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Abstract

Automatic differentiation, as implemented today, does not have a simple mathe-
matical model adapted to the needs of modern machine learning. In this work we
articulate the relationships between differentiation of programs as implemented
in practice and differentiation of nonsmooth functions. To this end we provide
a simple class of functions, a nonsmooth calculus, and show how they apply to
stochastic approximation methods. We also evidence the issue of artificial critical
points created by algorithmic differentiation and show how usual methods avoid
these points with probability one.

1 Introduction

Optimization algorithms based on backpropagation oracles, and more generally on automatic or
algorithmic differentiation (AD) [41, 39], are one of the most widely used training tools for modern
learning architectures [14, 32, 15, 18, 20, 3, 16]. They often rely on popular numerical implementa-
tions as TensorFlow or PyTorch [1, 36]. However, for nonsmooth, nonconvex losses, AD does not
have a stable theory [23, 25, 26, 2, 30, 28, 29, 12], matching the actual practice. We wish to present a
simple mathematical framework addressing this issue. Let us progressively explain our approach.

1.1 What is backpropagation?

Algorithmic differentiation acts on programs not on functions: To convey this fact we carry
out a small experiment in TensorFlow [1] with the function relu : t ÞÑ maxt0, tu, see Appendix A.2
for implementation details. Algorithmic differentiation is displayed in Figure 1, in particular, we
have relu1p0q “ 0. Consider the two functions

relu2 : t ÞÑ relup´tq ` t, relu3 : t ÞÑ
1

2
preluptq ` relu2ptqq.

As mathematical functions on R these are equal to relu. However TensorFlow returns relu12p0q “ 1
and relu13p0q “ 1{2 (Figure 1). Indeed, AD does not act on functions, but on their representations,
i.e., on programs. Different programs implementing the same function may provide different results,
beyond numerical precision; we refer to this as the spurious behaviour of AD for nonsmooth
functions2. Let us explore this phenomenon further. The function zero : t ÞÑ relu2ptq ´ reluptq,
outputs constantly 0 but AD gives zero1p0q “ 1. More generally, one can modify the value of the
derivative of a given function at prescribed arguments (Figure 1). This may generate artificial critical
points; for instance xÑ x´ zero is the identity but its derivative at 0 according to AD is 0.

˚Authors in alphabetical order.
2The validity domain of AD is restricted in theory to smooth functions [23], yet it is common practice to use

it for nonsmooth functions.
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Figure 1: Top: AD applied to relu and two different implementations of the same function. Bottom:
Algorithmic differentiation of a constant function, creation of artificial critical point or arbitrary
derivatives at prescribed arguments for the sine function.

This discussion was limited to univariate functions, but these pathologies grow in size and in
complexity when occurring in higher dimensions. Besides, as the “compositional depth” of functions
increases the phenomenon gets more complex, making the geometry of artificial point difficult to
grasp.

Canonical surjection between programs functions: Numerical programs combine basic mathe-
matical functions within an algorithm and return an output. This can be understood in two ways:

• Computer science: it is a sequence of instructions with numerical inputs-outputs,
• Mathematics: the program is a function3 of its arguments.

It is tempting to identify both, but functions can be represented by different programs. This defines a
surjection F mapping a program to a function (in the class of functions “accessible through coding”).

Algorithmic differentiation: As presented above, AD is an operation on programs, A which takes
as argument a program and returns a program with the same input variables. This operation can
be “pushed” to the space of functions using the canonical surjection F . Remarkably, if we restrict
ourselves to programs P which only smoothly combine smooth functions, then we have the following
fundamental relation, depicted in Figure 2:

FpApPqq “ ∇FpPq. (1)

In other words, algorithmic differentiation of a program which smoothly combines smooth functions,
is equivalent, through the canonical surjection, to derivation.

J (function) P (program)

∇J (function) D ⊂ P

∇: diff

F : surj

F : surj

A: autodiff

J (function) P (program)

∂J (set function) D ⊂ P

∂: sub-diff

F : surj

F : surj

6=

A: autodiff

Figure 2: Left: Algorithmic differentiation applied to programs combining smooth functions in
a smooth way, the diagram commutes. Right: Algorithmic differentiation in nonsmooth settings,
connection with known notion of generalized derivative is much less clear.

3In the usual mathematical sense.
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However practitioners use AD and backpropagation beyond smooth programs with nonsmooth ele-
mentary functions or program branching for instance. Can we find a proper operational interpretation
of this widespread practice?

Algorithmic differentiation cannot be represented through a variational operator At first, it
is tempting to simply use AD to induce a differential operator on functions generalizing classical
differentiation. This operator, say BA, should:

(a) encompass the outputs of algorithmic differentation for all functions

(b) be such that 0 is an element of BApreluq at 0.

Unfortunately such an operator does not exist:

Theorem 1 (Algorithmic differentiation does not induce an operator on functions) There is no
nontrivial operator on functions satisfying paq and pbq.

1.2 Contribution and related work

We address this impossibility result and provide a class of functions together with an operational
nonsmooth differential calculus which is able to cope with spurious behaviours.

Elementary selections and selection derivatives: We introduce a new class of nonsmooth non-
convex functions, encompassing most objective functions met in machine learning, having appealing
stability properties. This allows us to define simple differential objects called selection derivatives.
Selection derivatives turn out to have an operational calculus adapted to the analysis of many learning
methods, as backpropagation or stochastic first order methods. They thus provide an operational
model to capture nonsmooth AD as implemented in current numerical software.

Algorithmic differentiation, algorithms This framework allows to formalize properly the rela-
tionships between, functions, algorithmic differentiation and capture the corresponding notion of
critical points as met in practice. These characterize the set of attractors (limit points) for stochastic
approximation algorithms based on nonsmooth backpropagation [37, 4, 31, 5, 13]. It is important to
stress that these attractors, which models sharply the whole scope of AD-induced stationnarity, are
different from the traditional notions as Clarke criticality [17, 38, 20]. This is described in Theorems 3
and 4.

Avoidance of traps: As sketched above and in the introduction AD produces artificial critical
points, i.e. stationary points which are not Clarke critical. These points have a parasitic nature
which could be detrimental to training purposes, were they met in practice. We show that randomly
initialized mini-batch stochastic gradient method do not lead to artificial critical points (Theorem 4).
This result applies to modern machine learning software libraries based on AD [1, 36], seen as
performing operation over the reals, without any modification. Although AD may have unpredictable
behavior in nonsmooth contexts, both theoretically and numerically, this result justifies theoretically
that the practical impact is somewhat negligible in the context of common machine learning usage.

Related work: Spurious behaviour of AD in nonsmooth context has been investigated in [23, 25,
26, 27, 2, 30, 12]. In particular, [27, 30] considers qualification conditions allowing to construct
AD algorithms which compute proper Clarke subgradients [17, 38, 20]. However qualification is
extremely hard to check and almost impossible to enforce in practice. Let us also mention [2] which
uses the notion of lexicographic derivatives, but, at this day, algorithmic computations are limited to
forward mode for the moment which is of little use in machine learning.

[23, 25, 27, 26, 28, 29] use settings closer to ours. Piecewise smooth functions, selection derivatives
and their variational properties are extensively described in [40]. Our approach differs because we
adopt more stringent definitions and rigidity assumptions, which allows in turn for much stronger
properties. For instance, we fully treat backward algorithmic differentiation which is the most useful
tool in machine learning.
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Altogether, our contribution is an accessible and elementary framework for the conservative fields
recently introduced in [12], without explicitly requiring the introduction of semialgebraic geometry
and o-minimal structures [21, 19].

Stochastic approximation algorithms [37, 4, 31, 5, 13] are widely used in machine learning contexts
[39, 14, 35, 32, 15, 18, 16]. For example [20] describes asymptotics of stochastic subgradient
algorithms in nonsmooth, nonconvex settings. In contrast, we do not assume access to subgradients
and instead explicitly model the behaviour of AD in optimization contexts. Our convergence results
are based on [12], complemented by a new result on “the avoidance of critical traps” in the line of [7]
in the context of long run convergence.

Notations The ambient space is Euclidean Rp. For each k, ek is the k-th vector of the canonical
basis. We use D : Rm Ñ Rq for set valued functions, i.e functions from Rm to the subsets of Rq.
The convex hull of A Ă Rp is denoted by convpAq. All proofs are postponed to the Appendix.

2 Basic piecewise differentiable functions and selection gradient

We introduce a simple but vast class of functions that model rigorously the machine learning models
and losses for applications such as deep learning.

Definition 1 (Elementary (log-exp) functions) Elementary (log-exp) functions are functions on Rp
described by a finite compositional expression involving basic operations, `,´,ˆ, { as well as affine
mappings, exponential and logarithms, inside their domain of definition. We denote by E the set of
elementary functions in any dimension p.

Examples include polynomials, logistic loss, boosting loss, Gaussian likelihood. Observe that the
corresponding functions are C8 smooth on their open domains. Note also that if log and exp are not
present we obtain the field of rational functions. See Remark 1 in Appendix A.3.

Definition 2 (Elementary index) s : Rp ÞÑ t1, . . . ,mu is an elementary (log-exp) index if the set
tx P Rp, spxq “ iu is the solution set of a finite number of inequalities and equalities involving
elementary functions on Rp. The set of such functions is denoted by I (for any input dimensions p).

Examples: The Heaviside function, the index of the largest or k-th largest element in a vector, the
sign pattern of a vector in Rp which is indexed by integers from 1 to 2p.

Definition 3 (Elementary selection) Let f : Rp ÞÑ R be continuous. We say that f has an elemen-
tary (log-exp) selection ps, f1, . . . , fmq if s : Rp ÞÑ p1, . . . ,mq is an elementary index in I and for
i “ 1 . . . ,m, fi : Rp ÞÑ R are elementary functions in E , such that for all x P Rp,

fpxq “ fspxqpxq. (2)

The m ` 1-uplet ps, f1, . . . , fmq is a representation of f , and f admits an elementary (log-exp)
selection. The class of such functions is denoted by Slog exp or simply here S. This extends to
functions from Rp to Rm by applying a coordinatewise definition with a common elementary index.

Observe that the representation is never unique, both in s and in the sequence f1, . . . , fm. The ReLU,
hinge loss, maximal entry, k-th largest entry functions are elementary selections. Note also that
continuity is part of the definition.

Proposition 1 (Stability of S by ˝,`,ˆ) The class S of elementary selections is stable by compo-
sition, sum and product.

The class S is close to the one of piecewise Ck functions, see e.g [40], but it is also much more
disciplined since indices and functions are required to satisfy strong “log-exp” rigidity assumptions.

2.1 Selection derivative

Functions in S can be associated with a flexible notion of generalized derivative based on the selection
structure of the underlying function.
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Definition 4 (Selection gradient) (i) Let f : Rp ÞÑ R, in S with selection ps, f1, . . . , fmq. We set
the selection derivative of f with respect to s to be

p∇sf : x ÞÑ ∇fspxqpxq. (3)

This extends to multivariate outputs by applying the definition coordinatewise, which leads to a
notion of a selection Jacobian denoted by pJs.
(ii) Given a function f P S, a selection derivative is a derivative of the form (3) for a given
representation. In that case a selection derivative of f is merely denoted by p∇f .

Example: Set for all x P R, f1pxq “ 0, f2pxq “ x and spxq “ 1 for x ď 0 and spxq “ 2 for x ą 0.
This this defines the relu function and its selection derivative at 0 is 0. See more in Appendix A.2.

Remark: (a) p∇f is different from any known notion of subgradient. Set for all x P R, f1pxq “ 0,
f2pxq “ x and spxq “ 1 for x ‰ 0 and sp0q “ 2. This defines a elementary selection for the null
function however, p∇sfp0q “ 1. This is the zero function of the introduction.
(b) This formalizes what one would obtained by differentiating a code with all decision branches
frozen and hence represents the numerical output of AD (see 4). Note that one only needs one branch
and do not need to explore all possible outcomes, avoiding combinatorial explosion.

The properties of selection derivatives might seem too liberal at first sight and too disconnected from
the original function, but this is not the case as shown below.

Proposition 2 (Integration along segments) Let f : Rp ÞÑ R be in S, with elementary selection
ps, f1, . . . , fmq. Then f is locally Lipschitz and for all y, x in Rp.:

fpyq ´ fpxq “

ż 1

0

A

y ´ x, p∇sfpx` tpy ´ xqq
E

dt

Proposition 3 (Gradient almost everywhere) Let f : Rp ÞÑ R be in S, with elementary selection
ps, f1, . . . , fmq. There exists sets U1, . . . , UN with nonempty interior such that

ŤN
i“1 clpUiq “ Rp

and for each i “ 1, and for all x in the interior of Ui, p∇sfpxq “ ∇fpxq. Furthermore, the Ui are
solution sets of equations and inequalities involving functions in E .

Remark: Although less transparent, Proposition 2 is not a consequence of Proposition 3. Both results
crucially rely on the rigidity of elementary functions in E (Definition 3), not only on their piecewise
smoothness. This a central novelty of our approach.

2.2 A calculus for selection derivatives

One has an unusual differential calculus: although it does not involve the linearity of some
(sub)differential operator, the selection derivative of a sum gives a sum of selection derivatives
provided that the selection is refined.

Proposition 4 (Chain rule) Let F : Rp1 ÞÑ Rp2 such that each of its coordinate fi, i “ 1 . . . p2, is
in S and g : Rp2 ÞÑ R, g P S. Consider a selection Jacobian for F , pJF : Rp1 ÞÑ Rp2ˆp1

x ÞÑ

¨

˚

˝

p∇f1pxq
T

...
p∇fqpxqT

˛

‹

‚

(4)

Then g ˝ F P S and the function x ÞÑ pJF pxq
T
p∇gpF pxqq is a selection derivative for g ˝ F .

Proposition 4 extends readily to the case when the outer function g is multivariate. For example, we
have a sum rule p∇pf ` gq “ p∇f ` p∇g for full-domain functions f, g in S . Indeed, if F1 and F2 are
elementary selections then F1 ˝ F2 P S and

pJF1˝F2 “ p
pJF1 ˝ F2q ˆ pJF2 . (5)
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3 Programs and elementary selections

Numerical programs encode numerical functions by combining elementary functions using a prede-
cessor relation which models program execution. In what follows, m can be seen as an estimate of
the memory footprint of a program4, while p and q the number of inputs and outputs respectively.

Given positive integers m ě p` q, a predecessor relation is a set valued map pr : t1, . . . ,mu Ñ

t1, . . . ,mu such that

• For i P t1, . . . ,mu and j P prpiq, j ă i. ‚ For i P tp` 1, . . . ,mu, prpiq is nonempty.

A predecessor relation induces a partial order on the set
of integers from 1 to m and hence can be represented
by a directed acyclic graph [34, Theorem 9.4.9]. Given
pp, q,mq and a predecessor relation pr, a elementary
function sequence G “ pgiqmi“p`1 is a set of functions
such that gi : R|prpiq| ÞÑ R, and gi P S, for all i “
p ` 1, . . . ,m. A program P is then given by the data
P “ pp, q,m, pr,Gq , while its evaluation is described
in Algorithm 1. We denote by P the set of programs,
andPp,q when input-output dimensions have to be made
explicit.
By definition a program encodes a function, but the
representation is not unique. We express this fact below
through the canonical surjection F of the introduction.

Algorithm 1: Program evaluation
Program data: p, q ě 1,
m ě p` q, pr a predecessor
relation, G “ pgiqmi“p`1 an adapted
function sequence.

Input: x “ px1, . . . xpq
1: for k “ p` 1, p` 2, . . .m do
2: xk “ gkpxprpkqq where

xprpkq “ pxiqiPprpkq.
3: end for

Return: y :“ pxjq
m
j“m´q`1.

The following proposition illustrates the fact that practitioners implicitly implement selection
functions when writing programs.

Proposition 5 (Programs represents elementary selections) Through its input-output correspon-
dence each program P of the form (3) induces a function which is an elementary selection. In other
words FpP q P S.

4 Algorithmic differentiation and a variational model

Algorithmic differentiation is based on the idea of propagating infinitesimal variations in a program
P through the chain rule, either forward or backward.

Algorithm 2: Algorithmic differentiation computes selection gradients
Program data: p ě 1, m ě p` 1, pr a predecessor relation, G “ pgiqmi“p`1 an adapted

function sequence.
Input: variables px1, . . . xmq computed by Algorithm 1, di “ pdirjsq

|prpiq|
j“1 “ p∇gipxprpiqq,

i “ p` 1 . . .m

1: Forward mode:
2: Initialize: Bxk

Bx “ ek,
k “ 1, . . . , p.

3: for k “ p` 1, . . .m do
4:

Bxk
Bx

“
ÿ

jPprpkq

Bxj
Bx

dkrjs

where x “ px1, . . . , xpq.
5: end for

Return: Bxm

Bx .

1: Backward mode:
2: Initialize: v “ em
3: for t “ m, . . . p` 1 do
4: for j P prptq do
5: Update coordinate j of v:

vrjs :“ vrjs ` vrtsdtrjs

6: end for
7: end for

Return: pvr1s, vr2s, . . . , vrpsq.

4We consider programs which do not overwrite values in memory
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Consider Algorithm 1, and assume for simplicity that q “ 1. The program can be seen as the
implementation of m´ p successive transformations on Rm, of the form

Gk : Rm ÞÑ Rm

x ÞÑ x` ekpgkpxprpkqq ´ xkq,

for k “ p` 1, . . . ,m which belong to S. Algorithm 2 combines gradients dynamically along two
modes: forward or backward. Let us describes these two forms.

Fix x P Rm. After applying Algorithm 1, for each k, let dk P Rm be the selection gradient
p∇gkpxprpkqq, appending 0 to non dependant coordinates. A selection Jacobian of Gk (at x) is given
by

pJGk
“ I ´ eke

T
k ` ekd

T
k

Denote by Jp P Rmˆp, the matrix whose entries are 0, except for diagonal entries which are 1. In
Algorithm 2, the forward mode computes

eTm
pJGm . . . pJGp`1Jp “ eTm

`

I ´ eme
T
m ` emd

T
m

˘

. . .
`

I ´ ep`1e
T
p`1 ` ep`1d

T
p`1

˘

Jp

which is a selection Jacobian thanks to the chain rule in (5). On the other hand the backward mode
computes

JTp
`

I ` dp`1e
T
p`1

˘

. . .
`

I ` dme
T
m

˘

em.

This quantity turns out to be the same as the one computed by the forward mode thanks to:

Lemma 1 Let p,m P N, 0 ă p ă m. Assume that for i “ p` 1, . . . ,m we have di P Rm. Then we
have
Pp

`

I ´ ep`1e
T
p`1 ` dp`1e

T
p`1

˘

. . .
`

I ´ eme
T
m ` dme

T
m

˘

“ Pp
`

I ` dp`1e
T
p`1

˘

. . .
`

I ` dme
T
m

˘

(6)

where I P Rmˆm is the identity matrix and Pp P Rmˆm denotes the projection on the first p
coordinates.

Denote by A : Pp,1 Ñ Pp,p the algorithmic-differentiation operator. This establishes the following
fundamental fact which is at the root of this work. This result asserts that practitioners implicitly
implement selection derivatives when writing numerical programs and calling forward or backward
AD on these programs.

Theorem 2 (Algorithmic differentiation outputs a selection gradient) Algorithmic differentia-
tion of a given program, i.e., ApP q, outputs a selection derivative of the underlying numerical
function. In other words there exists a representation of the numerical function FpP q with elementary
index s such that:

FpApP qq “ p∇sFpP q.

5 Algorithmic differentiation at work

5.1 Selection derivatives, conservative fields and Clarke subgradient

The asymptotic study of first-order optimization methods implies limiting processes and necessitates
thus the introduction of graph closed operators. Given a representation for f , we may construct such
a convex-valued mapping pointwise as follows5.

Definition 5 (Representation minimal operator) Let f P S with elementary selection
ps, f1, . . . , fmq. For any x P Rp, set Ipxq “ ti P t1, . . . ,mu , fpxq “ fipxqu. The index closure of
p∇sf is given by the set valued map

Ds
f : Rp Ñ Rp

x Ñ conv pt∇fipxq, i P Ipxquq .
where the double arrows express that the map has values in subsets of Rp, much like subgradients,
and conv denotes the convex hull.

5Minimality relates to the representation of the function, not the function itself. This is the minimal
convex-valued operator, constructed pointwise and guaranteed to be graph-closed.
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The role of Ds
f is to capture all possible outputs of AD including all possible program branches. Of

course, due to combinatorial explosion, this quantity is intractable in practice. Its introduction here
is only instrumental, we do not use it in algorithms, we just need to access one of its element, for
example using a selection derivatives, obtained from AD. A point x satisfying 0 P Ds

f pxq is called a
selection critical point. We will often drop the index s and write Df “ Ds

f .

The two following results highlight crucial properties of Df in terms of optimization, they again rely
on the rigidity constraint of elementary functions.

Theorem 3 Let f P S with elementary selection ps, f1, . . . , fmq and Df be as in Definition 5. Then
Df is conservative for f , that is for all absolutely continuous curves γ : r0, 1s ÞÑ Rp, for almost all
t P r0, 1s, f ˝ γ is differentiable and

d

dt
fpγptqq “ xv, 9γptqy , @v P Df pγptqq.

The previous result generalizes Proposition 2 by allowing to integrate arbitrary selections along
absolutely continuous curves. This connects our work to the general setting of [12], note that Df has
a closed graph thanks to Proposition 6 in Appendix A.3.

In [40], the author considers the essential index set, for each x P Rp,

SEpxq “ ti P t1, . . . ,mu , x P clpintpty, fpyq “ fipyquqqu Ă Spxq.

Considering Definition 5 with SEpxq instead of Ipxq leads to the Clarke subgradient, which can also
be defined as

Bcfpxq “ convtd P Rp : Dxk P ∆f , xk Ñ x,∇fpxkq Ñ du

where ∆f is the dense set of differentiability points of f . While Ipxq can be computed pointwise
(check finitely many equalities), it might be very hard to check membership in SEpxq without
restrictive qualification conditions on programs [30].

Illustration with ReLU and sorting: (a) Set for all x P R, f1pxq “ 0, f2pxq “ x, spxq “ 1 for
x ď 0 and spxq “ 2 for x ą 0. This is relu. In this case Df “ Brelu, the convex subgradient.
(b) Let F : Rp ÞÑ Rp to be the sorting function which associates to x a vector Px where P is
any permutation such that Px belongs to the set of vectors which values are sorted in descending
order coordinatewise. F obviously has an elementary selection and the construction which we have
proposed leads to

DF : x ÞÑ conv tP P ∆, Px “ F pxqu ,

where ∆ denotes the set of permutation matrices of size pˆ p. Then D is a conservative mapping for
F and it actually corresponds to the Clarke Jacobian.

5.2 Convergence of gradient type algorithm and criticality of limit points

Optimization processes in learning are supposed to provide at least a critical point x of the loss, i.e. a
point satisfying 0 P Bcfpxq. When using AD one enlarges the definition of criticality into 0 P Df pxq
and artificial critical points appear, they satisfy 0 R Bcfpxq and 0 P Df pxq. Artificial critical points
could possibly trap the optimization process in strongly non-optimal situations, we thus have to
determine if they have an impact on learning phases.

We consider the problem

min
xPRp

Jpxq “
1

n

n
ÿ

i“1

fipxq (7)

where fi : Rp ÞÑ R, fi P S, i “ 1, . . . , n. We consider the following algorithm, given x0 P Rp, a
sequence of positive step sizes pγkqkPN and a sequence of iid indices pIkqkPN taken uniformly in the
nonempty subsets of t0, . . . , nu,

xk`1 “ xk ´ γk p∇fIkpxkq where fI “
1

|I|

ÿ

iPI

fi, I Ă t1, . . . , nu. (8)
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Note that as discussed in Section 4 selection derivatives can be computed by AD if fi are given by the
data of numerical programs as in (3), and could be far from usual notions of subgradients. Hence this
algorithm models explicitly the training of a nonsmooth deep network using existing backpropagation
implementations. Note that J P S and that 1{n

řn
i“1

p∇fi is a selection gradient for J as stated in
Proposition 4, denote by p∇J this quantity and DJ the corresponding set valued field (Definition 5).
The following result illustrates that selection critical points are the only attractors for the recursion
and that generically such attractors are actually Clarke critical. The first result stands on the theory
developed in [5]. The second parallels developments in [7] in the context of long run convergence.
The spurious behaviour illustrated in Figure 1 does not affect asymptotics, for typical initialization.

Theorem 4 (Convergence and insignificance of artefacts) Let for all k, γk “ cαk where c P
p0, 1s and αk “ op1{ log kq and K Ă Rp be open. Assume that for all c P p0, 1s and all x0 P K the
sequence in (8) is bounded almost surely.

• For all x0 P K, almost surely, Jpxkq converges as k tends to infinity and all accumulation
points, x̄, of pxkqkPN are selection critical points: 0 P DJpx̄q.

• For almost all c P p0, 1s, almost all x0 P K, and almost surely, any accumulation point, x̄,
of pxkqkPN is Clarke critical: 0 P BcJpx̄q.

6 Conclusion

The current work departs from existing approaches to nonsmooth algorithmic differentiation in a
fundamental way. We propose to study the backward mode of AD, as implemented in machine
learning, without any modification. Our theoretical results model thus AD “as is”, and our focus
is precisely on its unpredictable behavior in a nonsmooth context, addressing an issue which is
ubiquitous in machine learning. Our main contribution was to prove that, in a stochastic optimization
context, this spurious behavior is essentially harmless from a theoretical point of view, providing
justifications for the use of AD outside of its original domain of validity in machine learning.

We achieve our goal by modeling sharply common machine learning functions and their differentiation
using selection derivatives, a known concept, which models the way AD differentiates nonsmooth
programs. We restrict it to certain classes of elementary functions, opening the possibility to use
powerful geometric techniques.

Further questions include convergence rates and complexity issues, hardly tackled at this day, let us
mention the attempt of [43]. Our theory is limited to continuous functions and an interesting venue
is to extend it to discontinuous functions, in view of treating ranking operations [10] ubiquitous in
recommendation systems, or more generally differentiating through an argmax [6].

Broader impact

One of the goals of the paper is to raise awareness about an important issue of in the training of ML
methods: the spuriousness of AD. To address adequately this issue, we think it is necessary to include
algorithmic differentiation explicitly in the study of optimization algorithms, a point of view which is
largely ignored by today’s machine learning community.
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This is the appendix for “A mathematical model for automatic differentiation in machine learning”.

A A more comprehensive discussion and auxiliary results

A.1 Related work and contribution

The use of backward mode of algorithmic differentiation (AD) for neural network training expanded in
the 80’s, the most cited reference being [39]. However the theory applies to much more optimization
problems, see for example [24]. Indeed, numerical libraries implementing the backward mode of AD
were already available in the 90’s for FORTRAN code [8, 9] or C/C++ code [22], 30 years before the
emergence of python libraries. These early implementation could differentiate virtually any code,
but their domain of validity, i.e., the setting for which one could predict what the output would be,
was restricted to differentiable functions evaluated on their (open) domain of differentiability.

This was well known to the AD community, see for example [23], and exploring further the domain
of validity of AD, beyond mere differentiability, was already a vivid problem.

Let us mention [23] who used notions such as finite selection, “isolated criticalities”, stable domain
or regular arcs, and argued that “functions given by evaluation procedures are almost everywhere real
analytic or stably undefined” where “undefined” meant that a nonsmooth elementary function is used
in the evaluation process. For piecewise smooth functions which nonsmoothness can be described
using the absolute value function (abs-normal form), [25] developped a piecewis linearisation
formalism and local approximation related to AD, [26] proposed an AD based bundle type method.
These developments are based on the notion of piecewise smooth functions [40] which we use in
this work. More recently, [28] applied these techniques to single layer neural network training and
[29] proposed to avoid the usage of subgradient “oracles” in nonsmooth analysis as they are not
available in practice. In a similar vein, let us mention [2] study lexicographic derivatives, a notion
of directional derivatives which satisfy a chain rule making them compatible by forward mode AD,
and [43] who use directional derivatives in the context of local sampling stochastic approximation
algorithms for machine learning.

Constraint qualification is known in nonsmooth analysis to ensure favorable behavior of chain
rules of differential calculus for nonsmooth objects (see [38]). These already appeared in the
context of piecewise smooth functions of Scholtes with the notion of “essential selections”. Such an
approach was used in [30] to propose an AD algorithm for subgradient computation under constrant
qualification. Similarly [27] study first and second order optimality, in relation to AD using constraint
qualification.

The current work departs from all these approaches in a fundamental way. We propose to study back-
ward mode of AD, as implemented for nonsmooth functions by standard software (e.g. TensorFlow,
PyTorch), without any modification, addition of operations or hypotheses. Our theoretical results
model AD as implemented in current machine learning libraries. Contrary to previous works, our
focus is precisely on the unpredictable behavior of AD in nonsmooth context. Our main contribution
is to show that in a stochastic optimization context, this spurious behavior is essentially harmless
from a theoretical point of view, providing justifications for the use of AD outside of its original
domain of validity in machine learning.

At the time this paper was accepted, we learnt about a paper proposing an analysis close to ours
[33]. The authors show that AD applied to programs involving piecewise analytic continuous
functions, under analytic partitions, compute gradients almost everywhere. This is the counterpart of
Proposition 3, replacing log-exp elementary function in Definitions 1 and 2, by analytic functions.

A.2 Implementation of relu

The implementation of the relu function used in Figure 1 is given by the function tf.nn.relu in
Tensorflow software library [1]. This implementation corresponds to the selection function described
in Section 2 and the same result may be obtained by an explicit implementation of this branching
selection as illustrated in the following figure
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One can imagine an equivalent implementation of relu with a slightly different branching involving
a strict inequality, that would correspond to an equivalent implementation of the same function, but
the computed derivative at 0 is different due to the implementation

A.3 Auxiliary results and remarks

Remark 1 (Elementary piecewise differentiable functions)
(a) The building blocks in the construction of S in Definition 3 could be modified and adapted to
other needs. Besides, the results we present in this article would remain true if we added real analytic
functions restricted to compact sets.
(b) Note also that in Definition 3, functions are actually real analytic on their (open) domain of
definition. Yet their extension might not be analytic, as for instance the function f : x ‰ 0 Ñ
expp´1{x2q extended by fp0q “ 0.
(c) The construction of elementary piecewise functions in Definition 3, does not coincide in general
with some natural minimal o-minimal, but are contained in a larger such structure. For instance, when
the basic bricks are polynomial functions, we obtain the field of rational functions which differs from
the set of semi-algebraic functions.

Proposition 6 (Df has a closed graph) As k Ñ 8, assume that xk Ñ x̄ P Rp and vk P Df pxkq,
vk Ñ v̄. Then v̄ P Dpx̄q.

B Proofs

Proof of Theorem 1: Recall the operator is denoted by BA. Fix a function f , by point (a), the
operator BAf should contain

"

Rp Ñ Rp

xÑ tApP qpxq : FpP q “ f, P P Pu

Let us show that the graph of the above is Rp ˆ Rp. Assume p “ 1 for simplicity. For real numbers
r, s, consider the functions fr,s “ f ` r zerop¨ ´ sq which coincide with f but whose form induces
programs Pr,s of f . These satisfy FpPr,sq “ f and ApPr,sqpsq Q Apfqpsq ` r. Since r is arbitrary,
BAfpsq “ Rp and since s is arbitrary, we actually have

graph BAf “ Rp ˆ Rp.

Since f is arbitrary, we have shown that BA is trivial. l

Proof of Proposition 2: The proposition is a consequence of Theorem 3 and (11) but it admits a
more elementary proof which we detail here. Fix x, y P Rp. Let us admit the following claim –whose
independent proof is given in Section C.

Claim 1 There exists a finite set of numbers 0 “ a0 ă a1 ă . . . ă aN “ 1, such that for all
i P 0, . . . N ´ 1, the function t ÞÑ spx` tpy ´ xqq is constant.
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Fix i P 0 . . . , N ´ 1, and j P 1 . . .m such that f “ fj on px` aipy ´ xq, x` ai`1py ´ xqq. Since
fj P Ep, it is C1 and we have by the fundamental theorem of integral calculus

fpx` ai`1py ´ xqq ´ fpx` aipy ´ xqq “

ż ai`1

ai

x∇fjpx` tpy ´ xqq, y ´ xy dt

“

ż ai`1

ai

A

p∇fpx` tpy ´ xqq, y ´ x
E

dt.

The conclusion follows because

fpyq ´ fpxq “
N´1
ÿ

i“0

fpx` ai`1py ´ xqq ´ fpx` aipy ´ xqq

“

N´1
ÿ

i“0

ż ai`1

ai

A

p∇fpx` tpy ´ xqq, y ´ x
E

dt

“

ż 1

0

A

p∇fpx` tpy ´ xqq, y ´ x
E

dt.

l

Proof of Proposition 3: Constructs the sets Ui by considering sets Vj “ tx P Rp, spxq “ ju,
j “ 1 . . .m, the proof of the following claim is postponed to Section C.

Claim 2 The boundary of each Vj has zero measure and cl
`

Ymi“j intpVjq
˘

“ Rp.

Hence, we may define U1, . . . , UN by keeping only those sets with nonempty interior and take their
closure. On each set Ui, f is identical to fk for some k and the result follows. l

Lemma 2 Let t P I be an elementary index on Rp2 and F : Rp1 ÞÑ Rp2 with each coordinate in E ,
then t ˝ F is an elementary index on Rp1 .

Proof : Fix an arbitrary integer i in the image of t, by Definition 2, there exists elementary functions
h1, . . . , hJ , J P N on Rp2 such that tpyq “ i if and only if y P Ki :“ tz P Rp2 , hjpzq ˛j 0, j “
1, . . . Ju where ˛j is an equality or inequality sign depending on j. Then tpF pxqq “ i if and only if
F pxq P Ki which is equivalent to say that x P K̃i :“ tx P Rp1 , hjpF pxqq ˛j 0, j “ 1, . . . Ju. By
Definition 1, hj ˝ F is an elementary function for j “ 1, . . . , J and i was an arbitrary integer, this
shows that we have an elementary index. l

Proof of Proposition 1: Let F : Rp1 ÞÑ Rp2 such that each of its coordinate fi, i “ 1 . . . p2, is in
S and g : Rp2 ÞÑ R, g P S. We establish that g ˝ F is an elementary selection, the other cases are
similar. We may consider all possible intersections of constant index domains across all coordinates
of F in t1, . . . , p2u. We obtain ps, F1, . . . , Fmq, an elementary selection for F (each Fi : Rp1 ÞÑ Rp2
has coordinates in E) . Consider g P S with elementary selection pt, g1, . . . , glq. The composition
g ˝ F may be written as

gpF pxqq “ gtpF pxqqpF pxqq “ gtpFspxqpxqqpFspxqpxqq.

For each i “ 1 . . . ,m and j “ 1, . . . , l, consider the set

Uij “ tx P Rp, spxq “ i, tpFipxqq “ ju .

Fix pi, jq in t1, . . . ,mu ˆ t1, . . . , lu, by Lemma 2, t ˝ Fi is an elementary index on Rp1 . Hence Uij
is the solution set of finitely many equalities and inequalities involving functions in E . We associate
to the bi-index pi, jq the corresponding set Uij and the function gjpFipxqq P E . Note that we assumed
that the composition is well defined. Identifying each pair pi, jq with a number in t1, . . . , nmu, we
obtain an elementary selection for g ˝ F and hence g ˝ F P S. l

Proof of Proposition 4: The derivation formula follows from the proof argument of Proposition 1,
for each pair pi, jq, the function gj ˝ Fi is the composition of two C1 functions and its gradient is
given by JFi

ˆ∇gj ˝ Fi on Uij . By construction of Uij and definition of the selection derivative,
this corresponds to (5) on Uij and the result follows. l
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Proof of Lemma 1: We actually prove a slightly stronger result, namely for each i P tp`1, . . . ,m´
1u

Pi
`

I ´ ei`1e
T
i`1 ` di`1e

T
i`1

˘

. . .
`

I ´ eme
T
m ` dme

T
m

˘

“ Pi
`

I ` di`1e
T
i`1

˘

. . .
`

I ` dme
T
m

˘

(9)

We argue by exhaustion from i “ m ´ 1 downward to i “ p, which is the result of interest. If
i “ m´ 1, we indeed have

Pm´1

`

I ´ eme
T
m ` dme

T
m

˘

“ Pm´1

`

I ` dme
T
m

˘

since Pm´1eme
T
m “ 0. Now assume that (9) holds true for an index i within tp ` 1, . . . ,m ´ 1u,

then we have

Pi´1

`

I ´ eie
T
i ` die

T
i

˘

. . .
`

I ´ eme
T
m ` dme

T
m

˘

“ Pi´1

`

I ´ eie
T
i ` die

T
i

˘ `

I ´ ei`1e
T
i`1 ` di`1e

T
i`1

˘

. . .
`

I ´ eme
T
m ` dme

T
m

˘

“ Pi´1

`

I ´ eie
T
i ` die

T
i

˘

Pi
`

I ´ ei`1e
T
i`1 ` di`1e

T
i`1

˘

. . .
`

I ´ eme
T
m ` dme

T
m

˘

“ Pi´1

`

I ` die
T
i

˘

Pi
`

I ` di`1e
T
i`1

˘

. . .
`

I ` dme
T
m

˘

“ Pi´1

`

I ` die
T
i

˘ `

I ` di`1e
T
i`1

˘

. . .
`

I ` dme
T
m

˘

,

where step 1 is expanding the product, step 2 is because Pi´1Pi “ Pi´1 and eTi Pi “ eTi , step 3
combines the fact that Pi´1ei “ 0 and (9) which we assumed to be true, the last step uses again the
fact that Pi´1Pi “ Pi´1 and eTi Pi “ eTi . Hence the result holds by exhaustion. l

Proof of Proposition 6: Consider the sequence sk “ Spxkq, by taking a subsequence we may as-
sume that sk is constant, say equal to t1, . . . , ru. Hence for all k, vk P conv pt∇fipxkq, i “ 1, . . . ruq
and fpxkq “ fipxkq, i “ 1, . . . , r. Passing to the limit, we have fpx̄q “ fipx̄q, i “ 1, . . . , r and
hence t1, . . . , ru P Spxq. Furthermore, v̄ P conv pt∇fipx̄q, i “ 1, . . . ruq Ă Df px̄q. l

C o-minimal structures, definability and conservative fields

C.1 pR, expq-definability

We recall here the results of geometry that we use in the present work. Some references on this topic
are [19, 21].

An o-minimal structure on pR,`, ¨q is a collection of sets O “ pOpqpPN where each Op is itself a
family of subsets of Rp, such that for each p P N:

(i) Op is stable by complementation, finite union, finite intersection and contains Rp.
(ii) if A belongs to Op, then both Aˆ R and RˆA belong to Op`1;

(iii) if π : Rp`1 Ñ Rp is the canonical projection onto Rp then, for any A P Op`1, the set πpAq
belongs to Op;

(iv) Op contains the family of real algebraic subsets of Rp, that is, every set of the form

tx P Rp | gpxq “ 0u

where g : Rp Ñ R is a polynomial function;
(v) the elements of O1 are exactly the finite unions of intervals.

A subset of Rp which belongs to an o-minimal structure O is said to be definable in O. A function is
definable in O whenever its graph is definable in O). A set valued mapping (or a function) is said to
be definable in O whenever its graph is definable in O. The terminology tame refers to definability in
an o-minimal structure without specifying which structure.

The simplest o-minimal structure is given by the class of real semialgebraic objects. Recall that a set
A Ă Rp is called semialgebraic if it is a finite union of sets of the form

k
č

i“1

tx P Rp | gipxq ă 0, hipxq “ 0u
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where the functions gi, hi : Rp Ñ R are real polynomial functions and k ě 1. The key tool to show
that these sets form an o-minimal structure is Tarski-Seidenberg principle which ensures that (iii)
holds true.

According to [42], there is an o-minimal structure which contains all semialgebraic sets and the
graph of the exponential function, we fix this o-minimal structure and call it O. As a consequence,
all functions which can be described by a finite compositional expression involving polynomials,
quotients, exponential and logarithms are definable inO. In particular any function f P S is definable
in O, which opens the use of powerful geometric tools [19, 21] for functions in S . From now on, we
call an object definable if it is definable in O.

As detailed in [19] the following holds true

Proposition 7 (Quantifier elimination) Any first order formula (quantification on variables only)
involving definable functions and definable sets describes a definable set.

This allows to prove Claim 1

Proof of Claim 1: The function t ÞÑ spx` tpy´ xqq is definable and has values in t1, . . . ,mu. For
each j P t1, . . . ,mu, the set Sj “ tt P r0, 1s, spx` tpy ´ xqq “ ju is definable, and by (v), it is a
finite union of intervals. For each j consider only the endpoints of those intervals with nonempty
interior, this provides the desired partition. l

C.2 Properties of definable sets

The tangent space at a point x of a manifold M is denoted by TxM . Given a submanifold6 M of
a finite dimensional Riemannian manifold, it is endowed by the Riemanninan structure inherited
from the ambient space. Given f : Rp Ñ R and M Ă Rp a differentiable submanifold on which f is
differentiable, we denote by gradMf its Riemannian gradient or even, when no confusion is possible,
grad f .

A Cr stratification of a (sub)manifold M (of Rp) is a partition S “ pM1, . . . ,Mmq of M into Cr
manifolds having the property that clMi XMj ‰ H implies that Mj is entirely contained in the
boundary of Mi whenever i ‰ j. Assume that a function f : M Ñ R is given and that M is stratified
into manifolds on which f is differentiable. For x in M , we denote by Mx the strata containing x
and we simply write grad fpxq for the gradient of f with respect to Mx.

Stratifications can have many properties, we refer to [21] and references therein for an account on this
question and in particular for more on the idea of a Whitney stratification that we will use repeatedly.
We pertain here to one basic definition: a Cr-stratification S “ pMiqiPI of a manifold M has the
Whitney-(a) property, if for each x P clMi XMj (with i ‰ j) and for each sequence pxkqkPN ĂMi

we have:
lim
kÑ8

xk “ x

lim
kÑ8

Txk
Mi “ T

,

/

.

/

-

ùñ TxMj Ă T

where the second limit is to be understood in the Grassmanian, i.e., “directional”, sense. In the
sequel we shall use the term Whitney stratification to refer to a C1-stratification with the Whitney-(a)
property. The following can be found for example in [21].

Theorem 5 (Whitney stratification) Let A1, . . . , Ak be definable subsets of Rp, then there exists a
definable Whitney stratification pMiqiPI compatible with A1, . . . , Ak, i.e. such that for each i P I ,
there is t P t1, . . . ku, such that Mi Ă At.

This allows for example to prove Claim 2

Proof of Claim 2: The sets V1, . . . , Vm form a definable partition of Rp. Consider a Whitney
stratification of Rp, pMiqiPI compatible with the closure of V1, . . . , Vm. The boundary of each Vi is a
finite union of strata of dimension strictly smaller than p and hence has measure zero. The remaining
strata (open of maximal dimension) have to be dense in Rp since we started with a partition. l

6We only consider embedded submanifolds
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C.3 Variational stratification and projection formulas

Definition 6 (Variational stratification) Let f : Rp Ñ R, be locally Lipschitz continuous, let
D : Rp Ñ Rp be a set valued map and let r ě 1. We say that the couple pf,Dq has a Cr variational
stratification if there exists a Cr Whitney stratification S “ pMiqiPI of Rp, such that f is Cr on each
stratum and for all x P Rp,

ProjTMx pxq
Dpxq “ tgrad fpxqu , (10)

where grad fpxq is the gradient of f restricted to the active strata Mx containing x.

The equations (10) are called projection formulas and are motivated by Corollary 9 in [11] which
states that Clarke subgradients of definable functions have projection formulas.

Let us recall the definition of conservative set-valued mappings from [12] and one of its characteriza-
tion.

Definition 7 (Conservative set-valued mappings) Let f be a Lipschitz continuous function. A set
valued vector field D is called conservative if for any absolutely continuous path γ : r0, 1s ÞÑ R, we
have

fpγp1qq ´ fpγp0qq “

ż 1

0

min
vPDpγptqq

xv, 9γptqy dt “

ż 1

0

max
vPDpγptqq

xv, 9γptqy dt. (11)

Equivalently D is conservative for f , if for all absolutely continuous curves γ : r0, 1s ÞÑ Rp, for
almost all t P r0, 1s, f ˝ γ is differentiable and

d

dt
fpγptqq “ xv, 9γptqy , @v P Dpγptqq.

The following combines other results from [12], where one implication is essentially due to [20]
based on [11].

Theorem 6 (Characterization of conservativity) Let D : Rp Ñ Rp be a definable, nonempty com-
pact valued, graph closed set valued field and f : Rp ÞÑ R be a definable locally Lipschitz function.
Then the following are equivalent

• D is conservative for f .

• For any r ě 1, pf,Dq admit a Cr variational stratification.

This result allows to prove the following

Proof of Theorem 3: We prove that there is a C1 projection formula (see Theorem 6). For each
I Ă t1, . . . ,mu, set VI “ tx P Rp, Spxq “ Iu. On each set VI , fpxq “ fipxq for all i P I . These
sets are definable, hence, there is a definable Whitney stratification of Rp which is compatible with
them (Theorem 5). For any C1 manifold M in the stratification there is an index set I Ă t1, . . . ,mu
such that for all i P I and all x P M , fpxq “ fipxq and Spxq “ I . Since each fi, i P I is C1 and
they agree on M , they represent the same function when restricted to M . Hence they have the same
differential on M and since they are all globally C1 this agrees with the projection of their gradient
on the tangent space of M . Hence the projection of Df pxq to the tangent space to M at x is single
valued and corresponds to the derivative of f restricted to M . This is sufficient to conclude as this is
precisely the variational stratification required by Theorem 6. l

D Convergence to selection critical points

Proof of Theorem 4, first part: We use here the results on conservative fields developed in [12].
To prove the theorem it suffices to establish that:

• DJ is a conservative field for J
• the number of DJ critical values are finite.
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The first point is Theorem 6 while the second one is the consequence of the latter and the definability
of the couple f,Df , see Proposition 8 (ii). To conclude it suffices to apply the convergence results in
[12, Theorem 9]. l

Proof of Theorem 4, second part: This result is a consequence of the more general Theorem 7
established in Section E. Let F be the finite set given in Theorem 7, the set

tc P p0, 1s, Dk P N, cγk P F u,
is countable, and hence has zero measure. So for almost all c P p0, 1s, tcγkukPN does not intersect
F . Using Theorem 7, there is a zero measure set N such that any initialization outside N provides
almost surely a subgradient sequence. By hypothesis, for almost every x0 P KzN , the sequence is
bounded almost surely and the result follows from Theorem 7. l

E Artificial critical points

Being given a Lipschitz continuous function on Rp and a conservative field D, one has two types of
D-critical points:

• Clarke critical points: Bcfpxq Q 0, we denote the set of these points by critcf

• Artificial critical points Bcfpxq S 0 and Dpxq Q 0, we denote this set by critaf

Critical values are defined accordingly as images of critical points.

Proposition 8 (Artificial critical points) Assume f : Rp Ñ R and D : Rp Ñ Rp are definable in
a common o-minimal structure. The connected components Ci of critaf , which are in finite number,
satisfy

(i) dimCi ă p

(ii) fpCiq is a singleton, and as a consequence the D critical values of f are in finite number,

(iii) critaf does not contain local minimum (nor local maximum)

Proof : By definability of critaf , the number of connected components is finite.

If Ci had full dimension it would contain a non trivial ball on which f should be constant by the
integral property. This would in turn imply that the points in the ball would also be local minimum
and thus Clarke critical, which is impossible.

To see that the critical values are in finite number it suffices to evoke the fact that Clarke critical
values are finite [11] and use that artificial critical values are in finite number.

By definability the connected components are arcwise-connected with piecewise C1 paths. Using the
integral property this shows f is constant on Ci.

(iii) is obvious since local minimum or maximum are Clarke critical. l

As explained in the introduction, artificial critical points are “computing artefacts”, whence their
names. For algorithmic differentiation the “gradient” provided by a program is zero while the point
might even be a smooth non critical point. We consider the setting of the mini-batch algorithm of the
last section.

Theorem 7 Assume that each f1, . . . , fn belongs to S. There exists a finite subset of steps F Ă

p0,`8q and a zero measure meager subset N of Rp, such that for any positive sequence γk “
op1{ log kq avoiding values in F , and any almost surely bounded sequence with initial condition in
RpzN , we have

• Jpxkq converges towards a Clarke critical value almost surely,

• the cluster points of xk are Clarke critical point almost surely.

Proof : The proof is twofold. We first prove that the set of initial conditions leading to an artificial
critical point or more generally to a non differentiability point within a finite time is “small”. We then
use this fact to conclude.
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Claim 3 Let g : Rp Ñ R be a definable differentiable function. Set, for λ ą 0,

Φλ “ λId´∇g,

where Id denotes the identity. There exists a finite set F in p0,`8q such that,

@λ P p0,`8qzF, @Z Ă Rp definable ,dimZ ă pñ dim Φ´1
λ pZq ă p. (12)

Proof of the claim. Denote by L the set of points where g is twice differentiable so that L is dense
and definable. Denote by λ1, . . . , λp : LÑ R a representation of the eigenvalues of∇2g. Refine L
to be contained in the common domain of differentiability for each λi, L remains open and dense. By
the definable Sard’s theorem the critical values of each function λi is finite, so that the set of all these
values which we denote by F is itself finite.

Take a positive real λ R F and consider the set

Kλ :“ tx P L : Φ1λpxq “ λId´∇2gpxq is not invertibleu.

By diagonalization, we see that the determinant of Φ1λpxq is
d
ź

i“1

pλ´ λipxqq for any x, thence

Kλ Ă

m
ď

i“1

tx P L, λipxq “ λu.

Since λ is a regular value for each λi the previous set is a finite union of manifolds of dimension p´1,
see e.g., [19]. This implies that the set RpzKλ “ tx P L : Φ1λpxq is invertible u is dense. Using the
above, we deduce that there exists finitely many open connected subsets U1, . . . , Ur Ă L of RpzKλ

such that U1 Y . . .Y Ur is dense in L and thus in Rp. Take now Z Ă Rp definable with dimZ ă p.
Assume towards a contradiction that there exists a nonempty open ball B in Φ´1

λ pZq. In that case B
must have a nonempty intersection with some Ui0 . The set ΦλpB X Ui0q is open because Φλ is a
diffeomorphism on Ui on its image. Since on the other hand we have ΦλpB X Ui0q Ă Z, we have a
contradiction and the claim is proved. l

For each I Ă t1, . . . , nu, we denote by fI,1, . . . , fI,mI
the bricks attached to fI where mI ě 1.

Denote by Sing the set of points on which at least one fI is non differentiable and C the set of points
for which p∇fI ‰ ∇fI for at least one I . By Proposition 3 and definability, Sing and C are finite
unions of manifolds of dimension at most p´ 1.

Set ΦkI,j “ Id ´ γk∇fI,j , with I Ă t1, . . . ,mu, j P t1, . . . ,mIu and Id denotes the identity.
Applying Claim 3, we can find a finite set F for which γk R F implies that each ΦkI,j has the
property (12). Indeed, for each I Ă t1, . . . ,mu, j P t1, . . . ,mIu, there is FI,j Ă R finite such
that fI,j has property (12). Since the subsets I are in finite number and each mI is finite, the set
F “

Ť

IĂt1,...,mu

Ť

jPt1,...,mIu
FI,j , is also finite. For each k P N, I Ă t1, . . . ,mu, j P t1, . . . ,mIu.

Remark that if γk R F then ΦkI,j has property (12).

For k ď k0 fixed, let us consider the finite set of definable mappings defined by

Ψk0 :“

#

k
ź

j“1

ΦjIj ,ij : k ď k0, Ij Ă t1, . . . , nu, ij P t1, . . . ,mIju

+

.

We now assume that γk R F,@k ě 0, so that each mapping in Ψk0 has the property (12) and

Nk0 :“ tx P Rp : Dk ď k0, DΦ P Ψkpxq P C Y Singu

These are initial conditions in U leading to an artificial critical or a non-differentiability point within
U before time k0.

We can also write
Nk0 Ă

ď

ΦPΨk0

Φ´1 pC Y Singq .

From stratification arguments we know that Sing has a dimension lower than p ´ 1. On the
other hand, C has dimension strictly lower than p by Proposition 3. Claim 3 applies and yields
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dim Φ´1 pC Y Singq ă p for all Φ P Φk0 . As a consequence Nk0 is closed with nonempty interior
and so does N :“ YkPNNk by Baire’s theorem. Similarly N has zero measure as a countable union
of zero measure sets.

This proves that any sequence with initial condition out of N must remain in the zone of differentia-
bility of J as well as all fI . In particular if I is taken uniformly at random among possible subsets,
for all x R N , we have EI rp∇fIpxqs “ p∇Jpxq “ ∇Jpxq “ BcJpxq, so that these specific sequences
can also be seen as stochastic subgradient sequences for J . To be more specific, the sequence xk can
be seen as one of the sequence generated by the algorithm

yk`1 P yk ´ γkB
cJpykq ` εk

where εk is a random noise with zero mean. Using general results [20, 5], we know that yk sequences,
when bounded almost surely, have limit points which are Clarke critical. l
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