S. Weston, R. Haupt, J. Logue, K. Matthews, and M. B. Frieman, FDA approved drugs with broad anti-coronaviral activity inhibit SARS-CoV-2 in vitro

C. A. Devaux, J. M. Rolain, P. Colson, and D. Raoult, New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?, Int J Antimicrob Agents, p.105938, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02517890

P. Colson, J. M. Rolain, J. C. Lagier, P. Brouqui, and D. Raoult, Chloroquine and hydroxychloroquine as available weapons to fight COVID-19, Int J Antimicrob Agents, p.105932, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02509381

P. Colson, J. M. Rolain, and D. Raoult, Chloroquine for the 2019 novel coronavirus SARS-CoV-2, Int J Antimicrob Agents, vol.55, p.105923, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02504553

M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu et al.,

X. , Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res, vol.30, pp.269-271, 2020.

X. Yao, F. Ye, M. Zhang, C. Cui, B. Huang et al.,

S. Song, R. Zhan, H. Lu, W. Li, D. Tan et al., In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Clin Infect Dis, 2020.

P. Maisonnasse, Hydroxychloroquine in the treatment and prophylaxis of SARS-CoV-2 infection in non-human primates, 2020.

J. Gao, Z. Tian, and X. Yang, Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci Trends, vol.14, pp.72-73, 2020.

, The multicenter collaboration group of Department of Science and Technology of

, Guangdong Province and Health Commission of Guangdong Province for chloroquine in the treatment of novel coronavirus pneumonia -Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia, Chin J Tuberc Respir Dis, vol.43, 2020.

Z. Chen, J. Hu, Z. Zhang, S. Jiang, S. Han et al., Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial, medRxiv (2020) 2020, 2003.

O. Pernet, C. Pohl, M. Ainouze, H. Kweder, and R. Buckland, Nipah virus entry can occur by macropinocytosis, Virology, vol.395, pp.298-311, 2009.

M. Porotto, G. Orefice, C. C. Yokoyama, B. A. Mungall, R. Realubit et al.,

M. Aljofan, F. Whitt, A. Glickman, and . Moscona, Simulating henipavirus multicycle replication in a screening assay leads to identification of a promising candidate for therapy, J Virol, vol.83, pp.5148-5155, 2009.

K. J. Farias, P. R. Machado, R. F. De-almeida-junior, A. A. De-aquino, and B. A. Da-fonseca, Chloroquine interferes with dengue-2 virus replication in U937 cells, Microbiol Immunol, vol.58, pp.318-326, 2014.

N. I. Paton, L. Lee, Y. Xu, E. E. Ooi, Y. B. Cheung et al., Chloroquine for influenza prevention: a randomised, double-blind, Lancet Infect Dis, vol.11, pp.677-683, 2011.

P. Gautret, J. C. Lagier, P. Parola, V. T. Hoang, L. Meddeb et al.,

V. Courjon, V. E. Giordanengo, H. T. Vieira, S. Dupont, P. Honore et al.,

L. Scola, J. M. Rolain, P. Brouqui, and D. Raoult, Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, Int J Antimicrob Agents, p.105949, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02525126

M. Mahevas, No evidence of clinical efficacy of hydroxychloroquine in patients hospitalized for COVID-19 infection with oxygen requirement: results of a study using routinely collected data to emulate a target trial, MedRxiv, 2020.

J. Magagnoli, S. Narendran, F. Pereira, T. H. Cummings, J. W. et al., Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19, 2020.

M. R. Mehra, S. S. Desai, F. Ruschitzka, and A. N. Patel, Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis, Lancet, 2020.

A. D. Inglot, Comparison of the antiviral activity in vitro of some non-steroidal antiinflammatory drugs, J Gen Virol, vol.4, p.22, 1969.

Y. Shimizu, S. Yamamoto, M. Homma, and N. Ishida, Effect of chloroquine on the growth of animal viruses, Arch Gesamte Virusforsch, vol.36, pp.93-104, 1972.

A. N. Freiberg, M. N. Worthy, B. Lee, and M. R. Holbrook, Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection, J Gen Virol, vol.91, pp.765-772, 2010.

H. Tsiang and F. Superti, Ammonium chloride and chloroquine inhibit rabies virus infection in neuroblastoma cells, Arch Virol, vol.81, pp.377-382, 1984.

P. Kronenberger, R. Vrijsen, and A. Boeye, Chloroquine induces empty capsid formation during poliovirus eclipse, J Virol, vol.65, pp.7008-7011, 1991.

J. R. Boelaert, J. Piette, and K. Sperber, The potential place of chloroquine in the treatment of HIV-1-infected patients, J Clin Virol, vol.20, pp.137-140, 2001.

W. P. Tsai, P. L. Nara, H. F. Kung, and S. Oroszlan, Inhibition of human immunodeficiency virus infectivity by chloroquine, AIDS Res Hum Retroviruses, vol.6, pp.481-489, 1990.

N. E. Bishop, Examination of potential inhibitors of hepatitis A virus uncoating, Intervirology, vol.41, pp.261-271, 1998.

T. Mizui, S. Yamashina, I. Tanida, Y. Takei, T. Ueno et al.,

N. Kitamura, T. Enomoto, E. Sakai, S. Kominami, and . Watanabe, Inhibition of hepatitis C virus replication by chloroquine targeting virus-associated autophagy, J Gastroenterol, vol.45, pp.195-203, 2010.

D. K. Miller and J. Lenard, Antihistaminics, local anesthetics, and other amines as antiviral agents, Proc Natl Acad Sci U S A, vol.78, pp.3605-3609, 1981.

M. Shibata, H. Aoki, T. Tsurumi, Y. Sugiura, Y. Nishiyama et al., Mechanism of uncoating of influenza B virus in MDCK cells: action of chloroquine, J Gen Virol, vol.64, pp.1149-1156, 1983.

E. E. Ooi, J. S. Chew, J. P. Loh, and R. C. Chua, In vitro inhibition of human influenza A virus replication by chloroquine, Virol J, vol.3, p.39, 2006.

X. De-lamballerie, V. Boisson, J. C. Reynier, S. Enault, R. N. Charrel et al.,

R. L. Roques and . Grand, On chikungunya acute infection and chloroquine treatment, Vector Borne Zoonotic Dis, vol.8, p.23, 2008.

M. Khan, S. R. Santhosh, M. Tiwari, P. V. Rao, and M. Parida, Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against Chikungunya virus in vero cells, J Med Virol, vol.82, pp.817-824, 2010.

I. Delogu and X. De-lamballerie, Chikungunya disease and chloroquine treatment, J Med Virol, vol.83, pp.1058-1059, 2011.

R. Delvecchio, L. M. Higa, P. Pezzuto, A. L. Valadao, P. P. Garcez et al.,

A. A. Loiola, F. J. Dias, M. T. Silva, E. A. Aliota, J. E. Caine et al., Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models, vol.8, 2016.

S. E. Glushakova and I. S. Lukashevich, Early events in arenavirus replication are sensitive to lysosomotropic compounds, Arch Virol, vol.104, pp.157-161, 1989.

O. Ferraris, M. Moroso, O. Pernet, S. Emonet, A. Rembert et al., Evaluation of Crimean-Congo hemorrhagic fever virus in vitro inhibition by chloroquine and chlorpromazine, two FDA approved molecules, Antiviral Res, vol.118, pp.75-81, 2015.

S. D. Dowall, A. Bosworth, R. Watson, K. Bewley, I. Taylor et al.,

L. Pearson, J. Easterbrook, R. Pitman, M. W. Hewson, and . Carroll, Chloroquine inhibited Ebola virus replication in vitro but failed to protect against infection and disease in the in vivo guinea pig model, J Gen Virol, vol.96, pp.3484-3492, 2015.

A. H. Koyama and T. Uchida, Inhibition of multiplication of herpes simplex virus type 1 by ammonium chloride and chloroquine, Virology, vol.138, pp.332-335, 1984.

F. Romanelli, K. M. Smith, and A. D. Hoven, Chloroquine and hydroxychloroquine as inhibitors of human immunodeficiency virus (HIV-1) activity, Curr Pharm Des, vol.10, pp.2643-2648, 2004.

K. J. Farias, P. R. Machado, J. A. Muniz, A. A. Imbeloni, and B. A. Da-fonseca, Antiviral activity of chloroquine against dengue virus type 2 replication in Aotus monkeys, Viral Immunol, vol.28, pp.161-169, 2015.

Y. Yan, Z. Zou, Y. Sun, X. Li, K. F. Xu et al., Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model, Cell Res, vol.23, p.24, 2013.

C. A. Homewood, D. C. Warhurst, W. Peters, and V. C. Baggaley, Lysosomes, pH and the anti-malarial action of chloroquine, Nature, vol.235, pp.50-52, 1972.

C. De-duve, T. Barsy, B. Poole, A. Trouet, P. Tulkens et al., Commentary. Lysosomotropic agents, vol.23, pp.2495-2531, 1974.

S. Ohkuma and B. Poole, Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents, Proc Natl Acad Sci U S A, vol.75, pp.3327-3331, 1978.

N. Naslavsky and S. Caplan, The enigmatic endosome -sorting the ins and outs of endocytic trafficking, J Cell Sci, vol.131, 2018.

C. Watts, The endosome-lysosome pathway and information generation in the immune system, Biochim Biophys Acta, vol.1824, pp.14-21, 2012.

M. Zastrow and A. Sorkin, Signaling on the endocytic pathway, Curr Opin Cell Biol, vol.19, pp.436-445, 2007.

C. Burkard, M. H. Verheije, O. Wicht, S. I. Van-kasteren, F. J. Van-kuppeveld et al.,

L. Haagmans, P. J. Pelkmans, B. J. Rottier, C. A. Bosch, and . De-haan, Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner, PLoS Pathog, vol.10, p.1004502, 2014.

F. Touret, M. Gilles, K. Barral, A. Nougairède, E. Decroly et al.,

. Coutard, In vitro screening of a FDA approved chemical library reveals potential inhibitors 1 of SARS-CoV-2 replication, bioRxiv, 2003.

M. Duvvuri and J. P. Krise, A novel assay reveals that weakly basic model compounds concentrate in lysosomes to an extent greater than pH-partitioning theory would predict, Mol Pharm, vol.2, pp.440-448, 2005.

A. M. Kaufmann and J. P. Krise, Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications, J Pharm Sci, vol.96, pp.729-746, 2007.

Y. Matsuzawa and K. Y. Hostetler, Studies on drug-induced lipidosis: subcellular localization of phospholipid and cholesterol in the liver of rats treated with chloroquine or 4,4'-bis (diethylaminoethoxy)alpha, beta-diethyldiphenylethane, J Lipid Res, vol.21, p.25, 1980.

F. Van-bambeke, C. Gerbaux, J. M. Michot, M. B. Yvoire, J. P. Montenez et al.,

. Tulkens, Lysosomal alterations induced in cultured rat fibroblasts by long-term exposure to low concentrations of azithromycin, J Antimicrob Chemother, vol.42, pp.761-767, 1998.

K. Nujic, M. Banjanac, V. Munic, D. Polancec, and V. E. Haber, Impairment of lysosomal functions by azithromycin and chloroquine contributes to anti-inflammatory phenotype, Cell Immunol, vol.279, pp.78-86, 2012.

D. Tyteca, P. Van-der-smissen, M. Mettlen, F. Van-bambeke, P. M. Tulkens et al.,

P. J. Mingeot-leclercq and . Courtoy, Azithromycin, a lysosomotropic antibiotic, has distinct effects on fluid-phase and receptor-mediated endocytosis, but does not impair phagocytosis in J774 macrophages, Exp Cell Res, vol.281, pp.86-100, 2002.

J. Fantini, C. D. Scala, H. Chahinian, and N. Yahi, Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection, Int J Antimicrob Agents, p.105960, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02635446

M. J. Vincent, E. Bergeron, S. Benjannet, B. R. Erickson, P. E. Rollin et al., Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virol J, vol.2, p.69, 2005.

J. Shang, Y. Wan, C. Luo, G. Ye, Q. Geng et al., Cell entry mechanisms of SARS-CoV-2, Proc Natl Acad Sci U S A, 2020.

J. Bondeson and R. Sundler, Antimalarial drugs inhibit phospholipase A2 activation and induction of interleukin 1beta and tumor necrosis factor alpha in macrophages: implications for their mode of action in rheumatoid arthritis, Gen Pharmacol, vol.30, pp.357-366, 1998.

M. Banjanac, V. Kos, K. Nujic, M. Vrancic, D. Belamaric et al.,

V. E. Hlevnjak and . Haber, Anti-inflammatory mechanism of action of azithromycin in LPS-stimulated J774A.1 cells, Pharmacol Res, vol.66, pp.357-362, 2012.

B. M. Loffler, E. Bohn, B. Hesse, and H. Kunze, Effects of antimalarial drugs on phospholipase A and lysophospholipase activities in plasma membrane, mitochondrial, microsomal and cytosolic subcellular fractions of rat liver, Biochim Biophys Acta, vol.835, pp.448-455, 1985.

R. Nosal and V. Jancinova, Cationic amphiphilic drugs and platelet phospholipase A(2) (cPLA(2)), Thromb Res, vol.105, pp.339-345, 2002.

S. Trouillet-assant, S. Viel, A. Gaymard, S. Pons, J. C. Richard et al., Type I IFN immunoprofiling in COVID-19 patients, J Allergy Clin Immunol, 2020.

A. Kuznik, M. Bencina, U. Svajger, M. Jeras, B. Rozman et al., Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines, J Immunol, vol.186, pp.4794-4804, 2011.

A. Combes, V. Camosseto, P. N'guessan, R. J. Arguello, J. Mussard et al.,

P. Bendriss-vermare, E. Pierre, and . Gatti, BAD-LAMP controls TLR9 trafficking and signalling in human plasmacytoid dendritic cells, Nat Commun, vol.8, p.913, 2017.

H. Yasuda, A. Leelahavanichkul, S. Tsunoda, J. W. Dear, Y. Takahashi et al., Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury, Am J Physiol Renal Physiol, vol.294, pp.1050-1058, 2008.

P. M. O'neill, P. G. Bray, S. R. Hawley, S. A. Ward, and B. K. Park, 4-Aminoquinolines--past, present, and future: a chemical perspective, Pharmacol Ther, vol.77, pp.29-58, 1998.

D. Bhattacharyya and P. C. Sen, The effect of binding of chlorpromazine and chloroquine to ion transporting ATPases, Mol Cell Biochem, vol.198, pp.179-185, 1999.

S. Mukherjee, R. N. Ghosh, F. R. Maxfield, and E. , Physiol Rev, vol.77, pp.759-803, 1997.

M. M. Wu, M. Grabe, S. Adams, R. Y. Tsien, H. P. Moore et al., Mechanisms of pH regulation in the regulated secretory pathway, J Biol Chem, vol.276, pp.33027-33035, 2001.

F. Hullin-matsuda, T. Taguchi, P. Greimel, and T. Kobayashi, Lipid compartmentalization in the endosome system, Semin Cell Dev Biol, vol.31, pp.48-56, 2014.

S. P. Sundelin and A. Terman, Different effects of chloroquine and hydroxychloroquine on lysosomal function in cultured retinal pigment epithelial cells, APMIS, vol.110, pp.481-489, 2002.

A. Yamamoto, S. Adachi, Y. Matsuzawa, T. Kitani, A. Hiraoka et al., Studies on drug-induced lipidosis: VII. Effects of bis-beta-diethyl-aminoethylether of hexestrol, chloroquine, homochlorocyclizine, prenylamine, and diazacholesterol on the lipid composition of rat liver and kidney, Lipids, vol.11, pp.616-622, 1976.

J. K. Seydel and O. Wassermann, NMR-studies on the molecular basis of drug-induced phospholipidosis--II. Interaction between several amphiphilic drugs and phospholipids, Biochem Pharmacol, vol.25, pp.2357-2364, 1976.

T. Kobayashi, E. Stang, K. S. Fang, P. De-moerloose, R. G. Parton et al., A lipid associated with the antiphospholipid syndrome regulates endosome structure and function, Nature, vol.392, pp.193-197, 1998.

T. Kobayashi, M. H. Beuchat, J. Chevallier, A. Makino, N. Mayran et al.,

P. Lebrand, J. Cosson, and . Gruenberg, Separation and characterization of late endosomal membrane domains, J Biol Chem, vol.277, pp.32157-32164, 2002.

N. Mesens, M. Desmidt, G. R. Verheyen, S. Starckx, S. Damsch et al.,

J. Verhemeldonck, A. Van-gompel, L. Lampo, and . Lammens, Phospholipidosis in rats treated with amiodarone: serum biochemistry and whole genome micro-array analysis supporting the lipid traffic jam hypothesis and the subsequent rise of the biomarker BMP, Toxicol Pathol, vol.40, pp.491-503, 2012.

E. A. Tengstrand, G. T. Miwa, and F. Y. Hsieh, Bis(monoacylglycerol)phosphate as a noninvasive biomarker to monitor the onset and time-course of phospholipidosis with druginduced toxicities, Expert Opin Drug Metab Toxicol, vol.6, pp.555-570, 2010.

L. Liscum, Niemann-Pick type C mutations cause lipid traffic jam, Traffic, vol.1, pp.218-225, 2000.

P. Kagebeck, V. Nikiforova, L. Brunken, A. Easwaranathan, J. Ruegg et al., Lysosomotropic cationic amphiphilic drugs inhibit adipocyte differentiation in 3T3-L1K cells via accumulation in cells and phospholipid membranes, and inhibition of autophagy, Eur J Pharmacol, vol.829, pp.44-53, 2018.

B. C. Ferslew and K. L. Brouwer, Identification of hepatic phospholipidosis inducers in sandwich-cultured rat hepatocytes, a physiologically relevant model, reveals altered basolateral uptake and biliary excretion of anionic probe substrates, Toxicol Sci, vol.139, pp.99-107, 2014.

N. Zheng, X. Zhang, and G. R. Rosania, Effect of phospholipidosis on the cellular pharmacokinetics of chloroquine, J Pharmacol Exp Ther, vol.336, p.28, 2011.

J. Muller-hocker, H. Schmid, M. Weiss, U. Dendorfer, and G. S. Braun, Chloroquineinduced phospholipidosis of the kidney mimicking Fabry's disease: case report and review of the literature, Hum Pathol, vol.34, pp.285-289, 2003.

R. M. Costa, E. V. Martul, J. M. Reboredo, and S. Cigarran, Curvilinear bodies in hydroxychloroquine-induced renal phospholipidosis resembling Fabry disease, Clin Kidney J, vol.6, pp.533-536, 2013.

M. Bohdanowicz and S. Grinstein, Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis, Physiol Rev, vol.93, pp.69-106, 2013.

H. Matsuo, J. Chevallier, N. Mayran, I. L. Blanc, C. Ferguson et al.,

J. Matile, R. Dubochet, R. G. Sadoul, F. Parton, J. Vilbois et al., Role of LBPA and Alix in multivesicular liposome formation and endosome organization, Science, vol.303, pp.531-534, 2004.

J. Gruenberg, Life in the lumen: The multivesicular endosome, Traffic, vol.21, pp.76-93, 2020.

M. Record, S. Amara, C. Subra, G. Jiang, G. D. Prestwich et al., Bis (monoacylglycero) phosphate interfacial properties and lipolysis by pancreatic lipase-related protein 2, an enzyme present in THP-1 human monocytes, Biochim Biophys Acta, vol.1811, pp.419-430, 2011.

D. Marsh, Lateral pressure in membranes, Biochim Biophys Acta, vol.1286, pp.183-223, 1996.

T. Kobayashi, M. H. Beuchat, M. Lindsay, S. Frias, R. D. Palmiter et al.,

J. Parton and . Gruenberg, Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport, Nat Cell Biol, vol.1, pp.113-118, 1999.

C. Thery, M. Boussac, P. Veron, P. Ricciardi-castagnoli, G. Raposo et al.,

. Amigorena, Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles, J Immunol, vol.166, pp.7309-7318, 2001.

J. Garin, R. Diez, S. Kieffer, J. F. Dermine, S. Duclos et al.,

M. Rondeau and . Desjardins, The phagosome proteome: insight into phagosome functions, J Cell Biol, vol.152, pp.165-180, 2001.

C. Bissig, M. Lenoir, M. C. Velluz, I. Kufareva, R. Abagyan et al.,

. Gruenberg, Viral infection controlled by a calcium-dependent lipid-binding module in ALIX, Dev Cell, vol.25, pp.364-373, 2013.

B. Tycko and F. R. Maxfield, Rapid acidification of endocytic vesicles containing alpha 2-macroglobulin, Cell, vol.28, pp.643-651, 1982.

E. Daro, D. Sheff, M. Gomez, T. Kreis, and I. Mellman, Inhibition of endosome function in CHO cells bearing a temperature-sensitive defect in the coatomer (COPI) component epsilon-COP, J Cell Biol, vol.139, pp.1747-1759, 1997.

J. A. Whitney, M. Gomez, D. Sheff, T. E. Kreis, and I. Mellman, Cytoplasmic coat proteins involved in endosome function, Cell, vol.83, pp.703-713, 1995.

S. N. Pattanakitsakul, J. Poungsawai, R. Kanlaya, S. Sinchaikul, S. T. Chen et al.,

. Thongboonkerd, Association of Alix with late endosomal lysobisphosphatidic acid is important for dengue virus infection in human endothelial cells, J Proteome Res, vol.9, pp.4640-4648, 2010.

I. Delton-vandenbroucke, J. Bouvier, A. Makino, N. Besson, J. F. Pageaux et al.,

T. Lagarde and . Kobayashi, Anti-bis(monoacylglycero)phosphate antibody accumulates acetylated LDL-derived cholesterol in cultured macrophages, J Lipid Res, vol.48, pp.543-552, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00277081

S. Yuan, H. Chu, J. F. Chan, Z. W. Ye, L. Wen et al.,

I. H. Zhou, K. H. Chan, K. K. Kok, R. Y. To, J. Y. Kao et al., SREBP-dependent lipidomic reprogramming as a broad-spectrum antiviral target, Nat Commun, vol.10, p.120, 2019.

E. Zaitseva, S. T. Yang, K. Melikov, S. Pourmal, and L. V. Chernomordik, Dengue virus ensures its fusion in late endosomes using compartment-specific lipids, PLoS Pathog, vol.6, p.1001131, 2010.

P. M. Matos, M. Marin, B. Ahn, W. Lam, N. C. Santos et al., Anionic lipids are required for vesicular stomatitis virus G protein-mediated single particle fusion with supported lipid bilayers, J Biol Chem, vol.288, pp.12416-12425, 2013.

S. L. Roth and G. R. Whittaker, Promotion of vesicular stomatitis virus fusion by the endosome-specific phospholipid bis(monoacylglycero)phosphate (BMP), FEBS Lett, vol.585, p.30, 2011.

S. Chapuy-regaud, C. Subra, M. Requena, P. Medina, S. Amara et al., Progesterone and a phospholipase inhibitor increase the endosomal bis(monoacylglycero)phosphate content and block HIV viral particle intercellular transmission, Biochimie, vol.95, pp.1677-1688, 2013.

C. J. Shoemaker, K. L. Schornberg, S. E. Delos, C. Scully, H. Pajouhesh et al., Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and infection, PLoS One, vol.8, p.56265, 2013.

F. Lu, Q. Liang, L. Abi-mosleh, A. Das, J. K. De-brabander et al.,

. Brown, Identification of NPC1 as the target of U18666A, an inhibitor of lysosomal cholesterol export and Ebola infection, Elife, vol.4, 2015.

J. Chevallier, Z. Chamoun, G. Jiang, G. Prestwich, N. Sakai et al.,

. Gruenberg, Lysobisphosphatidic acid controls endosomal cholesterol levels, J Biol Chem, vol.283, pp.27871-27880, 2008.

A. Kühnl, A. Musiol, N. Heitzig, D. E. Johnson, C. Ehrhardt et al.,

U. Ludwig and . Rescher, Late Endosomal/Lysosomal Cholesterol Accumulation Is a Host Cell-Protective Mechanism Inhibiting Endosomal Escape of Influenza A Virus, 2018.

T. Hayakawa, A. Makino, M. Murate, I. Sugimoto, Y. Hashimoto et al.,

T. Ito, H. Fujisawa, T. Matsuo, and . Kobayashi, pH-dependent formation of membranous cytoplasmic body-like structure of ganglioside G(M1)/bis(monoacylglycero)phosphate mixed membranes, Biophys J, vol.92, pp.13-16, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00277629

M. A. Al-bari, Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases, J Antimicrob Chemother, vol.70, pp.1608-1621, 2015.

S. E. Miller, S. Mathiasen, N. A. Bright, F. Pierre, B. T. Kelly et al., CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature, Dev Cell, vol.33, pp.163-175, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02397581

J. Wolfram, S. Nizzero, H. Liu, F. Li, G. Zhang et al., A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery, Sci Rep, vol.7, pp.13738-13769, 2017.

T. Y. Hu, M. Frieman, and J. Wolfram, Insights from nanomedicine into chloroquine efficacy against COVID-19, Nat Nanotechnol, vol.15, pp.247-249, 2020.

J. L. Goldstein and M. S. Brown, The lowdensity lipoprotein pathway and its relation to atherosclerosis, Annu. Rev. Biochem, vol.46, pp.897-930, 1977.

G. H. Rothblat, L. Y. Arbogast, and E. K. Ray, Stimulation of esterified cholesterol accumulation in tissue culture cells exposed to high density lipoproteins enriched in free cholesterol, J Lipid Res, vol.19, pp.350-358, 1978.

C. Osman, D. R. Voelker, and T. Langer, Making heads or tails of phospholipids in mitochondria, J Cell Biol, vol.192, pp.7-16, 2011.

K. Seki, Y. Simji, and M. Nishikawa, Studies on drug-induced lipidosis 11. Light and electron microscopic observations on the liver biopsy specimens, Acta Hepatol Jap, vol.12, pp.226-232, 1971.

F. A. De-la-iglesia, G. Feuer, A. Takada, and Y. Matsuda, Morphologic studies on secondary phospholipidosis in human liver, Lab Invest, vol.30, pp.539-549, 1974.

R. Abraham, R. Hendy, and P. Grasso, Formation of myeloid bodies in rat liver lysosomes after chloroquine administration, Exp Mol Pathol, vol.9, pp.212-229, 1968.

Y. Tashiro, An electron microscopic observation on the cytological changes in the experimental drug-induced lipidosis, Keio J Med, vol.24, pp.115-143, 1975.

S. Amara, V. Delorme, M. Record, and F. Carriere, Inhibition of phospholipase A1, lipase and galactolipase activities of pancreatic lipase-related protein 2 by methyl arachidonyl fluorophosphonate (MAFP), Biochim Biophys Acta, vol.1821, pp.1379-1385, 2012.

M. Gilleron, M. Lepore, E. Layre, D. Cala-de-paepe, N. Mebarek et al.,

L. Canaan, F. Mori, G. Carriere, G. D. Puzo, and . Libero, Lysosomal Lipases, vol.2, p.2

, Process Mycobacterial Multi-acylated Lipids and Generate T Cell Stimulatory Antigens, vol.23, pp.1147-1156, 2016.

P. Gautret, J. C. Lagier, P. Parola, V. T. Hoang, L. Meddeb et al.,

C. Doudier, S. Aubry, P. Amrane, M. Seng, J. Hocquart et al.,

S. Dupont, S. Honoré, M. Stein, P. Million, B. L. Colson et al.,

M. Deharo, P. E. Drancourt, J. M. Fournier, P. Rolain, D. Brouqui et al., , pp.80-112

, COVID-19 patients with at least a six-day follow up: an observational study, International Journal of Antimicrobial Agents, 2020.

E. Carmina and R. A. Lobo, CHAPTER 32 -Evaluation of Hormonal Status, Yen & Jaffe's Reproductive Endocrinology, pp.801-823, 2009.

O. J. Hall, N. Limjunyawong, M. S. Vermillion, D. P. Robinson, N. Wohlgemuth et al.,

W. Pekosz, S. L. Mitzner, and . Klein, Progesterone-Based Therapy Protects Against Influenza by Promoting Lung Repair and Recovery in Females, PLoS Pathog, vol.12, p.1005840, 2016.

C. Wenham, J. Smith, and R. Morgan, COVID-19: the gendered impacts of the outbreak, Lancet, vol.395, pp.846-848, 2020.

D. E. Gordon, G. M. Jang, M. Bouhaddou, J. Xu, K. Obernier et al.,

V. V. O'meara, J. Z. Rezelj, D. L. Guo, T. A. Swaney, R. Tummino et al.,

M. J. Mcgregor, Q. Li, B. Meyer, F. Roesch, T. Vallet et al.,

K. Chorba, S. A. Lou, I. Dai, D. Barrio-hernandez, C. Memon et al.,

L. Rosenthal, S. Calviello, J. Venkataramanan, Y. Liboy-lugo, X. P. Lin et al.,

M. Wankowicz, M. Bohn, F. S. Safari, C. Ugur, N. S. Koh et al.,

U. Roth, A. Rathore, J. Subramanian, M. Noack, R. M. Hubert et al.,

K. A. Rosenberg, D. A. Verba, M. Agard, M. Ott, N. Emerman et al.,

A. Verdin, O. Ashworth, C. Schwartz, S. Enfert, M. Mukherjee et al.,

T. Fujimori, C. S. Ideker, S. N. Craik, J. S. Floor, J. D. Fraser et al.,

J. Ruggero, T. Taunton, P. Kortemme, M. Beltrao, A. Vignuzzi et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature, 2020.

R. Channappanavar, C. Fett, M. Mack, P. P. Eyck, D. K. Meyerholz et al., Sex-Based Differences in Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection, J Immunol, vol.198, p.33, 2017.

N. Yang and H. M. Shen, Targeting the Endocytic Pathway and Autophagy Process as a Novel Therapeutic Strategy in COVID-19, Int J Biol Sci, vol.16, pp.1724-1731, 2020.

S. Chackalamannil, D. Rotella, and S. Ward, Bis(monoacylglycero)phosphate as a new biomarker of drug-induced phospholipidosis, Comprehensive Medicinal Chemistry III, pp.277-283, 2017.

K. L. Thompson, J. Zhang, S. Stewart, B. A. Rosenzweig, K. Shea et al., Comparison of urinary and serum levels of di-22:6-bis(monoacylglycerol)phosphate as noninvasive biomarkers of phospholipidosis in rats, Toxicol Lett, vol.213, pp.285-291, 2012.

R. A. Ballout, D. Sviridov, M. I. Bukrinsky, and A. T. Remaley, The lysosome: A potential juncture between SARS-CoV-2 infectivity and Niemann-Pick disease type C, with therapeutic implications, Faseb J, 2020.

A. C. Walls, Y. J. Park, M. A. Tortorici, A. Wall, A. T. Mcguire et al., Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein, 2020.
URL : https://hal.archives-ouvertes.fr/pasteur-02546518

D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C. L. Hsieh et al.,

J. S. Graham and . Mclellan, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, vol.367, pp.1260-1263, 2020.

B. Coutard, C. Valle, X. De-lamballerie, B. Canard, N. G. Seidah et al., The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade, Antiviral Res, vol.176, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02517696

, After interaction with the target cell via a receptor (angiotensin conversion enzyme 2 (ACE2) in the case of SARS-CoV-2 [132, 133]), virus internalization proceeds through clathrin-mediated endocytosis [48](not yet demonstrated for SARS-CoV-2 to our knowledge, but speculated [112]). Then, the release of the virus nucleocapsid into the cytosol for replication to occur depends on proteolytic cleavage of the virus envelop protein (S spike protein in the case of SARS-CoV-2), Schematic representation of the cell entry of an enveloped virus through the endo-/lysosomal pathway and possible mode of action of chloroquine and progesterone towards SARS-CoV-2 infection, vol.6

, A) the basal content of BMP in late endosome /MVB would facilitate at low pH the fusion between virus envelope and the endosomal membrane. In (B) CQ, known to increase pH in late endosomes/ lysosomes and to induce an accumulation of BMP in late endosomes and multivesicular bodies (MVB) [52, 73] would lead to the sequestration of SARS-CoV-2 viral particles in MVB-like bodies. Progesterone is also known to induce the accumulation of BMP in cells infected by HIV and HIV

, Moreover, progesterone was recently found to display some -42

, antiviral activity in vitro against SARS-CoV-2, vol.126

, Thus, the combined effects of CQ on endosomal/lysosomal pH and BMP accumulation may result in the impairment of SARS-CoV-2 endosomal:lysosomal trafficking and possibly its sequestration in MVB