H. Eichenbaum and T. Otto, The hippocampus-What does it do?, Behau. Neural Biol, vol.57, pp.2-36, 1992.

Y. Shen, S. M. Specht, I. De-saint-ghislain, and R. Li, The hippocampus: a biological model for studying learning and memory, Bog. Neurobiol, vol.44, pp.485-496, 1994.

R. Kesner, .. L. Bollailti, and M. Llakis, Mcinor! for spatial locations, motor rcspoiises, and ol?j(.cts: triplt. dissociation among the hippocampus, caudatc. nuclvus, and cxtrastriate visual cortex, Exp. Brain Re.7, vol.93, pp.462-470, 1993.

J. W. Rudy and R. J. Sutherland, The hippocanipal formation is necessary for rats to learn and teniemhcr configural discriminations, Behav. Bruin &A, vol.34, pp.97-109, 1989.

G. Winocur and M. Moscovitch, Hippocampal and prefrontal cortex contributions to learning and memory: analysis of lesion and aging effects o n maze-learning i n rats, Bfhav. Npzirosci, vol.104, pp.544-551, 1990.

B. T. Hyman, A. R. G.-m'.-van-hoesen, and . Damasio, Memory-related neural systems in Alzheimer's disease: an anatomic study, Neurology, vol.40, p.730, 1990.

M. W. Decker, The effects of aging on hippocampal and cortical projections of the forebrain cholinergic tcni, Brain RPS. Rp(l, vol.12, pp.423-438, 1987.

, tion o f long-term potentiation in the dentate gyrus of thc rat following selective depletion of monoamines

A. F. Arnstcn, Gatecholamine mechanisms in age-related cognitive decline, N~zrrobiol. Aging, vol.14, pp.639-641

I. , U. , V. , D. Bowling, and M. Hcarns, Spatial memory deficits in aged rats: contributions of monoaminergic systems, Brain Res, vol.537, pp.271-278, 1990.

F. Ponzio, G. Calderini, G. Lomuscio, G. Vantini, G. Toffano et al., Changes in monoamines and their metabolite levels in some brain regions of aged rats, Nwrobiol. Agzng, vol.3, pp.23-29, 1982.

G. Calderini, A. C. Bonetti, A. Battistella, F. T. Crews, and C. ;. Toffano, Biochemical changes of rat brain mernbranes with aging, Neurorliem. RPS, vol.8, pp.483-492, 1983.

L. Svennerholm, K. Bostrom, C. G. Helander, and B. Jungbjer, Membrane lipids in the aging human brain, J. Ahrochem, vol.56, pp.2051-2059, 1991.

A. R. Kessler and S. Yehuda, Learning-induced changes in brain menlbrdnes cholesterol and fluidity: implications for brain aging, Znl. ] . Nrurosci, vol.28, pp.73-82, 1985.

N. Yamamoto, Y. Okaniwa, S. Mori, M. Nomura, and H. Okuyama, Effects of a high-linoleate and a high=-linolenate diet on the learning ability of aged rats, vol.46, pp.17-22, 1991.

M. Uniemwa, A. Ohta, H. Tojo, H. Yagi, M. Hosokawa et al., 199.5. Dietary a-linolenate/linoleate balance influences learning and memory in the senescencraccelerated mouse (SAM), Brain Res, vol.669, pp.225-233

P. E. Wainwright, Do essential fatty acids play a role in brain and behavioral development?, 1992.

J. M. Bourre, M. Francois, A. Youyou, M. Dumont, G. Piciotti et al., The effects ofdietary a-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats, J L%lr, vol.119, pp.1880-1892, 1989.

M. S. Lamptey and B. L. Walker, A possible essential role for dietary linolenic acid in the development of the young rat, J. ivutr, vol.106, pp.86-93, 1976.

H. Frances, C. ;. Monier, M. Clement, A. Lecorsier, M. Debray et al., Effect of dietary a-linolenic acid deficiency on habituation, Lqe Sci, vol.58, pp.1805-1816, 1996.

D. V. Coscina, S. Yehuda, I. , .. M. Dixon, S. J. Kisch et al., Learning is improved by a soybean oil dirt i n rats. f i f e Sci, vol.3, pp.1789-1794, 1986.

T. V. Bliss, ;. V. Goddard, and M. Riives, Reduc, vol.334, pp.475-491, 1983.

M. Enslen, H. Milon, and A. Mahoe, Effect of low intake of n-3 fatty acids during development on brain phospholipid fatty acid composition and exploratory behavior in rats, Lipids, vol.26, pp.203-207, 1991.

N. Yamamoto, M. Saitoh, A. Moriuchi, M. Nomura, and H. Okuyama, Effect of dietary a-linolenate/linoleate balance on brain lipid compositions and learning ability of rats, J. Lipid Res, vol.2, pp.144-151, 1987.

N. Yamamoto, A. Hashimoto, Y. Takemoto, H. Okuyama, M. Nomura et al., Effects of the dietary a-linolenate/linoleate balance on lipid compositions and learning ability of rats. 11. Discrimination process, extinction process, and glycolipid compositions, J. Lipid Res, vol.29, pp.1013-1021, 1988.

Y. Nakashima, S. Yuasa, Y. Hukamizu, H. Okuyama, T. Ohhara et al., Effect of a high linoleate and a high a-linolenate diet on general behavior and drug sensitivity in mice, J. Lipid Res, vol.3, pp.239-247, 1993.

H. Franc&, J. P. Coudereau, P. Sandouk, M. Climent, C. Monier et al., Influence of a dietary alinolenic acid deficiency on learning in the Morris water maze and on the effects of morphine, Eur. J. Phamacol, 1996.

P. E. Wainwright, Y. S. Huang, B. Bulman-fleming, S. Lkvesque, and D. Mccutcheon, The effects of dietary fatty acid composition combined with environmental enrichment on brain and behavior in mice, Behav. Brain Res, vol.60, pp.125-136, 1994.

P. E. Wainwright, Y. S. Huang, D. V. Coscina, S. Lkvesque, and D. Mccutcheon, Brain and behavioral effects of dietary n-3 deficiency in mice: a three generational study, Deu. Psychobiol, vol.27, pp.467-487, 1994.

H. Frances, C. Monier, and J. M. Bourre, Effects of dietary alpha-linolenic acid deficiency on neurcmuscular and cognitive functions in mice, Life Sci, vol.57, pp.1935-1947, 1995.

S. Delion, S. Chalon, J. Herault, D. Guilloteau, J. C. Besnard et al., Chronic dietary a-linolenic acid deficiency alters dopaminergic and serotoninergic neurotransmission in rats, J. Nutr, vol.124, pp.2466-2476, 1994.
URL : https://hal.archives-ouvertes.fr/hal-02714074

S. Delion, S. Chalon, D. Guilloteau, J. C. Besnard, and G. Durand, 1996. a-Linolenic acid dietary deficiency alters age-related changes of dopaminergic and serotoninergic neurotransmission in the rat frontal c0rtex

C. Galli, H. I. Trzeciak, and R. Paoletti, Effects of dietary fatty acids on the fatty acid composition of brain ethanolamine phosphoglyceride: reciprocal replacement of n-6 and n-3 polyunsaturated fatty acids, Biochim. Biophys. Acta, vol.248, pp.449-454, 1971.

J. Folch,

M. Lees and G. Stanley, A simple method for the isolation and purification of total lipid from animal tissues, J. Biol. Chem, vol.226, pp.495-509, 1957.

M. M. Bradford, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of proteindye binding, Anal. Biochem, vol.72, pp.248-254, 1976.

Y. Nishizuka, The role of protein kinase C in cell, pp.298-217, 1984.

, 6 6 1582-1591. surface signal transduction and tumour promotion. Nature, vol.308, pp.693-697

C. M. Borghese, R. A. Gomez, and 0. A. Ramirez, Phosphatidylserine increases hippocampal synaptic efficacy, Brain Res. Bull, vol.31, pp.697-700, 1993.

G. Toffano, A. Leon, D. Benvegnii, E. Boarato, and G. F. Fidia, Effect of brain cortex phospholipids on catecholamine content of mouse brain, Phamacol. Res. Commun, vol.8, pp.581-590, 1976.

F. Casamenti, C. Scali, and G. Pepeu, Phosphatidylserine reverses the agedependent decrease in cortical acetylcholine releases: a microdialysis study, Eur. J. Pharmacol, vol.194, pp.11-16, 1991.

M. G. Vannucchi and G. Pepeu, Effect of phosphatidylserine on acetylcholine release and content in cortical slices from aging brain, Neurobiol. Aging, vol.8, pp.403-407, 1987.

M. G. Nunzi, F. Milan, D. Guidolin, and G. Toffano, Dendritic spine loss in hippocampus of aged rats. Effect of brain phosphatidylserine administration, Neurobiol. Aging, vol.8, pp.501-510, 1987.

N. Gazzah, A. Gharib, P. Bobillier, M. Lagarde, and N. Sarda, Evidence for brain docosahexaenoate recycling in the free-moving adult rat: implications for measurement of phospholipid synthesis, Neurosci. Lett, vol.177, 1994.

S. A. Moore, E. Yoder, and A. A. Spector, Role of the blood-brain barrier in the formation of long-chain 0-3 and 0-6 fatty acids from essential fatty acid precursor, J. Neurochem, vol.53, pp.391-402, 1990.

S. A. Moore, E. Yoder, S. Murphy, G. R. Dutton, and A. A. Spector, Astrocytes, not neurons, produce docosahexaenoic acid, ) and arachidonic acid, vol.22, pp.6-518, 1991.

H. Gozlan, G. Daval, D. Verge, U. Spampinato, C. M. Fattaccini et al., Aging associated changes in serotoninergic and dopaminergic pre-and postsynaptic neurochemical markers in the rat brain, Neurobiol. Aging, vol.11, pp.437-449, 1990.

J. M. Lee, E. R. Ross, A. Cower, J. M. Paris, R. Martensson et al., Spatial learning deficits in the aged rats: neuroanatomical and neurochemical correlates, Brain Res. Bull, vol.33, pp.489-500, 1994.

M. Santiago, A. Machado, F. Reinoso-suarez, and J. Cano, Changes in biogenic amines in rat hippocampus during development and aging, Life Sci, vol.42, pp.2503-2508, 1988.

S. Benedetti, M. , and P. E. Keane, Differential changes in monoamine oxidase A and B activity in the aging rat brain, J. Neurochem, vol.35, pp.1026-1032, 1980.

J. Saura, J. G. Richards, and N. Mahy, Differential age-related changes of MAO-A and MAO-B in mouse brain and peripheral organs, Neurobiol. Aging, vol.15, pp.399-408, 1994.

A. G. Orologas, T. D. Bukman, and S. Eiduson, A comparison of piatelet monoamine oxidase activity and phosphatidylserine content between chronic paranoid schizophrenics and normal controls, Neurosci. Lett, vol.6, pp.103-106, 1986.

. Delion, Aging, n-3 PUFA deficiency, and the hippocampus