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Abstract: In this paper, we use tools of information geometry to compare, average and
classify histograms. Beta distributions are fitted to the histograms and the corresponding Fisher
information geometry is used for comparison. We show that this geometry is negatively curved,
which guarantees uniqueness of the notion of mean, and makes it suitable to classify histograms
through the popular K-means algorithm. We illustrate the use of these geometric tools in
supervised and unsupervised classification procedures of two medical data-sets, cardiac shape
deformations for the detection of pulmonary hypertension and brain cortical thickness for the
diagnosis of Alzheimer’s disease.

Keywords: Information geometry, histogram analysis, classification, clustering, medical
imaging.

1. INTRODUCTION

The differential geometric approach to probability theory
and statistics has met increasing interest in the past
years, from the theoretical point of view as well as in
applications. In this approach, probability distributions
are seen as elements of a differentiable manifold, on which
a metric structure is defined through the choice of a
Riemannian metric. Two very important ones are the
Wasserstein metric, central in optimal transport, and
the Fisher information metric (also called Fisher-Rao
metric), essential in information geometry. Unlike optimal
transport, information geometry is foremost concerned
with parametric families of probability distributions, and
defines a Riemannian structure on the parameter space
using the Fisher information matrix, see Fisher (1922).
The Fisher information is the Hessian of the Kullback-
Leibler divergence, a popular measure of dissimilarity
between probability distributions that does not verify the
properties of a distance. In parameter estimation, it can
be interpreted as the quantity of information contained in
the model about unknown parameters. Rao (1992) showed
that it could be used to locally define a scalar product
on the space of parameters, interpreted as a Riemannian
metric.

An important feature of this metric is that it is invariant
under any diffeomorphic change of parameterization. In-
deed, it is induced by a more general Riemannian metric
on the infinite-dimensional space of smooth, non paramet-
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ric probability densities, and therefore it is invariant to
coordinate change; see e.g. Friedrich (1991). It can be seen
as a natural choice of metric as it is the only Riemannian
metric that is invariant with respect to transformation by
a sufficient statistic, or a diffeomorphic transformation of
the support in the non-parametric case (Cencov, 2000;
Bauer et al., 2016). Arguably the most famous example
of Fisher information geometry of a statistical model is
that of the univariate Gaussian model, which is hyper-
bolic. The geometries of other parametric families such as
the multivariate Gaussian model (Atkinson and Mitchell,
1981; Skovgaard, 1984), the family of gamma distributions
(Arwini and Dodson, 2008; Rebbah et al., 2019), or more
generally location-scale models (Said et al., 2019), among
others, have also received a lot of attention.

In this work, we focus on beta distributions, a family
of probability measures on [0, 1] used to model random
variables defined on a compact interval in a wide variety of
applications, e.g. in Bayesian inference as conjugate prior
for several discrete probability distributions (O’Neill and
Roberts, 1999), or to model percentages and proportions
in genomic studies (Yang and Fang, 2017). Up to our
knowledge, the information geometry of beta distributions
has not yet received much attention. In Section 2, we
give new results and properties for this geometry by
deriving the metric matrix, and the geodesic equations. We
compute the sectional curvature and show it has negative
sign everywhere. This result is of particular interest to
ensure the existence of Fréchet means. By numerically
solving the geodesic equation, we may compute geodesic
distances and means between probability distributions.



In Section 3, we exemplify the use of this geometry in the
analysis of histograms extracted from segmented medical
images. Traditional statistical methods are challenged in
medical data analysis as data-sets often have very few
samples (∼ 10 − 100) whereas observations are very high
dimensional (∼ 104−106) and missing data are ubiquitous.
Moreover anatomical measurements are often obtained
through complex processing pipelines that result in various
numbers of features (e.g. mesh representations of organs’
surface may have different numbers of vertices), resulting
in the lack of a common representation space for the data.

To bypass these issues, it is thus helpful to consider
histograms across the whole region of interest and to
represent them in the space of beta distributions. The
obtained representation has only two dimensions which is
useful for visualization and interpretation of the results.
We demonstrates that classification in this space achieves
similar accuracy in discriminating patients from healthy
controls as in the high-dimensional data space.

2. FISHER GEOMETRY OF BETA DISTRIBUTIONS

2.1 The Fisher information metric

Let Θ be an open set of Rd and let µ be a measure
defined on a measurable space (E, T ). A parameterized
family of distributions on the parameter space Θ is a set
of probability measures absolutely continuous with respect
to µ, that is:

PΘ = {p(·; θ)µ, θ ∈ Θ}.
When the mapping θ ∈ Θ 7→ p(x, θ) is differentiable for µ-
almost all x ∈ E and the model satisfies certain regularity
conditions, the Fisher information matrix at θ is defined
to be:

I(θ) = [E∂il(x, θ)∂j l(x, θ)]1≤i,j≤d ,

where l(x, θ) = log p(x, θ). As an open subset of Rd, Θ
is a differentiable manifold with TθΘ ' Rd. The Fisher
information defines a Riemannian metric on Θ called the
Fisher information metric

(u, v) ∈ TθΘ 7→ gθ(u, v) = utI(θ)v,

where ut denotes the transpose of the vector u. By a slight
abuse of language, we will talk of the geometry of PΘ,
implicitly referring to the metric structure induced on PΘ

by (Θ, g).

Here we consider the parametric family of beta distribu-
tions, a family of probability measures on [0, 1] with den-
sity with respect to the Lebesgue measure parameterized
by two positive scalars x, y > 0

p(t;x, y) =
Γ(x+ y)

Γ(x)Γ(y)
tx−1(1− t)y−1, t ∈ [0, 1].

We consider the Riemannian manifold composed of the
parameter space Θ = R∗+×R∗+ and the Fisher information
metric g, and by extension denote by beta manifold the
pair (B, g), where B is the family of beta distributions

B = {B(x, y) = p(·;x, y)dt, x > 0, y > 0}.
Here dt denotes the Lebesgue measure on [0, 1]. The beta
family is a natural exponential one with log-partition
function

ϕ(x, y) = ln Γ(x+ y)− ln Γ(x)− ln Γ(y). (1)

Fig. 1. Geodesic balls in the beta manifold.

and so the Fisher information admits a simple expression:

I(x, y) = −Hessϕ(x, y).

Straightforward computations then yield

I(x, y) =

[
ψ′(x)− ψ′(x+ y) −ψ′(x+ y)
−ψ′(x+ y) ψ′(y)− ψ′(x+ y)

]
(2)

where ψ denotes the digamma function, i.e.

ψ(x) =
d

dx
ln Γ(x). (3)

The matrix form of the Fisher metric g is given by (2),
and its infinitesimal length element is

ds2 = ψ′(x)dx2 + ψ′(y)dy2 − ψ′(x+ y)(dx+ dy)2.

2.2 Geodesics and geodesic distance

The distance between two beta distributions is defined as
the geodesic distance associated to the Fisher metric in
the parameter space

dF (B(x, y), B(x′, y′)) = inf
γ

∫ 1

0

√
g(γ̇(t), γ̇(t))dt, (4)

where the infimum is taken over all paths γ : [0, 1] → Θ
such that γ(0) = (x, y) and γ(1) = (x′, y′). To compute
this distance in practice, one needs to solve the geodesic
equation.

Proposition 1. The geodesics t 7→ (x(t), y(t)) of the beta
parameter space Θ are solutions of

ẍ+ a(x, y)ẋ2 + b(x, y)ẋẏ + c(x, y)ẏ2 = 0,

ÿ + a(y, x)ẏ2 + b(y, x)ẋẏ + c(y, x)ẋ2 = 0,
(5)

where

a(x, y) =
ψ′′(x)ψ′(y)− ψ′′(x)ψ′(x+ y)− ψ′(y)ψ′′(x+ y)

2d(x, y)
,

b(x, y) = −ψ
′′(x+ y)ψ′(y)

d(x, y)
,

c(x, y) =
ψ′′(y)ψ′(x+ y)− ψ′(y)ψ′′(x+ y)

2d(x, y)
,

d(x, y) = ψ′(x)ψ′(y)− ψ′(x+ y)(ψ′(x) + ψ′(y)).

No closed form for the geodesics is known, but they can
be computed numerically by solving (5), see Section. 2.4.
Nonetheless we can notice that, due to the symmetry of
the metric with respect to parameters x and y, the line of
equation x = y is a geodesic, where the parameterization
is fixed by the unique geodesic equation given by (5).



2.3 Negative curvature and Fréchet mean

Extension of basic statistical objects such as the mean,
the median or the variance to the setting of Riemannian
manifolds is now well known; see e.g. Pennec (2006).
A popular choice to define the notion of mean in a
Riemannian manifold is the Fréchet mean, also called
intrinsic mean, which is defined as the minimizer of the
sum of the squared distances to the points that we want
to average. In our setting, the intrinsic mean of a set of
{Bi, i = 1, . . . , n} of beta distributions is given by

B̄ = argmin
B∈B

n∑
i=1

dF (B,Bi)
2.

The Fréchet mean is in general not unique and refers to a
set. Uniqueness holds however when the curvature of the
Riemannian manifold is negative (Karcher, 1977), which
is the case here.

Theorem 1. The beta manifold (B, dF ) has negative sec-
tional curvature.

The proof of this theorem, given in the appendix, relies on
certain regularity conditions of the polygamma functions,
and in particuler on the sub-additivity of the ratio ψ′/ψ′′

which was proven recently by Yang (2017).

The space of beta distributions being moreover simply
connected and complete as shown in Le Brigant et al.
(2021), it is a Hadamard manifold. Therefore any set of
beta distributions admits a unique Fréchet mean for the
Fisher geometry. This property of the Fisher geometry is
an important argument in favor of its use for supervised
and unsupervised classification of histograms. Indeed, the
popular K-means algorithm, also called Lloyd’s algorithm
(Lloyd, 1982), which seeks to minimize intra-cluster vari-
ance, relies on the computation of the mean of the clusters.
It can be easily extended to non-linear manifolds by replac-
ing the Euclidean distance and mean by the Riemannian
distance and Fréchet mean.

2.4 Implementation

Geodesics (see Fig. 1) are computed through the expo-
nential and logarithm maps of the Riemannian manifold,
which can be implemented by solving respectively the
initial and boundary value problems associated to the
geodesic equation (5). This allows to approximate the
distance, by averaging the norm of the velocity of the
discretized geodesic between two points. The Fréchet mean
can be found in practice using a gradient descent algo-
rithm commonly referred to as the Karcher flow. It simply
consists in applying the following update on the current
estimate B̂ of the mean at each iteration:

B̂ ← expB̂

(
τ

n

n∑
i=1

logB̂(Bi)

)
for some step size τ > 0. Here exp and log denote
the Riemannian exponential and logarithm maps. Our
implementation is available in the open-source Python
package geomstats http://geomstats.ai.

3. APPLICATIONS TO MEDICAL DATA ANALYSIS

In this section with exemplify the theoretical results of
the previous section on histograms computed from medical
data in two different contexts.

3.1 Data-sets

Cardiac Shape Deformations Firstly, we use a data-base
of 204 shapes of right ventricles (RV) of the heart extracted
from 3d-echocardiographic sequences (Moceri et al., 2017).
3d-meshes were extracted from the sequences with semi-
automatic software (TomTec 4D RV-Function 2.0) and
post-processed to compute markers of deformation during
the cardiac cycle. We focus on the systole, that is the
period during which the RV contracts to eject blood
through the pulmonary valve. As a marker of deformation,
we use the Area Strain (AS), that represents the local
stretching of the RV surface. This feature is of growing
interest among clinicians to assess cardiac function. It
was shown to be a predictor of survival in pulmonary
hypertension (Moceri et al., 2017).

For each subject, the RV at time t is represented by a
3d-mesh of 822 vertices and 1587 triangular cells. Note
that all vertices and cells correspond to one-another across
subjects, but this may not be the case in most applications.
This allows us to compare statistics computed in the
original data space and in the space of beta distributions.
We compute the relative area change of each cell k between
the end of diastole (t0) and the end of systole (t1):

ASk =
at1k − a

t0
k

at0k
, (6)

where atk is the area of the triangle k at time t for a
given mesh. This results in a distribution of values greater
than −1. Due to the tissue’s nature, the values should
in fact be bounded by constants p < q. However, the
acquisition noise causes some values to lie outside [p, q]
although physically infeasible. We thus normalize the data
to lie in the interval [0, 1] by applying the transformation

x 7→ min(max(x, p), q)− p
q − p

.

Finally, we map each patient’s histogram to the space
of beta distributions by estimating the parameters x, y
by maximum likelihood (ML). Fig. 2 represents the data
for a given patient with the estimated probability density
function and Fig. 3 the obtained representation of the pop-
ulation’s histograms in the manifold of beta distributions.

Cortical Thickness maps The measure of brain atrophy
is a crucial tool in the analysis of neurodegenerative
diseases. In particular, Cortical Thickness (CTh) mea-
sured by structural Medical Resonance Imaging (MRI)
has been proposed as a biomarker for the early diag-
nosis of Alzheimer’s disease (Pini et al., 2016; Busovaca
et al., 2016) and for the prediction of conversion from
Mild Cognitive Impairment to Alzheimer’s Disease (Wei
et al., 2016; Sun et al., 2017). In many of these studies,
central tendency measures such as the mean or the median
are used to represent the biomarker, either in the whole
cortex, in regions of interest or in the voxels, leading to



Fig. 2. Example of the normalization and ML represen-
tation of a subject’s AS distributions in the space of
beta distributions

Fig. 3. AS data represented in the parameter space of
beta distributions (up) and in the space of two first
principal components (down).

an important loss of information. More recent ones used
histogram analysis (Giulietti et al., 2018; Ruiz et al., 2018),
and in (Rebbah et al., 2019), the authors use the Fisher
geometry of generalized gamma distributions to perform
this analysis. However, cortical thickness is a bounded
quantity, and therefore beta distributions seem to be more
natural candidates to model their distribution. Moreover,
the negative curvature of the beta geometry makes it a
suitable candidate in clustering procedures based on com-
putation of cluster means, such as the K-mean algorithm
used here.

The data used in this application were extracted from MR
scans selected from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database 1 . Indeed, the initial subjects
were not age- and sex-matched and our procedure con-
sisted in randomly selecting subjects. In addition, some
of the subjects were excluded because of a low diagnosis
reliability (according to ADNI criteria) and others because

1 http://adni.loni.usc.edu/about/

Fig. 4. CTh data represented in the parameter space of
beta distributions.

of unsuccessful CTh measurement due to poor image qual-
ity. The resulting population is composed of 143 subjects:
71 healthy controls subjects and 72 Alzheimer’s disease
patients.

CTh was measured from 3D T1-weighted MR images using
the Matlab toolbox CorThiZon (Querbes et al., 2009).
There is no unique definition of CTh. In (MacDonald
et al., 2000) it is obtained as the distance between uniquely
associated pairs of points on bounding surfaces. Uncou-
pled methods do not rely on a given set of associated
landmarks but create them using techniques coming from
shape matching (Tagare, 1997). Finally, a quite different
category of algorithms makes use of an elliptic partial dif-
ferential equation to obtain a field of deformation between
the boundaries (Yezzi and Prince, 2003). The CorThiZon
toolbox, developed at Inserm, implements a Laplace equa-
tion based method that falls within this last category.

For each subject, the data consist in measurements of CTh
along the whole cortical ribbon. The overall procedure
is the one described in (Querbes et al., 2009), with a
normalized voxel size of 1mm along all directions. Due to
the variability of the size and shape of the brain among
the population of study, we obtain samples of unequal
length. This results in the lack of a common representation
space for the data, a problem that is solved by the
histogram-based approach that we propose here. Indeed,
just as for the AS data, we compute for each patient the
histogram of CTh measurements, from which we estimate
the parameters of a beta distribution by ML. Histograms
are normalized beforehand with respect to the maximal
CTh value among the population.

3.2 Methodology

In both cases, the subjects are divided in two classes:
diseased and controls. In order to assess whether the
proposed representation and geometry are relevant, we
perform supervised and unsupervised classification in the
Riemannian manifold of beta distributions. We compare
the results both when using the Riemannian metric and
the Euclidean metric on the parameter space (R+

∗ )2 . We
chose to use the K-nearest- neighbor (KNN) and K-means
algorithms as they only require computation of distances
on non-linear manifolds. Both supervised (SKM) and
unsupervised (UKM) versions of K-means are compared.
Finally, in the case of the AS data, as we have cell-to-cell
correspondence, we can run the algorithms in the original



data space R1587 to assess the loss of information when
considering only two-parameter distributions instead of
the whole histograms. We also compare our method with a
standard dimensionality reduction performed by principal
component analysis (PCA). This cannot be done for the
CTh data since the mapping between values and brain
regions differs across patients. All models are trained and
tested in a 5-fold cross-validation fashion, and we assess
the classification accuracy in all cases. We used the scikit-
learn package (Pedregosa et al., 2011) to perform these
experiments.

3.3 Results

Supervised classification Tables 1 and 2 show the mean
classification accuracy over 5-fold cross validation for each
setting: (1) the space of parameters of the beta distribu-
tions fitted to the data-point histograms and, when appli-
cable, (2) the Euclidean space of the original data, and (3)
the space spanned by the first two principal components
obtained by PCA. The number of neighbors for the KNN
algorithm is chosen to be K = 7. This choice is compared
to other values through 5-fold cross validation, see Fig. 5
and 6.

Table 1. Mean (and standard deviation) of the
classification accuracy for the AS data on 5-

fold cross-validation

Original PCA Beta
Euclidean Euclidean Euclidean Riemannian

KNN 0.81 (0.05) 0.67 (0.32) 0.77 (0.09) 0.83 (0.05)
SKM 0.85 (0.03) 0.72 (0.28) 0.66 (0.06) 0.81 (0.06)

Table 2. Mean (and standard deviation) of the
classification accuracy for the CTh data on 5-

fold cross-validation

Beta
Euclidean Riemannian

KNN 0.77 (0.05) 0.79 (0.04)
SKM 0.66 (0.10) 0.80 (0.05)

These results show that in the space of beta parameters,
the Fisher information geometry performs significantly
better than Euclidean geometry. Moreover, this perfor-
mance is comparable to that of classification in the original
data space, despite the considerable reduction of dimen-
sion (from 1587 to 2). This is illustrated in Fig. 5, where
both methods perform alternatively better as the number
of neighbors changes.

In comparison, the two-dimensional representation space
provided by PCA performs significantly worst on average.
This can be explained by the fact that the performance
of dimensionality reduction of PCA depends on the choice
of training set, and certain train/test splittings lead to
poor performance. This is illustrated in Fig. 7: in one of
the cross-validation splittings, the test set for each class
in the PCA representation is closer to the center of the
other class computed from the training test. This has the
effect of lowering the average accuracy over the whole
cross-validation process. This problem does not occur in
the two-dimensional beta representation, as the mapping
from one data-point to a pair of parameters (x, y) does not
depend on the other points present in the data-set.

Fig. 5. Mean accuracy of KNN classification on the AS
data over 5-fold cross validation. Vertical segments
indicate standard deviation for the original Euclidean
and the beta Riemannian representations.

Fig. 6. Mean accuracy of KNN classification on the CTh
data over 5-fold cross validation. Vertical segments
indicate standard deviation for the beta Riemannian
representation.

Unsupervised classification The clustering performance
of the K-means algorithm is shown for the same settings
in Tables 3 and 4. These results confirm that the Fisher
information geometry in the space of beta parameters is
more suited to compare histograms than Euclidean geom-
etry. Unlike in the supervised setting, the two-dimensional
representation given by PCA performs well, since in this
case the whole data-set was used to perform the dimen-
sionality reduction.

Table 3. Clustering accuracy for the AS data

Beta Original PCA
Euclidean Riemannian Euclidean Euclidean

UKM 0.60 0.80 0.84 0.84

Table 4. Clustering accuracy for the CTh data

Beta
Euclidean Riemannian

UKM 0.61 0.82



Fig. 7. Supervised K-means on the AS strain data in beta
and PCA representations.

4. CONCLUSION

In this work, we have studied the geometry of the beta
manifold and shown in particular that it was negatively
curved. We have illustrated its use as a non linear rep-
resentation space for histograms of medical data, which
presents the advantage of being low-dimensional and can
easily be visualized. This common representation is also
particularly helpful when the number of measurements
vary from one subject to another. The examples studied
here tend to show that the Fisher information metric is
a more adapted choice of metric on this space than the
Euclidean one to compare and classify histograms. Finally,
the dimensionality reduction performed in the process does
not result in a significant loss in performance. Moreover,
unlike a standard method like PCA, the quality of the di-
mensionality reduction does not rely on the choice and size
of the data-set: each data-point is mapped to an element
of the beta manifold independently of the others. This
makes the beta representation particularly interesting for
small data-sets. Comparison with other geometries, such
as that of the gamma and generalized gamma manifolds,
and exploration of other supervised and unsupervised clas-
sification algorithms will be the object of future work.
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Appendix A. PROOF OF PROPOSITION 1

The geodesic equations are given by

ẍ+ Γxxxẋ
2 + 2Γxxyẋẏ + Γxyy ẏ

2 = 0

ÿ + Γyxxẋ
2 + 2Γyxyẋẏ + Γyyy ẏ

2 = 0

where the Γkij ’s denote the Christoffel symbols of the
second kind. These can be obtained from the Christoffel
symbols of the first kind Γijk and the coefficients gij of the
inverse of the metric matrix

Γkij = Γijlg
kl.

Here we have used the Einstein summation convention.
Since the Fisher metric is a Hessian metric (see Totaro
(2004)), the Christoffel symbols of the first kind can be
obtained as

Γijk =
1

2
ϕijk,

where ϕ is the log-partition function (1) and lower indices
denote partial derivatives. Straightforward computation
yields the desired equations.

Appendix B. PROOF OF THEOREM 1

The sectional curvature of a Hessian metric is given by

K =
1

4(det g)2
Rxyxy

where
Rxyxy = −ϕyy(ϕxxxϕxyy − ϕ2

xxy)

+ ϕxy(ϕxxxϕyyy − ϕxxyϕxyy)

+ ϕxx(ϕxxyϕyyy − ϕ2
xyy).

Here lower indices denote partial derivatives with respect
to the corresponding variables, and ϕ is the log-partition
function (1). Their computation yields

ϕxxx = ψ′′(x)− ψ′′(x+ y),

ϕyyy = ψ′′(y)− ψ′′(x+ y),

ϕxxy = ϕxyy = −ψ′′(x+ y),

and the determinant of the metric is given by

det g = d(x, y) = ψ′(x)ψ′(y)− ψ′(x+ y)(ψ′(x) + ψ′(y)).

This gives

K(x, y) = (ψ′′(x+ y)(ψ′(x)ψ′′(y) + ψ′′(x)ψ′(y))

−ψ′(x+ y)ψ′′(x)ψ′′(y))/(4d(x, y)2).

Factorizing the numerator by ψ′′(x)ψ′′(y)ψ′′(x+ y) yields

K(x, y) =
ψ′′(x)ψ′′(y)ψ′′(x+ y)

4 d(x, y)2
(F (x) + F (y)− F (x+ y)),

where F = ψ′/ψ′′. Since ψ′′ is negative, the first factor
is negative. Moreover, it has been shown in (Yang, 2017,
Corollary 4) that the function F is sub-additive. This
means that the second factor is positive, yielding the
desired result.


