Skip to Main content Skip to Navigation
Conference papers

A Dataset for Multi-lingual Epidemiological Event Extraction

Abstract : This paper proposes a corpus for the development and evaluation of tools and techniques for identifying emerging infectious disease threats in online news text. The corpus can not only be used for information extraction, but also for other natural language processing (NLP) tasks such as text classification. We make use of articles published on the Program for Monitoring Emerging Diseases (ProMED) platform, which provides current information about outbreaks of infectious diseases globally. Among the key pieces of information present in the articles is the uniform resource locator (URL) to the online news sources where the outbreaks were originally reported. We detail the procedure followed to build the dataset, which includes leveraging the source URLs to retrieve the news reports and subsequently pre-processing the retrieved documents. We also report on experimental results of event extraction on the dataset using the Data Analysis for Information Extraction in any Language(DAnIEL) system. DAnIEL is a multilingual news surveillance system that leverages unique attributes associated with news reporting to extract events: repetition and saliency. The system has wide geographical and language coverage, including low-resource languages. In addition, we compare different classification approaches in terms of their ability to differentiate between epidemic-related and unrelated news articles that constitute the corpus.
Complete list of metadata

Cited literature [36 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02732848
Contributor : Gaël Lejeune <>
Submitted on : Tuesday, June 2, 2020 - 7:37:06 AM
Last modification on : Monday, January 4, 2021 - 3:04:02 PM
Long-term archiving on: : Friday, September 25, 2020 - 11:40:52 PM

File

2020.lrec-1.509.pdf
Publisher files allowed on an open archive

Licence


Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Identifiers

  • HAL Id : hal-02732848, version 1

Citation

Stephen Mutuvi, Antoine Doucet, Gaël Lejeune, Moses Odeo. A Dataset for Multi-lingual Epidemiological Event Extraction. Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), May 2020, Marseille, France. pp.4139-4144. ⟨hal-02732848⟩

Share

Metrics

Record views

110

Files downloads

60