nodes.
That approach is very flexible and easy to implement, since it does not require further geometric data or
any modification of the equations. However, the practical realization must be carefully handled, because
it implies involved numerical approximations that can generate local instabilities [7]. To alleviate that
issue, an alternative estimate procedure for the distance function has been proposed in [7].

In this work, we propose a novel finite element PML approach — which we call the automatically
matched layer (AML) implementation — suited to convex domains of general shape with regular and
non-regular boundaries. For convex domains with regular boundaries, this approach can be considered
as a specific finite element implementation of the conformal PML that requires less geometric data than
the original formulation. With the AML approach, the layer is generated at solver level by extruding the
surface mesh of the domain boundary. The extrusion provides all the geometric data that are required,
avoiding the need for supplementary pre-processing steps or costly optimization procedures. Then, the
coordinate stretch is embedded into the finite element scheme thanks to a rather simple modification
of the Jacobian transformation on the reference element in the element-wise integrals. The accuracy of
the obtained layer is improved in comparison with the approach based on complexified mesh nodes. In
particular, unbounded absorbing functions, which are proved to be very efficient [9, 13, 35], can be used
with the AML approach, in contrast to the approach of Ozgun and Kuzuoglu. Therefore, the whole
strategy avoids some issues of the existing approaches while retaining the ease of implementation in
existing codes and the accuracy by the use of unbounded absorbing functions.

This article is structured as follows. In section 2, the Helmholtz problem and the classical conformal
PML are introduced, together with a description of the coordinate system associated to the interface
between the domain and the layer. The AML approach, with the mesh extrusion and the PML im-
plementation, is explained in section 3. In particuler, the links and the differences with the existing
approaches are discussed. In sections 4 and 5, numerical results are proposed to validate the approach

2



and to illustrate the use on a realistic 3D application. Finally, a conclusion is proposed in section 6.
Geometric data for reference benchmarks are provided in appendix A.

Notation. Scalars are denoted with italic lower-case letters (e.g. k and r). Vectors are denoted with
italic bold lower-case letters (e.g. x and n). Column matrices with the components of vectors in given
coordinate systems are denoted with bold lowercase letters (e.g. x = [x1 x2 x3]

⊤ and n = [n1 n2 n3]
⊤).

Matrices are denotes with bold uppercase letters (e.g. J).

2 Conformal PML for the Helmholtz equation
We consider a general time-harmonic wave propagation problem defined on the unbounded domain Rd,
with the dimension d = 2, 3. The field u(x ) is the solution of the Helmholtz equation

−∆u− k2u = f(x ), in Rd, (1)

with the Sommerfeld boundary condition at infinity,

lim
∥x∥→∞

∥x∥(d−1)/2

(
∂u

∂∥x∥
− ıku

)
= 0, (2)

where k is the (constant) wavenumber an f(x ) is a source term with compact support on the region
Ωdom ⊂ Rd. For finite element simulations, the domain Ωdom is meshed and extended with a PML Ωpml
to represent the propagation of waves towards the infinity. The interface between the domain and the
layer is noted Γint. The exterior border of the layer is noted Γext. We take the convention that the
time-dependence of the fields is e−ıωt, where ω is the angular frequency and t is the time.

The PML equations are obtained from the original equations by stretching a spatial coordinate
in the complex plan, which introduces a directional damping of waves in the layer. For rectangular
and cuboid domains, the stretching is performed in the Cartesian coordinate system. For circular and
spherical domains, the radial coordinates are stretched in the corresponding coordinate systems [14]. This
approach has also been used with elliptical and ellipsoidal domains [11]. It is however rather complicated
to apply it for domains with more general shapes, because it requires the use of a global coordinate
system associated to the interface Γint. With the conformal PML [29, 31, 44, 45], the coordinate stretch
is performed in a curvilinear coordinate system based on surfaces parallel to the interface Γint. The layer
then has a constant thickness δ, and the exterior border and the interface are parallel. This approach is
more flexible and exhibits some features which simplify the practical finite element implementation.

The coordinate stretch used to derive the conformal PML is described in section 2.1, together with
the curvilinear coordinate system. The PML equation for the Helmholtz problem is derived in section
2.2. The variational formulation is given in section 2.3. Only the three-dimensional case is described,
but it can be straightforwardly adapted to the two-dimensional case.

2.1 Coordinate stretch and curvilinear coordinates associated to Γint

The PML equation will be derived by performing a complex coordinate stretch along the normal to the
interface Γint between the domain and the layer. The domain is assumed to be convex. In this section,
the interface is assumed to be sufficiently regular.

For each point x of the layer Ωpml, we consider the closest point p belonging to the interface Γint.
The distance between x and the interface Γint is given by r := dist(x ,Γint) = ∥x −p∥ ∈ ]0, δ[. The point
x can then be represented in a unique way as

x (r,p) = p + rn(p), (3)

where n(p) is the unit normal of Γint at p pointing towards the exterior of Ωdom. The complex coordinate
stretch then consists in replacing the real coordinate r in equation (3) with the complex function r̃(r)
defined as

r̃(r) := r − 1

ık
f(r), with f(r) :=

∫ r

0

σ(r′) dr′, for r ∈ ]0, δ[, (4)
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Figure 1: Curvilinear coordinates and local frame associated with the boundary Γint in two dimensions. The
curves of iso-value coordinates are represented in figure (a). Gray curves are parallel. Red lines are straight and
perpendicular to Γint. Figure (b) shows the local frame and the radial coordinate ξ1.

where σ(r) ≥ 0 is the so-called absorption function. Because of the coordinate stretch, any outgoing
wave is damped in the normal direction n(p), i.e.

exp
(
ık · x

) stretch−→ exp
(
ık · x̃

)
= exp

(
ık · x

)
exp [− cos(θ)f(r)] , (5)

with x̃ (r,p) := p + r̃(r)n(p) and cos θ = n · k/k.
To derive the PML equation, the coordinate stretch is performed in a specific curvilinear coordinate

system (ξ1, ξ2, ξ3) associated to the interface Γint. For each point x (ξ1, ξ2, ξ3) of the layer, the coordinate
ξ1 = r is the distance to the closest point belonging to Γint, and the coordinates ξ2 and ξ3 are provided
by a local parametrization of Γint. The local parametrization is chosen in such a way that

∂n

∂ξi
= κit i, with t i =

∂p

∂ξi
, for i = 2, 3, (6)

where t2(ξ2, ξ3) and t3(ξ2, ξ3) are the principal directions and κ2(ξ2, ξ3) and κ3(ξ2, ξ3) are the principal
curvatures of the surface Γint at p(ξ2, ξ3) (see e.g. [1, 37] for further details). We can then rewrite
equation (3) as

x (ξ1, ξ2, ξ3) = p(ξ2, ξ3) + ξ1n(ξ2, ξ3) (7)
and equation (4) as

ξ̃1(ξ1) := ξ1 −
1

ık
f(ξ1). (8)

The set of coordinates (ξ1, ξ2, ξ3) forms an orthogonal curvilinear coordinate system, and the set of
vectors (e1, e2, e3) := (n , t2, t3) constitutes an orthonormal frame. The two-dimensional version of the
coordinate system is illustrated in figure 1.

The Jacobian of the transformation from the curvilinear coordinates (ξ1, ξ2, ξ3) to the Cartesian
coordinates (x1, x2, x3) is obtained by differentiating equation (7) with respect to ξi, which gives

∂x

∂ξi
= hie i, for i = 1 . . . 3, (9)

with the scale factors defined as hi(ξ1, ξ2, ξ3) := ∥∂x/∂ξi∥. For the system considered here, the scale
factors are (see e.g. [44])

h1 = 1, (10)
hi = 1 + κi(ξ2, ξ3) ξ1, for i = 2, 3. (11)

Writing equation (9) in Cartesian coordinates gives the Jacobian matrix

Jx/ξ :=
∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)
=

[
h1e1 h2e2 h3e3

]
=

[
n (1 + κ2ξ1)t2 (1 + κ3ξ1)t3

]
, (12)

where Jx/ξ is a 3× 3 matrix and ei, n and ti are column matrices with the Cartesian components of e i,
n and t i, respectively.
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2.2 Derivation of the PML equation
The PML equation is straightforwardly obtained in the curvilinear coordinate system by writing explic-
itly the Helmholtz equation in curvilinear coordinates and by replacing ξ1 with ξ̃1(ξ1) in the obtained
equation. Nevertheless, for the practical implementation in standard finite element codes, it is convenient
to have the PML equation in Cartesian coordinates.

In [33], Matuszyk and Demkowicz described an elegant method to derive the PML equation and
the variational formulation of the problem in Cartesian coordinates, when the complex stretching is
performed in another coordinate system. Following their approach, the PML equation reads

−∇x · (Λpml∇xu)− αpml k
2u = 0, (13)

with the operator ∇x, the matrix Λpml and the scalar αpml defined as

∇x :=
[
∂x1 ∂x2 ∂x3

]⊤
, Λpml := (det Jpml) J

−1
pmlJ

−⊤
pml, αpml := det Jpml, (14)

where the matrix Jpml is the Jacobian of the transformation from the Cartesian coordinates (x1, x2, x3)
to the complexified Cartesian coordinates (x̃1, x̃2, x̃3) (i.e. the Cartesian components of x̃ ) defined as

Jpml :=
∂(x̃1, x̃2, x̃3)

∂(x1, x2, x3)
. (15)

It is well known that the PML equation (13) can be interpreted as an anisotropic absorber with specific
complex material properties (see e.g. some references in the electromagnetic community [20, 41, 44]).
The PML can also be interpreted as a space with a complex metric tensor. This point of view is discussed
by Teixeira and Chew in [45].

In the remainder of this section, we derive an explicit form for the Jacobian matrix (15). Using the
chain rule, this matrix is factorized as

Jpml =
∂(x̃1, x̃2, x̃3)

∂(ξ̃1, ξ̃2, ξ̃3)

∂(ξ̃1, ξ̃2, ξ̃3)

∂(ξ1, ξ2, ξ3)

∂(ξ1, ξ2, ξ3)

∂(x1, x2, x3)
. (16)

This factorization highlights successive changes of variables: the transformation from Cartesian coordi-
nates to curvilinear coordinates in the complex space, the use of the complex stretch to come back in
the real space, and the transformation from curvilinear coordinates to Cartesian coordinates in the real
space.

• The first matrix corresponds to Jx/ξ, defined in equation (12), where the coordinate ξ1 is replaced
with ξ̃1(ξ1). In Jx/ξ, only the scale factors h2 and h3 depend on ξ1. Using equations (8) and (11),
we can write

hi(ξ̃1, ξ2, ξ3) = 1 + κi(ξ2, ξ3) ξ̃1(ξ1) (17)

= 1 + κi(ξ2, ξ3)

(
ξ1 −

1

ık
f(ξ1)

)
(18)

= hi(ξ1, ξ2, ξ3) si(ξ1, ξ2, ξ3), for i = 2, 3, (19)

where we have introduced the so-called stretching functions

si(ξ1, ξ2, ξ3) := 1− κi(ξ2, ξ3)

ık hi(ξ1, ξ2, ξ3)
f(ξ1), for i = 2, 3. (20)

The first matrix can then be written as

∂(x̃1, x̃2, x̃3)

∂(ξ̃1, ξ̃2, ξ̃3)
=

[
h1e1 s2h2e2 s3h3e3

]
. (21)
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• The second matrix is the Jacobian of the transformation from the real curvilinear coordinates to
the stretched curvilinear coordinates. Because ξ̃1 = ξ̃1(ξ1) (equation (8)), ξ̃2 = ξ2 and ξ̃3 = ξ3, we
have

∂(ξ̃1, ξ̃2, ξ̃3)

∂(ξ1, ξ2, ξ3)
= diag(s1, 1, 1), (22)

where we have introduced the supplementary stretching function

s1(ξ1) :=
dξ̃1
dξ1

= 1− 1

ık
σ(ξ1). (23)

• The last matrix is the inverse of the Jacobian Jx/ξ, which reads

∂(ξ1, ξ2, ξ3)

∂(x1, x2, x3)
=

[
h−1
1 e1 h−1

2 e2 h−1
3 e3

]⊤
. (24)

Finally, using equations (21), (22) and (24) in equation (16) gives

Jpml = I− 1

ık

(
σ(ξ1) nn

⊤ +
κ2
h2
f(ξ1) t2t

⊤
2 +

κ3
h3
f(ξ1) t3t

⊤
3

)
. (25)

This matrix verifies

Jpml =

3∑
i=1

sieie
⊤
i , J−1

pml =

3∑
i=1

1

si
eie

⊤
i , det Jpml = s1s2s3. (26)

It contains all the information relative to the geometry and the complex stretch.

2.3 Variational formulation
The truncated problem consists in solving the Helmholtz equation (1) in the domain Ωdom, the PML
equation (13) in the layer Ωpml, continuity conditions at the interface Γint and a boundary condition
at the exterior border Γext. In this work, we use a homogeneous Neumann condition on Γext. The
region containing both the domain and the layer is denoted Ω. It is defined as an open set that verifies
Ω = Ωdom ∪ Ωpml.

Since the PML equation is a Helmholtz-type equation, the variational formulation of the problem is
obtained rather immediately with the standard approach. It reads∣∣∣∣∣∣∣∣∣∣∣

Find u ∈ H1(Ω) such that, ∀v ∈ H1(Ω),∫
Ωdom

[
∇xu · ∇xv − k2uv

]
dΩ

+

∫
Ωpml

[
(Λpml∇xu) · ∇xv − αpml k

2uv
]
dΩ =

∫
Ωdom

fv dΩ.

(27)

Using the definitions of Λpml and αpml, the formulation can be rewritten as∣∣∣∣∣∣∣∣∣∣∣

Find u ∈ H1(Ω) such that, ∀v ∈ H1(Ω),∫
Ωdom

[
∇xu · ∇xv − k2uv

]
dΩ

+

∫
Ωpml

[
(J−T

pml∇xu) · (J−T
pml∇xv)− k2uv

]
(det Jpml) dΩ =

∫
Ωdom

fv dΩ.

(28)

This second formulation could also be obtained by performing the complex coordinate stretch and the
change of variables directly on the classical bilinear form of the Helmholtz equation [33]. It highlights
the important role of the Jacobian matrix Jpml.
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3 An automatic finite element implementation of the PML
The variational formulations (equations (27) and (28)) can be straightforwardly discretized with H1-
conforming finite elements by using the standard approach. Nevertheless, the direct implementation of
the obtained finite element schemes for generally-shaped computational domains is more difficult because
of the geometric data that are required.

For a direct implementation, the material properties (Λpml and αpml) or, equivalently, the Jacobian
matrix Jpml must be known at every point of the layer. They depend on the distance r, the normal
direction n, the tangential directions t2 and t3, and the curvatures κ2 and κ3. Unfortunately, these
geometric data are available only for simple geometries, such as circular, elliptical or spherical domains.
For more general domains, they could be provided by CAD tools or by numerical procedures (see e.g. [36])
at the price of additional preprocessing steps. Another issue is related to the approximation of the
geometry by the mesh. Even with curvilinear elements, it could be impossible to align the finite element
mesh with the interface Γint and the exterior border Γext. A typical example is a circular domain
meshed with straight-sided elements, which leads to a polygonal meshed interface. The definition of the
geometric parameters then is ambiguous: should the distance r start at the meshed interface or at the
circular interface? Finally, when only a mesh of the domain is available, without a reference geometry,
we possibly have to address polyhedral boundaries, which falls a priori outside the scope of application
of the conformal PML presented in the previous section.

With the proposed AML implementation, only the meshed interface is required. As in the previous
section, the computational domain is assumed to be convex, but the meshed interface could be irregular.
Our approach is based on a mesh extrusion generating the layer, and a local curvilinear coordinate
system (η1, η2, η3) associated to the meshed interface Γint,h. By connecting directly the local coordinates
(η1, η2, η3) to the reference coordinates (u1, u2, u3) used to compute the element-wise integrals, the issue
of geometric data requirements is fully alleviated.

The mesh extrusion, the reference coordinate system and the standard finite element scheme are
described in section 3.1. The coordinate stretch and the curvilinear coordinates associated to the meshed
interface Γint,h are discussed in section 3.2. The effective computation of the element-wise integrals for
elements in the layer is discussed in section 3.3.

3.1 Mesh extrusion and geometric data
We consider a general mesh for the convex domain Ωdom,h. The nature of the elements inside the domain
Ωdom,h does not matter to present our approach, but we assume that the restriction of these elements
on its exterior boundary, denoted Γint,h, gives a conformal surface mesh made of linear straight elements
(Ngeo = 1) or quadratic curvilinear elements (Ngeo = 2). Our approach could be extended to curvilinear
elements of higher order or NURBS-enhanced methods, but this goes beyond the scope of this paper.

To generate the mesh of a layer, Ωpml,h, the vertices and the second-order nodes belonging to the
surface mesh Γint,h are extruded along a direction nh, which should correspond to the exterior normal.
Nevertheless, the definition of the exterior normal of Γint,h is ambiguous at the points where the surface
is not regular. This is the case, for instance, at the vertices and the edges of polyhedral surfaces. The
extrusion direction nh is then chosen following the empirical rules:

• for a given vertex of the surface, nh is the average of the normal of the elements touching the
vertex;

• for a second-order node defined in the middle of an edge or a face, nh is the average of the extrusion
directions defined on the vertices touching the edge or the face.

The two-dimensional version of this strategy is illustrated in figure 2. It is performed Npml times with a
constant extrusion distance hpml. The obtained layer is structured and made of quadrangular elements
(in two dimensions) or prismatic and hexahedral elements (in three dimensions) and has a thickness of
δpml = Npmlhpml.

For each point xh ⊂ Ωpml,h, we shall need values for the extrusion direction nh, for the closest point
belonging to the interface ph ⊂ Γint,h and for the distance to the interface rh. During the mesh extrusion,
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(a) Case 1 (b) Case 2 (c) Case 3

Figure 2: Mesh extrusion for three cases in two dimensions with linear elements (cases (a) and (b)) and quadratic
curvilinear elements (case (c)). The mesh vertices and the second-order nodes are represented. The mesh extrusion
is performed twice here (Npml = 2). The interpolated distance field rh ∈ [0, δpml] and extrusion directions nh are
also shown.

these geometric data can be recorded at the nodes. Indeed, for each extruded node, nh and ph are the
same as for the origin node belonging to the interface. For a node generated at the nth extrusion, the
distance rh is equal to nhpml. At every node, we have xh = ph + rhnh.

To get values for the geometric data inside the elements we use a polynomial extrapolation. Let us
consider a hexahedral element De of the layer. The reference hexahedron is defined as

Dref := {(u1, u2, u3) : ui ∈ [−1, 1], i = 1 . . . 3} , (29)

where (u1, u2, u3) are the reference coordinates. In the reference coordinate system, the polynomial
representation of the position vector reads

x e(u1, u2, u3) =

Ngeo+1∑
n1=1

Ngeo+1∑
n2=1

Ngeo+1∑
n3=1

ℓn1
(u1) ℓn2

(u2) ℓn3
(u3) x

e
n1,n2,n3

, (30)

where {ℓn}
Ngeo+1
n=1 are the N th

geo-order Lagrange functions and x e
n1,n2,n3

is the mesh node of the physical
hexahedron De corresponding to the set of indices (n1, n2, n3). Similarly, we can obtain the extrusion
direction ne, the closest point pe and the numerical distance re at every point of the element De by
extrapolating the data recorded at the nodes. The extrusion direction and the closest points do not vary
in the stretching direction, while the numerical distance varies only in that direction. In addition, the
numerical distance varies linearly. If the reference coordinate u1 is aligned with the stretching direction,
we can then write

x e(u1, u2, u3) = pe(u2, u3) + re(u1) n
e(u2, u3) (31)

with

re(u1) = (n− 1)hpml +
u1 + 1

2
hpml, (32)

if the element De has been generated at the nth extrusion, with n = 1 . . . Npml. Figure 2 presents the
numerical distance field obtained using this strategy in two dimensions.
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3.2 Coordinate stretch and curvilinear coordinates associated to Γint,h

Similarly to the approach of section 2.1, a complex coordinate stretch is performed along the extrusion
direction nh. The main differences here are that the interface Γint,h can be irregular and nh is an
interpolated field.

To perform the complex coordinate stretch in the extrusion direction, we introduce a local curvilinear
coordinate system (ηe1, η

e
2, η

e
3) associated to the interface Γint,h and based on the reference coordinate

system. The first coordinate is the numerical distance. The second and third curvilinear coordinates are
the second and third reference coordinates, which constitute a local parametrization of the interface. We
then have ηe1(u1) = re(u1), ηe2(u2) = u2 and ηe3(u3) = u3. The position vector can be rewritten with a
dependence on the curvilinear coordinates,

x e(ηe1, η
e
2, η

e
3) = pe(ηe2, η

e
3) + ηe1n

e(ηe2, η
e
3). (33)

Replacing the coordinate ηe1 with the stretched coordinate η̃e1(ηe1) = ηe1 − f(ηe1)/ık leads to the complex
vector

x̃ e(ηe1, η
e
2, η

e
3) := x e(η̃e1, η

e
2, η

e
3) = x e(ηe1, η

e
2, η

e
3)−

1

ık
f(ηe1)n

e(ηe2, η
e
3). (34)

Thanks to these formula, we can obtain Jacobian matrices to switch between the Cartesian coordinate
system and the curviliear coordinate system in the real and complex spaces.

3.3 Finite element scheme and automatic PML implementation
The variational formulation (28) is solved by using an H1-conforming finite element method. The
numerical solution uh is constructed on the mesh with hierarchical Lobatto shape functions (see e.g. [6,
43]). The space of discrete solutions is denoted Vh ⊂ H1(Ωh), with Ωh = Ωdom,h ∪Ωpml,h. Following the
classical approach, the discrete variational formulation reads∣∣∣∣∣∣∣∣∣∣∣

Find uh ∈ Vh such that, ∀vh ∈ Vh,∫
Ωh

[
∇xuh · ∇xvh − k2uhvh

]
dΩh

+

∫
Ωh

[
(J−⊤

pml,h∇xuh) · (J−⊤
pml,h∇xvh)− k2uhvh

]
(det Jpml,h) dΩh =

∫
Ωdom,h

fvh dΩh,

(35)

where a Jacobian matrix Jpml,h = ∂(x̃1, x̃2, x̃3)/∂(x1, x2, x3) has to be defined.
We could derive explicitly Jpml,h by performing successive changes of variables between the Cartesian

coordinates and the curvilinear coordinates in the complex and real spaces, following the strategy used
in section 2.1. Nevertheless, the computation is simplified by combining Jpml,h with the Jacobian matrix
of the mapping with the reference element, which is generally used to compute element-wise integrals.

Computation of the element-wise integrals

Let us consider an entry (A,B) of the matrix of the global system obtained by the discretization of the
problem. The element-wise integral corresponding to the contribution of an element De ⊂ Ωpml,h in the
variational formulation (35) reads∫

De

[
(J−⊤

pml,h∇xΨA) · (J−⊤
pml,h∇xΨB)− k2ΨAΨB

]
(det Jpml,h) dD

e, (36)

where ΨA and ΨB are global basis functions (defined on Ωh) associated to the global unknowns uA and
uB . We assume that A and B are such that De belongs to the support of ΨA and ΨB .

Using the reference mapping between the physical element De and the reference element Dref, the
integral can be rewritten as∫

Dref

[
(J−⊤

pml,hJ
−⊤
ref ∇uψa) · (J−⊤

pml,hJ
−⊤
ref ∇uψb)− k2ψaψb

]
(det Jpml,h) (det Jref) dDref, (37)
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where Jref := ∂(x1, x2, x3)/∂(u1, u2, u3) is the reference mapping, ∇u = [∂u1 ∂u2 ∂u3 ]
⊤ is the gradient

in the reference coordinate system, ψa and ψb are local basis functions defined on Dref, and a and
b are the local indices associated to the global indices A and B. We have ψa(u) = ΨA(xe(u)) and
ψb(u) = ΨB(xe(u)) with u ∈ Dref. Combining the Jacobian matrices gives∫

Dref

[
(J−⊤∇uψa) · (J−⊤∇uψb)− k2ψaψb

]
(det J) dDref (38)

where the combined Jacobian matrix is defined as J := Jpml,hJref.
The practical computation of J is rather straightforward. First, we re-factorize the matrix J as

J =
∂(x̃1, x̃2, x̃3)

∂(x1, x2, x3)

∂(x1, x2, x3)

∂(u1, u2, u3)
=
∂(x̃1, x̃2, x̃3)

∂(η1, η2, η3)

∂(η1, η2, η3)

∂(u1, u2, u3)
, (39)

with changes of variables between the complex Cartesian coordinates, the real curvilinear coordinates
associated to Γint,h and the reference coordinates. Using equation (34), we easily derive the first Jacobian
matrix,

∂(x̃1, x̃2, x̃3)

∂(η1, η2, η3)
=
∂(x1, x2, x3)

∂(η1, η2, η3)
− 1

ık

[
σ(η1) n

e f(η1) ∂η2
ne f(η1) ∂η3

ne
]
. (40)

Using the definition of the curvilinear coordinates, we have

∂(η1, η2, η3)

∂(u1, u2, u3)
= diag

(
∂u1

η1, 1, 1
)
, (41)

with ∂u1η1 = hpml/2. Finally, we get

J = Jref −
1

ık

[
(∂u1

η1) σ(η1) n
e f(η1) ∂u2

ne f(η1) ∂u3
ne

]
. (42)

Thanks to equation (42), implementing the PML with the AML approach simply consists in adding
an imaginary part to the Jacobian matrix used in the element-wise integrals. This part only requires
a spatial representation of the distance re(u1) and the extrusion direction ne(u2, u3), which the nodal
values are automatically obtained during the mesh extrusion and then extrapolated on the layer, as
explained in section 3.2.

Discussion

Although our approach is based on a complex stretch in a coordinate system associated to the mesh, it
can be related to the conformal PML. Indeed, using equations (21) and (22), we have, for the conformal
PML,

∂(x̃1, x̃2, x̃3)

∂(ξ1, ξ2, ξ3)
=
∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)
− 1

ık

[
σ(ξ1) n κ2f(ξ1) t2 κ3f(ξ1) t3

]
. (43)

We obtain the corresponding Jacobian for the AML implementation (equation (40)) by taking (ξ1, ξ2, ξ3) =
(η1, η2, η3) with the approximations n ≈ ne, κ2t2 ≈ ∂η2

ne and κ3t3 ≈ ∂η3
ne over each element De of

the layer. In the cases where the interface is smooth, the AML corresponds to a conformal PML with
approximate geometric parameters. For non-smooth interfaces, the AML can be seen as an approximate
conformal PML with effective parameters at the corners. This approach is similar to the one proposed in
[36] for high-order absorbing boundary conditions, where effective geometric parameters were obtained
with an empirical procedure to deal with corners. Despite the relation between the conformal PML and
the AML, the mathematical analyses performed for the conformal PML do not apply straightforwardly
here because of the geometric approximations. A comprehensive analysis should take into account errors
due to the use of meshed geometries and approximate geometric parameters which depend on these
meshes. This analysis is out of the scope of this paper and is left for future work.
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The approach proposed by Ozgun and Kuzuoglu in [38, 39], which consists in replacing the coordinates
of the mesh nodes with the stretched coordinates, is a priori simpler than the approach described here.
With that approach, the Jacobian matrix used in the element-wise integrals would be

J =
[
∂u1

x̃e ∂u2
x̃e ∂u3

x̃e
]
, (44)

where x̃e corresponds to a polynomial representation of the stretched coordinates. Because of the def-
inition of the stretched position (equation (34)), the real part of this matrix is identical to the one of
the matrix obtained with our approach (equation (42)), but the imaginary part is different. With the
approach of Ozgun and Kuzuoglu, the stretched coordinates are interpolated with polynomial shape
functions, and then differentiated numerically in equation (44). Nevertheless, both steps introduce ap-
proximation errors, which can generate local instabilities [7]. The integrated absorbing function f(η1)
that is in the imaginary part of equation (34) is not represented accurately with the polynomial shape
functions. For instance, the widely used quadratic absorbing function σ(η1) = αη21 requires third-degree
polynomial shape functions for an exact representation, and a supplementary degree for an accurate
numerical differentiation. The very efficient unbounded absorbing functions introduced by Bermúdez et
al. [9] cannot be represented accurately with polynomials. By contrast, with our approach, the absorbing
function σ(η1) and the integrated function f(η1) are evaluated exactly in the Jacobian matrix (equa-
tion (42)) without any polynomial interpolation and numerical derivation. The unbounded absorbing
functions can be used efficiently.

4 Numerical validation and comparison
In this section, the efficiency of the PML implementations is studied for truncated computational domains
with regular and non-regular borders in two and three dimensions. The AML approach is compared
to the direct implementation of the PML (when the exact geometric data are available) and to the
implementation based on complex mesh nodes proposed by Ozgun and Kuzuoglu [38, 39]. The reference
benchmarks and the PML parameters used for the numerical simulations are detailed in section 4.1.
The validation and comparison results for truncated domains with regular and non-regular borders are
presented in sections 4.2 and 4.3, respectively.

4.1 Reference benchmarks and PML parameters
The numerical simulations represent the scattering of the plane wave uinc(x ) = eıkx with the propagation
direction k̂ = ex by a sound-hard object centered at the origin. In two dimensions, the scattering object
is the disk of radius asca = 1 and the resulting scattered field is

uref(x ) = −
∞∑

m=0

ϵmı
m Jm

′(kasca)

H
(1)
m

′
(kasca)

H(1)
m (kr) cos(mθ), r ≥ asca, (45)

where (r, θ) are the polar coordinates, Jm is the mth-order Bessel function, H(1)
m is the mth-order first-

kind Hankel function, and ϵm is the Neumann function which is equal to 1 for m = 0 and 2 otherwise. In
three dimensions, the scattering object is the sphere of radius asca = 1 and the resulting scattered field
is

uref(x ) = −
∞∑

m=0

ım(2m+ 1)
jm

′(kasca)

h
(1)
m

′
(kasca)

h(1)m (kr) Pm(x/r), r ≥ asca, (46)

where r = ∥x∥ is the radial coordinate, jm is the mth-order spherical Bessel function, h(1)m is the mth-order
first-kind spherical Hankel function, and Pm is the mth-order Legendre polynomial.

Truncated computational domains with different shapes are considered. For each case, the domain is
meshed with the mesh generator Gmsh [22]. A layer surrounding the domain is generated by extrusion
at run time by the solver, which is a Matlab code. The mesh of the domain is made of triangular or
tetrahedral elements, and the extruded layer is composed of quadrangular or prismatic elements in two
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and three dimensions, respectively. Quadratic curvilinear elements are used for the accurate geometric
representation of the problem (Ngeo = 2). The finite element solution is computed with hierarchical
polynomial shape functions of maximal degree p = 1, 2 or 3 (see e.g. [6, 43]). The Neumann boundary
condition ∂nu = −∂nuinc is prescribed on the boundary of the scattering object, and a homogeneous
Neumann condition is used on the exterior boundary of the extruded layer.

The accuracy of the PML critically depends on the absorbing function σ(ξ1), the thickness δ of the
layer and the spatial discretization (see e.g. [9, 15, 35]). These parameters must then be chosen with great
care. For a given discretization, increasing the thickness of the layer generally improves the accuracy,
but it also increases the number of degrees of freedom and the size of the algebraic system. Therefore, in
order to limit the computational cost, the layer should be as thin as possible with an optimized absorbing
function.

Polynomial absorbing functions are widely used. These functions ensure a progressive damping of
the outgoing waves in the layer. In particular, the cubic function

σcub(ξ1) = σ̄(ξ1/δ)
3 (47)

is a very frequent choice, even though a supplementary free parameter σ̄ is introduced. An approach
to select the parameter σ̄ consists in choosing a priori the reflection coefficient for outgoing waves with
normal incidence. The reflection coefficient of the planar PML reads

Rθinc = exp

[
−2 cos(θinc)

∫ δ

0

σ(ξ′1) dξ
′
1

]
, (48)

where θinc is the angle of incidence. For the cubic function, the constant amplitude σ̄ should then be
σ̄ = (2/δ)(lnR−1

0 ), where δ and R0 are given. Nevertheless, σ̄ must not be too large to avoid any
significant dispersion error due to the spatial discretization [15, 35]. For practical applications, the
parameter selection is a critical issue.

In an alternative approach, Bermúdez et al. [9] studied unbounded absorbing functions which cancel
the reflection coefficient (48). In particular, the hyperbolic function

σhyp(ξ1) =
1

δ − ξ1
(49)

provides good accuracy without requiring the tuning of supplementary free parameters for finite element
simulations [9, 35]. Nevertheless, because this function is singular on the exterior border of the layer, the
numerical approximation of the element-wise integrals requires some care. For the AML implementation
and the direct implementation of the conformal PML, we have used the hyperbolic function and Gauss-
Legendre quadratures without any difficulty. Nevertheless, the implementation with complex mesh nodes
has not provided satisfactory results with this absorbing function. That implementation is not suited to
this kind of absorbing function (see discussion at the end of section 3.3).

In all the cases, the thickness of the layer is equal to Npmlhpml, where Npml is the number of extrusions
and hpml is the extrusion distance. The distance hpml is taken equal to h, the characteristic size of the
mesh cells in the computational domain. The influence of Npml on the accuracy is studied in the following
sections.

4.2 Numerical results for computational domains with regular boundary
The AML implementation is compared to the other approaches for two computational domains with
regular boundary: the disk of radius a = 1.1 and the ellipse of semi-axes ax = 1.6 and ay = 1.1. The
scattering disk of unit radius is placed in the middle of these domains. The simulations are performed
with the wavenumber k = 25, the polynomial degrees p = 1, 2 and 3, the characteristic size of the mesh
cells h = pλ/dλ, the wavelength λ = 2π/k and the resolution rate dλ = 20. The implementations are
tested with different layer thicknesses (or, equivalently, different numbers of mesh extrusions Npml) and
both hyperbolic and cubic absorbing functions.
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(a) Circular domain — Absorbing function σhyp
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(b) Elliptical domain — Absorbing function σhyp
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Figure 3: Comparison of the implementations with the hyperbolic absorbing function σhyp for the benchmarks
with the circular domain (left) and the elliptical domain (right). The relative L2-error is plotted as a function
of the layer thickness for finite element schemes with polynomial degrees p = 1, 2 and 3. Dashed line: best
interpolation error in the truncated domains.

For a quantitative comparison of the implementations, we consider the relative L2-error between the
numerical solution unum and the reference solution (45) on the computational domain,

∥unum − uref∥L2(Ω)

∥uref∥L2(Ω)
.

We also consider the relative L2-error between the reference solution and its L2-projection onto the finite
element space,

∥Puref − uref∥L2(Ω)

∥uref∥L2(Ω)
.

By Céa’s lemma, this error corresponds to the best numerical solution that can be reached on each mesh,
whatever the boundary treatment.

The AML implementation and the direct implementation of the conformal PML are firstly tested
with the hyperbolic absorbing function σhyp (49). The exact geometric parameters used for the direct
implementation of the conformal PML are provided in appendix A. The complex mesh nodes approach
is not considered because it does not provide satisfactory results with σhyp. On Figure 3, the relative L2-
error is plotted as a function of the layer thickness for both implementations, with different polynomial
degrees and both circular and elliptical domains. In all the cases, the AML implementation and the direct
implementation give the same errors. The error is obviously larger with thin layers and small polynomial
degrees. For these cases, the numerical dispersion is significant. Increasing the layer thickness decreases
the error until a plateau that is close to the best interpolation error for p = 2 and 3. With p = 1, the
plateau is substantially higher than the best interpolation error. The level of this plateau is higher in
the elliptical case.

The PML implementations are now tested with the cubic absorbing function σcub (47). When using
this function, the parameter σ̄ must be chosen. Here, it is taken equal to (2/δ)(lnR−1

0 ), where the tuning
parameter R0 has to be adjusted. We firstly study the parameter selection with the direct implementation
of the PML in the circular case. Figure 4 shows the error curves obtained with the cubic function and
different values of R0, as well as the curves corresponding to the hyperbolic function, for both p = 2
and 3. For thick layers and large values of R0, which correspond to small values of σ̄, the relative errors
are rather high and do not vary with the polynomial degree p. The errors are dominated by modeling
errors: the outgoing waves are not sufficiently damped, and they are reflected at the exterior border of
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(a) Circular domain — Degree p = 2
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(b) Circular domain — Degree p = 3
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Figure 4: Comparison of the absorbing functions for the benchmark with the circular domain and p = 2 (left)
or 3 (right). The relative L2-error is plotted as a function of the layer thickness for σhyp and σcub with different
values of R0. Dashed line: best interpolation error in the truncated domain.

the layer. For thick layers and small values of R0 (i.e. R0 ≤ 10−5 for p = 2 and R0 ≤ 10−6 for p = 3),
they are effectively damped, and the errors are close to the best interpolation error. For thin layers, the
errors increase because of the numerical dispersion. The errors are similar with the hyperbolic and cubic
functions for layers with several cells. The cubic function is outperformed by the hyperbolic function for
layers with one or two mesh cells. In the remaining of the manuscript, the cubic function is always used
with R0 = 10−6.

Figure 5 shows the error curves obtained with the AML implementation and the complex mesh nodes
approach equipped with the cubic function σcub. The results of the direct implementation, not shown,
are nearly identical to those with the AML. For thin layers, the errors are always smaller with the AML
than with the complex mesh nodes approach. As discussed at the end of section 3.3, approximation errors
are introduced with the second approach because of the interpolation of the complex coordinates on the
finite element mesh. This interpolation, which is the main difference between both implementations,
explains the higher errors observed with the second one. In all the cases, increasing the layer thickness
decreases the errors until plateaus, which are at the same levels for all the implementations and both
absorbing functions. These plateaus vary only with the polynomial degree p.

In a nutshell, the direct implementation of the conformal PML and the AML implementation give the
same results, which validates our approach. The implementation based on complex mesh nodes provides
similar results, but only for large layers with a polynomial absorbing function that must be tuned.

4.3 Numerical results for computational domains with corners
The PML implementations are studied and compared for computational domains having corners with
right and non-right angles. To analyse the influence of the angle on the error, polygonal and polyhedral
domains are considered with different numbers of edges and faces, respectively. The circular and spherical
domains, which are limit cases, are considered as well. In two dimensions, the scattering disk of unit
radius is placed in the middle of polyhedral domains of midradius 1.65. In three dimensions, the scattering
sphere of unit radius and polyhedral domains of midradius 2 are considered. In both cases, the polynomial
degree is p = 2 and the resolution rate is dλ = 20. The wavenumber is k = 25 in two dimensions and
k = 10 in three dimensions.

Only the AML implementation and the complex mesh nodes approach, which can address any kind
of convex truncated domains, are systematically compared. The standard PML is suited only to domains
with smooth borders and right angles. In the latter case, the coordinate stretch is performed in two or
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(a) Circular domain — Absorbing function σcub
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(b) Elliptical domain — Absorbing function σcub
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Figure 5: Comparison of the implementations with the cubic absorbing function σcub (with R0 = 10−6) for the
benchmarks with the circular domain (left) and the elliptical domain (right). The relative L2-error is plotted as
a function of the layer thickness for finite element schemes with polynomial degrees p = 1, 2 and 3. The direct
implementation of the PML (not shown) gives the same errors as the AML implementation. Dashed line: best
interpolation error in the truncated domain.

three directions, which must be orthogonal. Strategies to address non-right angles have been proposed
for absorbing layers that are defined differently [24, 23, 16]. Nevertheless, these strategies do not apply
to standard PML formulations, and they involve specific modifications of the computational scheme at
the corners. By contrast, the implementations considered here correspond to the standard PML on the
regular parts of the domain boundary, with a corner treatment implicitly embedded in the coordinate
stretch based on the mesh extrusion.

Figure 6 shows snapshots of the numerical solutions and the error distributions, together with the
meshes, for numerical simulations performed with polygonal and circular domains. The AML implemen-
tation was used with Npml = 4 mesh extrusions and the absorbing function σhyp. For the circular case,
the error distribution is clearly dominated by the dispersion error of the finite element scheme. For the
squared and pentagonal domains, the levels of error remain low, but structures in the error distributions
indicate that spurious errors are generated at the boundary of the domain, and likely at the corners.
Finally, the largest levels of error are observed with the triangular domain. For that case, the extruded
mesh cells close to the corners have the worst aspect ratio. In addition, the exterior border is rather
close to the scatterer. This is the most challenging case for the PML implementations.

For a quantitative comparison of the implementations, the L2-error is computed for different config-
urations with the polygonal and circular domains. We consider the AML implementation with σhyp, and
the complex mesh nodes approach with σcub. As a reference, the standard Cartesian PML is tested with
both absorbing functions for the configurations with the square domain. The relative error is plotted as
a function of the layer thickness for the different configurations on figure 7. Let us note that the relative
projection error has nearly the same value for all the computational domains. Different observations can
be made:

• When the hyperbolic function is used (Figure 7a), the errors obtained with the Cartesian PML
are very close to the projection error, and do not vary with the layer thickness. With the AML
implementation, the errors are slightly larger for the circular and polyhedral domains with obtuse
angles. The errors significantly larger, by at least one order of magnitude, in the triangular case.
This corroborates the preliminary qualitative study.

• When the cubic function is used (Figure 7b), the errors obtained with the Cartesian PML remain
close to the projection error, but only for thick layers (i.e. with Npml ≥ 5). Either the parameter
R0 is not optimal, or the cubic function cannot provide results as good as the hyperbolic function
for thin layers. With the complex mesh nodes approach, the errors are similar or slightly higher
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Figure 6: Polygonal computational domains: mesh (left), real part of the numerical solution (center) and corre-
sponding error distribution (right) obtained with the AML implementation. The layer is generated with Npml = 4
mesh extrusions and the hyperbolic absorbing function is used.
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(a) Polygonal domains — AML imp. and σhyp
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(b) Polygonal domains — Complex nodes and σcub
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Figure 7: Polygonal computational domains: comparison of the AML equipped with σhyp (left) and the complex
mesh nodes approach equipped with σcub (right). Each colored line corresponds to one polyhedral domain. Light
and dark colors correspond to polyhedra with many and few edges, respectively. Black lines correspond to the
results with the standard Cartesian PML for the squared domain. Dashed line: best interpolation error in the
truncated domains.

than the errors obtained with the Cartesian PML.
• In all the cases, increasing the layer thickness decreases the errors until they plateau. The plateaus

are at the same levels for the AML implementation and the complex mesh nodes approach, despite
the different absorbing functions. The plateau is much higher in the triangular case.

To summarize, both the AML implementation and the complex mesh nodes approach are equivalent
for large layers. The results are satisfactory, except for the triangular case, where the border is close
to the scattering object and the angles are acute. For thin layers, which allow for a reduction of the
computational cost, combining the AML with the hyperbolic function is the most efficient approach.

(a) Polyhedral domains — AML imp. and σhyp

1 2 3 4 5 6 7 8 9 10
10

-3

10
-2

10
-1

10
0

(b) Polyhedral domains — Complex nodes and σcub
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Figure 8: Polyhedral computational domains: comparison of the AML equipped with σhyp (left) and the complex
mesh nodes approach equipped with σcub (right). Each colored line corresponds to one polyhedral domain. Light
and dark colors correspond to polyhedra with many and few edges, respectively. Black lines correspond to the
results with the standard Cartesian PML for the cubic domain. Dashed line: best interpolation error in the
truncated domains.

17



Figure 9: Applicative benchmark. Original CAD model of unit length (top left), corresponding surface mesh with
characteristic length h = 15 × 10−3 (top right), convex exterior surface automatically generated at the minimal
distance 2h from the submarine (bottom left) and cut view of the final tetrahedral mesh (bottom right).

The implementations are finally tested in three dimensions, with tetrahedral, cubic, octahedral,
icosahedral and spherical domains. In figure 8, the error curves are shown for the AML implementation
with σhyp and the complex mesh nodes approach with σcub. The error curves corresponding to the
Cartesian PML with the cubic domain are shown as well. These results confirm the observations made for
the two-dimensional results. Both the AML implementation and the complex mesh nodes approach are
efficient for sufficiently large layers. For thin layers, using the AML implementation with the hyperbolic
absorbing function is the best strategy. For the icosahedral and the spherical cases, only one mesh
extrusion is necessary.

5 Application with an automatically generated convex domain
To illustrate the interest of the AML approach for realistic applications, we consider the scattering of
a plane wave by a three-dimensional scattering object: the shark submarine. The original geometry1

and the mesh of the submarine are shown in Figure 9. The submarine is placed in the middle of a
computational domain where the pressure field is computed. In order to minimize the number of degrees
of freedom, the exterior surface of this computational domain is generated automatically by using a
complex hull algorithm. The exterior surface mesh is then extruded to generate the absorbing layer. The
final model is set up and ran using the simulation package Simcenter 3D (version 2019.2) [42] developed
by Siemens Industry Software, in which the AML implementation has been developed.

We describe step-by-step the process to get the mesh of the computational domain and the layer.
First, a surface mesh of 6-noded triangular elements is generated on the original CAD geometry of the
submarine, which is of unit total length. The characteristic length of the elements is h ≈ 15 × 10−3.
Then, an approximate convex hull of this surface mesh is computed by applying the quickhull algorithm

1CAD model freely available on the Internet: https://grabcad.com/library/submarine-shark-1
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(a) Incidence [0 0 −1]⊤ (b) Incidence [0 1−1]⊤/
√
2

Figure 10: Applicative benchmark. Real part of the scattered fields obtained in the physical domain for both
incident fields. The AML implementation is used with the absorbing function σhyp and Npml = 5.

[2]. To create the exterior surface of the computational domain, the convex hull is scaled in the exterior
normal direction, and it is homogeneously triangulated with the element length h. The minimal distance
between the submarine and the scaled surface is equal to 2h. In a third step, a quadratic tetrahedral
mesh of the volume between the submarine and the scaled surface is generated. The final mesh of the
domain, shown in the bottom right part of Figure 9, is made of 302 803 10-noded tetrahedral elements
and 439 884 nodes. As expected, close to the nose and at the fine tips, the exterior surface of the domain
is only 2-elements away from the submarine surface. Finally, the mesh of the PML region, composed
of 10-noded prismatic elements, is extruded by the solver at run time. The required geometric data are
generated automatically (see discussion in Section 3.1). The extrusion length is hpml = h, and the layer
thickness is δpml = Npmlhpml. Only the AML implementation and the hyperbolic absorbing function are
considered.

The simulations were performed for two incident plane waves hitting the submarine frontally (kinc =
[0 0 −1]⊤) and with an oblique incidence (kinc = [0 1 −1]⊤/

√
2), respectively, with the wavenumber

k = 40, the polynomial degree p = 2 and the resolution rate dλ = 20. The real part of the scattered
fields obtained in the computational domain is represented in Figure 10 for both incident fields in the
case Npml = 5. The orientation of the global axes is visible on the figures. The computations were
performed on a DELL Precision 7520 laptop, with 3.10 GHz clock speed and 32 Gb of RAM. The most
computationally intensive operations were the system assembly and the factorization, which required
respectively 4.5 and 62 seconds on 4 threads. The factorization required 11.6 Gb of memory.

We first study the influence of the PML on the accuracy by comparing simulations performed with
three layer thicknesses: Npml = 1, 5 and 10. Figure 11 shows the directivity of the scattered field on
a circle of radius 2 in the xz-plane, for both incidence directions and each layer thickness. For each
incidence, the results obtained with the different thicknesses are very close. For layers with Npml = 5
and 10, the curves are superimposed. Therefore, a thin absorbing layer, with a thickness of only few
mesh cells, is sufficient to get accurate results, although the interface between the domain and the layer
is very close to the scatterer.

The computational cost, in terms of runtime and memory storage, is directly related to the total
number of degrees of freedom, and then to the volume of the computational domain. Using the auto-
matically generated convex hull to define the domain, instead of a more standard geometry (e.g. cuboid,
cylinder or spheroid), reduces the volume of the computational domain, yielding significant savings on the
computational resources. To illustrate this, we have generated cuboidal and cylindrical computational
domains aligned with the main axis of the submarine. For each geometry, the minimal distance between
the exterior boundary and the submarine is equal to 2h, and the exterior surface mesh is extruded to
generate a layer with Npml = 5. The characteristics of the resulting finite element models are compiled
in Table 1.
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(a) Incidence [0 0 −1]⊤ (b) Incidence [0 1−1]⊤/
√
2

Figure 11: Applicative benchmark. Directivity plots of the scattered field obtained on a circle or radius a = 2,
in the zx-plane, centered at z = 0.5a.

Table 1: Applicative benchmark. Model characteristics for truncated domains with different shapes. The distance
between the interface and the scatterer is equal to 2h and an extruded layer with Npml = 5 is generated. The
volume of the domain corresponds to the sum of the volumes of the mesh cells.

Shape Volume # Elements # DoFs Memory
of domain of domain Domain Ext. layer Domain Ext. layer Total for facto.

Convex envelope 6.8e−2 302 803 109 670 439 884 438 700 878 584 11.6 Gb
Cuboid 19.7e−2 546 837 151 020 773 064 604 100 1 377 164 23.5 Gb

Cylinder 21.1e−2 608 502 146 140 854 097 584 580 1 438 677 28.3 Gb

The model with the convex envelope is significantly less computationally intensive than the cuboidal
and cylindrical models. The volume and the number of degrees of freedom in the computational domain
are reduced by approximately a factor of three and two, respectively. This difference may be explained by
the presence of several mesh refinement regions close to the scatterer, which capture the small geometric
details of the submarine. The PML unknowns represent a significant proportion of the total number of
degrees of freedom in all the cases: 50%, 44% and 40% for the convex, cuboidal and cylindrical cases,
respectively. The use of a convex envelope allows to reduce the size of the resulting global system of
around 40% as compared to a canonical truncation. This results into a significant memory footprint
reduction of 60% (resp. 50%) in comparison to the cylindrical (resp. cuboidal) case. Let us note that,
the layer where generated by extrusion, even at the corners, using the procedure described in Section 3.1.
With the standard Cartesian and cylindrical PML approaches, where the complex stretch is performed
in orthogonal directions, the number of elements and the number of degrees of freedom would be larger
at the corners, resulting in a larger computational cost.

In conclusion, it is important to limit the volume of the computational domain and the thickness of the
layer to control the computational cost, especially in three dimensions. This advocates using the AML
implementation of the PML, which brings geometric flexibility for the definition of the computational
domain, and which allows to use efficient unbounded absorbing functions, such as the hyperbolic one.

6 Conclusion
In this article, a comprehensive strategy to implement the PML is proposed for the accurate finite element
solution of scattering problems with generally-shaped convex computational domains. The approach,
which we call the AML implementation, is fully automatic: the end-user only needs to generate the
mesh of the main domain, and to choose the layer thickness. The layer does not have to be modelled
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with a CAD tool, and no geometric information on the layer is required a priori. The approach is very
versatile. It can be used with high-order finite element schemes, with unbounded absorbing functions,
and for convex domains with regular and non-regular borders.

The AML implementation relies on a mesh extrusion generating the layer. Geometric data recorded
during the extrusion step are interpolated on the finite element space, providing the required geometric
parameters. No further geometric data is required. A rather simple modification of the Jacobian matrix
in the element-wise finite element integrals is performed to progressively attenuate the solution inside
the layer.

For computational domains with regular borders, the AML can be seen as a specific implementation
of the conformal PML. With the conformal PML, a complex coordinate stretch is performed in a local
coordinate system associated to the border of the domain. The direct implementation is rather easy
thanks to complex material parameters. Unfortunately, the definition of these material parameters
required the explicit knowledge of geometric parameters at all points of the layer (i.e. the distance to
the border of the domain, the stretching direction, the principal curvatures and the principal directions),
which can be difficult to obtain in practical cases (e.g. with complicated geometries or when only a mesh of
the domain is available). With the AML approach, rather than using empirical approaches to estimate the
geometric parameters, the complex coordinate stretch is directly performed in an interpolated extrusion
direction. This simple strategy allows to alleviate the issue of the accurate estimation of the geometric
parameters. Numerical results have shown that the AML is equivalent to the direct implementation
of the conformal PML in terms of accuracy for academic settings where the geometric parameters are
known.

The proposed approach can deal with computational domains having corners, where the geometric
parameters are normally not well-defined. The interpolated geometric parameters are then used at the
corners as an empirical strategy. The numerical results have shown that the method is very accurate for
corners with obtuse angles, and that the accuracy decreases with more acute angles. For settings with
right angles, the AML is not equivalent to the Cartesian PML, but the error remains at an acceptable
level for the considered cases.

In term of easiness of implementation, the AML has been compared to the direct PML implementa-
tion and the implementation based on complex mesh nodes proposed by Ozgun and Kuzuoglu [38, 39].
Contrarily to the direct PML implementation, the AML approach does not require the explicit defini-
tion of the principal curvatures and the principal directions, though they could be estimated with the
interpolated geometric parameters. The minimal geometric knowledge is also a feature of the complex
mesh nodes implementation, but that approach cannot be applied with unbounded absorbing functions,
which is a severe limitation.

The AML implementation of the PML, combined with the hyperbolic absorbing function, is an
accurate, automatic and computationally efficient approach to solve large-scale scattering problems.
The geometric flexibility allows for the use of a convex hull to minimize the volume of the computational
domain, thereby reducing the size of the problem and the computational cost.
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A Geometric data and Jacobian matrices for 2D reference cases
In this appendix, geometric data and Jacobian matrices used for the direct implementation of the con-
formal PML are provided. In the general two-dimensional case, the Jacobian matrix of the PML trans-
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formation, its inverse and its determinant read, respectively,

Jpml =

2∑
i=1

sieie
⊤
i , J−1

pml =

2∑
i=1

1

si
eie

⊤
i , det Jpml = s1s2, (50)

where e1 and e2 constitute an orthonormal frame, and s1 and s2 are the stretching functions.
For a circular domain of radius R, the Cartesian components of the orthonormal directions are

e1 =

[
cos θ
sin θ

]
, e2 =

[
− sin θ
cos θ

]
, (51)

and the stretching functions are

s1 = 1− 1

ık
σ(ξ1), s2 = 1− 1

ık

1

r
f(ξ1), (52)

with the polar coordinates (r, θ) and the stretched coordinate ξ1 = r −R.
For an elliptical domain of semi-axes ax and ay, the Cartesian components of the orthonormal direc-

tions are

e1(p) =
1[

(pxay/ax)2 + (pyax/ay)2
]1/2 [

pxay/ax
pyax/ay

]
, (53)

e2(p) =
1[

(pxay/ax)2 + (pyax/ay)2
]1/2 [

−pyax/ay
pxay/ax

]
, (54)

where p = [px, py] is the closest point belonging to the boundary of the domain. One has p2x/a2x+p2y/a2y =
1. The stretching functions are

s1 = 1− 1

ık
σ(ξ), s2 = 1− 1

ık

1

R(p) + ξ
f(ξ), (55)

with the radius of curvature

R(p) =

[
(pxay/ax)

2 + (pyax/ay)
2
]3/2

axay
(56)

and the stretched coordinate ξ = dist(x,p).
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