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A musically motivated mid-level representation for
pitch estimation and musical audio source

separation
Jean-Louis Durrieu, Bertrand David, Member, IEEE and Gaël Richard, Senior Member, IEEE

Abstract—When designing an audio processing system, the
target tasks often influence the choice of a data representation or
transformation. Low-level time-frequency representations such as
the short-time Fourier transform (STFT) are popular, because
they offer a meaningful insight on sound properties for a low
computational cost. Conversely, when higher level semantics, such
as pitch, timbre or phoneme, are sought after, representations
usually tend to enhance their discriminative characteristics, at
the expense of their invertibility. They become so-called mid-
level representations. In this paper, a source/filter signal model
which provides a mid-level representation is proposed. This
representation makes the pitch content of the signal as well
as some timbre information available, hence keeping as much
information from the raw data as possible. This model is
successfully used within a main melody extraction system and a
lead instrument/accompaniment separation system. Both frame-
works obtained top results at several international evaluation
campaigns.

Index Terms—Non-negative Matrix Factorization (NMF), au-
dio signal representation, pitch estimation, audio melody extrac-
tion, musical audio source separation

I. INTRODUCTION

THE high diversity of music signals is particularly chal-
lenging when designing systems for audio analysis, in-

dexing or modeling. This diversity is not only due to the
multiple production mechanisms and the wide tessitura of
the involved musical instruments but also to the large palette
of possible instrument combinations. It is also worth em-
phasizing that music signals are, in most cases, polyphonic
(e.g. produced as mixtures of individual musical sources).
This polyphony undoubtedly is one of the major bottlenecks
of musical signal processing since it considerably limits the
analysis capabilities. For instance, compared with pitch es-
timation on monophonic signals, multiple pitch estimation
adds several other challenges such as dealing with partial
overlapping between concurrent sounds or the estimation of
the number of notes.

When dealing with polyphonic signals, two strategies can
be undertaken: either the whole signal is processed with
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a direct extraction of information, or it is split in several
individual components ideally hypothesized as monophonic
streams. Examples of the first case include multiple pitch
analysis [1] or cover song detection [2]. For the second
case, applications range from instrument recognition [3] to
lyrics-to-audio alignment [4]. A third alternative strategy is
emerging, following the latter strategy but without explicitly
performing any separation. It consists in defining a mid-level
representation that facilitates the subsequent processing (see
for example [5] for tempo estimation, [6], [7] for instrument
recognition and pitch estimation, or [8] for genre classifica-
tion). Compared to traditional time domain and frequency do-
main representations (such as the short-time Fourier transform
or STFT), mid-level representations are often viewed as a
signal transformation from which a collection of indicators are
extracted and indexed by their time instants. These indicators
generally tend to emphasize higher semantics than the energy
in the time-frequency plane. In a number of cases, designing
such a mid-level representation consists in obtaining a salience
function for the task at hand. For example, the representa-
tion proposed in [9] provides Instantaneous Frequency (IF)
attractors, that can be compared to a reassigned STFT and are
well adapted for audio processing systems based on sinusoidal
models. It was in particular used in [10] for main melody
extraction where the time domain signal is first mapped to its
constituting sinusoids, and then transformed into the “pitch
domain”. As another example, the salience functions defined
in [1] for multipitch extraction are directly obtained by a
weighted alternative of the Harmonic Sum (HS).

Mid-level representations may also be built upon perceptu-
ally motivated time-frequency transforms such as gammatone
filter-banks [11] or the constant-Q transform (CQT) [12], with
logarithmically spaced frequency bands. Finally, numerous
studies rely on a low-level feature extraction step which
can also be seen as a form of mid-level representation.
Indeed, the widely used Mel-Frequency Cepstral Coefficients
(MFCC) [13] globally provide information about the spec-
tral envelope: more precisely, under mild assumptions, it
carries information about the filter part of an underlying
source/filter model. Other features such as those based on
chroma vectors, also known as pitch class profiles (PCP),
are often used as salience function for harmony related tasks,
such as chord detection, tonality estimation or audio-to-score
alignment tasks [14], [15].

A potential drawback of such representations is however
a bias towards indexing tasks at the cost of information
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loss, thus limiting the potential for other applications such
as sound transformation, compression or source separation.
For example, the CQT neglects detailed information in high
frequency bands and is not invertible. Similarly MFCCs and
PCPs only describe particular aspects of sounds, which can
be respectively interpreted as timbre and harmony, but only
with rather strong assumptions, and are better defined when
dealing with monophonic signals. It is therefore interesting
to investigate models that allow to describe most, if not all,
the contributions of the audio mixture: in this paper, we
propose a novel “model-driven” mid-level representation. It
combines some advantages of existing representations, espe-
cially invertibility allowing separation applications, with the
access to semantically rich salience functions for pitch and
timbre content analysis. Such a representation can be used
in a number of applications including main melody extraction
and separation, lyrics-to-audio alignment [4], music instrument
recognition or singer identification [16], [17].

The proposed mid-level representation is an extension of
previous works on the Instantaneous Mixture Model (IMM)
presented in [18], [19]. The main contributions of this paper
include:

• A more generic model for the IMM framework: the
assumptions on the signal of [19] are relaxed. In par-
ticular, the part dedicated to the monophonic lead voice
in [19] is here used to model several harmonic audio
sources. This relaxation first allows to use the proposed
model for a broader range of signals, and second provides
new interpretations, leading to semantically rich mid-level
representations;

• The extension of the initial model to multi-channel (e.g.
stereo) signals;

• The incorporation of a specific dictionary element in the
decomposition to allow the representation of unvoiced or
noise components in the leading musical source;

• a detailed experimental validation for both main melody
and lead instrument/accompaniment separation.

This paper is organized as follows. The signal model is
presented in Section II, along with a brief introduction to the
estimation of the involved parameters and a discussion of the
different facets of the proposed model. Then, in Section III,
we discuss three applications of the proposed representation.
At last, in Section IV, concluding remarks are followed by
perspectives for future work.

II. SIGNAL MODEL

The proposed signal model is based on previous studies
on main melody extraction [18], [19]. Here, it is presented
in a generalized framework, with a specific focus on the
interpretation of the parameters and their potential use.

A. Model description

1) Generic model: The input music signal X is the instan-
taneous sum of two signals: a signal of interest and a residual.
For our applications, the signal of interest often refers to a
leading instrument which is pitched (such as a singing voice)
while the residual refers to the remaining background music.

The signal of interest is therefore denoted V and the residual
M , by reference to “Voice” and “Music”. In this section, the
single-channel case is introduced, while stereo-channel signal
processing is addressed in Section II-A2, as a specific instance
of the generic model presented here.

In the proposed framework, the F × N STFT of the
single-channel mixture, X = [xfn]fn, is modeled through
its squared magnitude or power spectrum: SX , the short-time
power spectrum (STPS) of X . The analysis window size for
the STFT is L = 46.44ms (2048 samples at 44100Hz) and
the hop size is fixed to 5.8ms (256 samples at 44100Hz),
resulting in N analysis windows for the STFT. The discrete
Fourier transforms are performed on L points, after applying a
sinebell weighting window to the frame. The first F = L/2+1
coefficients (the bins of the positive frequencies) of frame n
are stored as the nth column of X.

V and M are assumed independent one from the other, and
the STPS of their sum is therefore assumed to be the sum of
their STPS’s:

SX = SV + SM (1)

In this section, the signal of interest is defined in a broad sense,
and will be specified for target applications in Section II-A2.
This general definition however allows to better understand
the principle of the proposed method and enhances the appli-
cability of the model to a wider range of applications.

Since we are here interested in analyzing the polyphonic
content of music signals, V is assumed to be generated by
one or more harmonic instruments. Each frame n of V is
characterized by its power spectrum for each frequency bin
f , denoted sV

fn. This time-frequency bin of the STPS is
further modeled as follows: each frame is decomposed into
an excitation spectrum (“source”) sF0

fn modulated by a spectral
shaping envelope (“filter”) sΦ

fn, such that

sV
fn = sΦ

fnsF0
fn. (2)

F0 recalls that the pitch information is included in the source
part. Since it is aimed at building a pitch salience representa-
tion with possibly concurrent notes, the source part is further
modeled as a combination of different hypothesized individual
pitches:

sF0
fn =

U∑
u=1

hF0
unPu(f) (3)

where Pu, for all u, are fixed spectral shapes and hF0
un ≥ 0. Pu

can be any kind of spectral shape, for instance a spectral shape
designed to correspond to a typical sound. Here, for each u,
a fundamental frequency (or F0) F(u) is chosen, and Pu is
then generated such that it is the power spectrum of a glottal
signal with F0 equal to F(u), using the glottal source model
KLGLOTT88 [20]. For convenience, the resulting harmonic
spectral “combs” are then stored as the columns of the F ×U
dictionary matrix WF0 , such that wF0

fu = Pu(f). F varies
from Fmin to Fmax, logarithmically every 1/Ust semitone:

F(u) = 2
u−1
12Ust Fmin,∀u = 1 . . . U (4)
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Fig. 1: Matrix WF0 , with KLGLOTT88 source model,
Fmin =100, Fmax =800Hz, and Ust =20 (values used for
the experiments, except for Fig. 5a, where Fmax =2500Hz).
Energy in dB.

Note that when Ust = 1 and with Fmin such that F(69) =
440Hz, F is the mapping of a MIDI code number to its
corresponding F0 in Hz. An example of a dictionary WF0

is given on Fig. 1.
The “filter” part sΦ

fn aims at providing more flexibility to the
model, adapting it to a variety of possible instances (recording
conditions, velocity of the played notes, intonations for a
voice, etc.). It is then decomposed into a linear combination
of “smooth” filters Φk(f). The smoothness of these filters is
controlled by generating them as a weighted sum of smooth
spectral atoms Γp(f):

sΦ
fn =

K∑
k=1

hΦ
knΦk(f) =

K∑
k=1

hΦ
kn

(
P∑

p=1

hΓ
pkΓp(f)

)
, (5)

where hΦ
kn ≥ 0 and hΓ

pk ≥ 0. Contrary to Pu, Γp is constrained
to be a smooth elementary envelope, describing broadband
frequency behaviors. The decomposition onto the Γp function
family therefore allows to catch a global spectral envelope.
More precisely, the whole signal is described onto K = 10
spectral “envelopes” Φk(f), which are in turn decomposed
onto the P = 30 smooth elementary envelopes Γp. A sensible
choice for Γp is to use Hann functions overlapping at 75%,
covering the whole frequency range, with centers linearly
spaced in frequency. This can be seen as sub-sampling the
spectral envelope, implicitly enforcing the smoothness of the
estimated envelopes1. The choice of P fixes the frequency
bands of these Hann functions. P = 30 allows to use
functions that are narrow enough to describe a wide range
of smooth envelopes, yet wide enough to avoid to capture
spectra composed of isolated harmonics. Similarly to WF0 ,
we define WΓ such that wΓ

fp = Γp(f) and WΦ such that
wΦ

fk = Φk(f). The chosen WΓ family and two examples of
wΦ

k are illustrated on Fig. 2.

1Other bases were proposed as in [3], with logarithmically spaced centers,
motivated by perceptual principles or by the physical properties of the sounds.
Our choice, however, allows a broader variability in the spectral envelope.
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Fig. 2: Filter part: (a) WΓ, P = 30 Hann functions, overlap
of 75%. The corresponding frequency band for each function
is about 3000Hz. Only the first elements of the matrix, with
non-null energy in the visible frequency bands are shown here.
(b) 2 elements of WΦ, in dB.

Finally, V is modeled such that:

sV
fn =

(
K∑

k=1

hΦ
kn

P∑
p=1

hΓ
pkΓp(f)

)(
U∑

u=1

hF0
unPu(f)

)
(6)

In Eq. (6), the amplitude coefficients hF0
un, hΦ

kn and hΓ
pk

give the decomposition of the signal onto the aforementioned
dictionaries. They are estimated from the input signal, and
respectively form the amplitude matrices HF0 (U ×N), HΦ

(K×N ) and HΓ (P ×K). These matrix conventions allow to
write SV in a compact way, underlining the link between the
proposed framework and Non-negative Matrix Factorization
(NMF) [21]:

SV = (WΓHΓHΦ)︸ ︷︷ ︸
SΦ

• (WF0HF0)︸ ︷︷ ︸
SF0

, (7)

where the symbol • represents the Hadamard product. Matrices
SΦ and SF0 therefore capture different characteristics of the
input signal of interest: they respectively catch the spectral
envelope (related to timbre properties) and the pitch content,
for each frame. Indeed, the purpose of this structure is to
catch in HF0 a pitch information which is independent from
the timbre information, and conversely for SΦ. For instance,
when a singer sings an A4 (440Hz) note, but sings different
vowels, e.g. a [a] at a frame n1 and a [e] at a frame n2,
then we would expect the columns hF0

n1
and hF0

n2
to roughly

contain comparable values, while the spectral envelopes sΦ
n1

and sΦ
n2

should be rather different and characteristic of the
pronounced vowel. This model is therefore remotely related
to a source/filter model [22], which takes an almost literal
meaning for the special case addressed in Section II-A22.

2According to [22], the filter should be a cascade of filters (product in
frequency) and not filters in parallel (i.e. sum of filters). However, in [23],
it is shown that parallel filters can also be used to successfully synthesize
formants.
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The STPS of the mixture X is therefore modeled as:

SX = (WΓHΓHΦ) • (WF0HF0) + SM (8)

We refer to this model as the Instantaneous Mixture
Model (IMM): the signal X is indeed assumed to be the
instantaneous mixture of the different contributions. This, in
particular, means that the model does not explicitly take into
account reverberations or echoes: these are rejected to the
residual part. We also define our model in contrast with an
alternative framework, the Gaussian Scaled Mixture Model
(GSMM) [19], for which only one of the contributions is active
at each frame.

2) Specific model for main instrument+accompaniment
modeling: The IMM is particularly well suited for signals
containing a main harmonic instrument, such as a singing
voice V , played by a single monophonic instrument backed by
an accompaniment M , played by other instruments. In such
a case, the main voice STPS is parameterized by the above
source/filter framework, while an unconstrained NMF model
of order R is assumed for SM , as in [19]:

SV = SΦ • SF0 and SM = WMHM (9)

This model is then called the “Voiced”-IMM (VIMM).
Strictly speaking, SV , and in particular HF0 , should reflect the
fact that V is generated by a single monophonic instrument:
for a given frame n, the vector hF0

n should contain only
one non-null coefficient. This condition could for instance be
controlled during the parameter estimation of Section II-B.
However, as in [19], this constraint is applied in iterative
steps, as shown on the general block diagram in Fig. 4 and
further explained in Section III-B for melody estimation and
Section III-C for lead instrument separation.

The aperiodic (or unvoiced for a singing voice) components
of the main instrument are however not well modeled with
the harmonic patterns of WF0 and will mostly remain in the
residual. To better capture these unvoiced components, it is
proposed to extend the previous model by adding an element
to the dictionary WF0 . This additional element, a vector of
ones, is appended to the former WF0 and corresponds to a
white noise spectrum. The model including this element is
called the “Voiced+Unvoiced”-IMM (VUIMM). This extra
element is only added in the source separation framework,
once the melody of the lead instrument and all the other
parameters have been accordingly estimated. This allows for
an appropriate modeling of the unvoiced components of V
while at the same time avoiding, to a certain extent, to capture
the noise components of the other musical sources such as the
drums.

At last, since many audio recordings are recorded on several
channels, mostly with two channels, right R and left L, we
also propose an extension allowing to deal with such signals.
The mixture is assumed to be an anechoic mixture of all
the contributions: each source contributes to a channel only
through the direct path between the corresponding microphone
and the position of the source. We further neglect the delay
of reception between microphones, hence reducing the spatial
model to real amplitude gain differences between channels.

The main voice is placed at a single static position, and
contributes to channel C with gain αC > 0, while each of the
R elements of M has its own position, with contribution gain
βC,r > 0. Let BC = diag(

[
β2
C,1, . . . , β

2
C,R

]
), then, for each

channel C ∈ {R,L}:

SV,C = α2
CS

Φ • SF0 and SM,C = WMBCHM (10)

The constraints on the gains are given by:∑
C

αC = 1 and
∑
C

βC,r = 1,∀r = 1, . . . , R (11)

This model, although simple, still allows to consistently deal
with multi-channel signals, even for more than 2 channels.
It might however not be robust enough to discriminate the
different contributions directly from their spatial positions. Our
specific source/filter model for the main instrument compen-
sates this simplicity by enforcing the signal of interest, V , to
obey to the desired melody smoothness property [19].

B. Estimation of the parameters

In this section, we address the estimation of the parameter
set Θ = {HΓ,HΦ,HF0 ,ΘM}, such that SX , in the single-
channel case, is the estimation of the observed STPS SX,o =
|X|2:

SX,o ≈ SX = SΦ • SF0 + SM (12)

SX is parameterized by Θ and by the fixed dictionaries
WΓ and WF0 . ΘM is the set of variables which calibrates
the residual STPS SM . The set Θ is estimated as the Θ̂ that
minimizes criterion C(Θ), defined as the divergence measure
D between SX,o and SX :

Θ̂ = arg min
Θ

C(Θ) = arg min
Θ

D(SX,o|SX) (13)

We consider divergence measures of the following form:

D(A|B) =
∑
ij

d(aij , bij) (14)

where A and B are two matrices with the same dimensions
I × J and d is a scalar divergence measure. Typical measures
for NMF methods are the Euclidean (EUC) distance dEUC,
the Kullback-Leibler (KL) divergence dKL or the Itakura-Saito
(IS) divergence dIS. These divergences differ in properties but
also in their interpretation on the signal model [24]. The β-
divergence generalizes these divergences [25]:

dβ(a, b) =

 aaβ−1−bβ−1

β(β−1) + bβ−1 b−a
β , β ∈ R+\{0, 1}

a log a
b − a + b, β = 1

a
b − log a

b − 1, β = 0
(15)

dβ therefore corresponds to dEUC, dKL and dIS when β respec-
tively equals 2, 1 and 0.

The chosen estimation algorithm relies on the multiplicative
gradient principle developed in [21]. Some insights about its
convergence properties can be found in [26]. The V(U)IMM
estimation algorithm, where ΘM = {WM ,HM}, is an
iterative algorithm for which the updating rules are given
in Tab. I, where the Hadamard products are denoted by
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TABLE I: Single-channel IMM parameter estimation, with
NMF accompaniment model for residual SM .

Initialize with random Θ (e.g. modulus of values drawn from the standard
normal distribution),
for i = 1, . . . , Niter do

Update the matrices of Θ in the following order, recomputing SX after
each of the following updates:

HF0 ← HF0 •
(WF0 )T (SΦ • (SX).(β−2) • SX,o)

(WF0 )T (SΦ • (SX).(β−1))

HΦ ← HΦ •
(WΓHΓ)T (SF0 • (SX).(β−2) • SX,o)

(WΓHΓ)T (SF0 • (SX).(β−1))

HM ← HM •
(WM )T ((SX).(β−2) • SX,o)

(WM )T (SX).(β−1)

HΓ ← HΓ •
(WΓ)T (SF0 • (SX).(β−2) • SX,o)(HΦ)T

(WΓ)T (SF0 • (SX).(β−1))(HΦ)T

WM ←WM •
((SX).(β−2) • SX,o)(HM )T

(SX).(β−1)(HM )T

end for

•, the fractions are meant element by element, as well as
the exponent in A.(ω). Niter is the number of iterations for
the gradient algorithm. The divergence value could be used
to set a convergence condition, hence dynamically setting
the optimal number of iterations. However, the link between
this divergence value and the resulting score for the desired
applications is sometimes not clear if not misleading [27]. In
our experiments, several numbers of iterations were tried.

To derive the stereo-channel algorithm, the updating rules
have to be modified. For instance, for HF0 , the updating
formula should be:

HF0 ← HF0 •
(WF0)T (

∑
C αCSΦ • (SX,C).(β−2) • SX,Co)

(WF0)T (
∑

C αCSΦ • (SX,C).(β−1))

The updates for the channel gains are given by the following
equations:

αC ← αC
sum

(
SΦ • SF0 • (SX,C).(β−2) • SX,Co

)
sum

(
SΦ • SF0 • (SX,C).(β−1)

)
BC ← BC

(WM )T ((SX,C).(β−2) • SX,Co)(HM )T

(WM )T ((SX,C).(β−1))(HM )T

where the operator sum(.) is the sum over all the elements of
the input matrix.

We have more specifically focussed on the estimation for
β = 0, that is when the β-divergence is the Itakura-Saito
(IS) divergence. One can indeed show that the estimation of
the parameters by minimizing the IS divergence is equivalent
to assuming that the Fourier vector of each frame n follows
a complex Gaussian distribution, centered, with a diagonal
covariance matrix whose diagonal is the vector sX

n [24]. This
view of the model is further studied in [19] and motivated by
the applications to audio signals of Section III.

It is important to note that, because of the divisions in the
formulas of Tab. I, the values of the parameters have to be
controlled so as to avoid numerical errors such as divisions
by zero. In addition, the indeterminacies related to the model

and the chosen criterion can be avoided by normalizing the
columns of HΓ, HΦ and WM . The columns of WΓ and WF0

should also be normalized, such that the values in HF0 all have
the same dynamics. At last, especially for the formulas used
for stereo signal decompositions, the multiplicative gradient
can be raised to some exponent between 0 and 2 as suggested
in [26], [28]. A small value (0.1 for αC and BC) of this expo-
nent usually avoids an evolution of the parameters that would
be, according to our tests, too chaotic and often converging
towards the bounds of the search space, namely 0 or 1 for αC
and βC . Although the convergence of the algorithm in Tab. I
has not been proved yet, in practice, both the single- and
stereo-channel algorithms decrease the criterion in Eq. (13)
after each iteration. The resulting decompositions are also
satisfying, as discussed in Section III.

C. Interpretation: three views of a model

In order to fully take advantage of the proposed signal
model, it is important to understand what kind of represen-
tation it yields. The proposed model,

SX = (WΓHΓHΦ)︸ ︷︷ ︸
filter

• (WF0HF0)︸ ︷︷ ︸
source

+(WMHM )︸ ︷︷ ︸
residual

, (16)

exhibits several matrix multiplications. This fact makes our
model very close to NMF models, in which, as we did
previously, the decomposition of the signal onto a basis of
spectral atoms is explicit. When using NMF-like methods
for source separation [29], [30] or music analysis [31], most
studies estimate both the spectral atoms and the activation
coefficients, directly from the signal, in an “unsupervised”
way.

Conversely, we develop in this section the reasons why
supervised NMF methods such as ours are particularly in-
teresting and why fixing some parameters is appropriate. An
example of how the remaining parameters can be used is
then sketched: the filter parameters indeed give an interesting
insight on the timbre of the mixture.

1) (Non-)estimation of the pitch: As in [10], we propose a
signal model that allows to decompose the signal onto several
harmonic patterns: in this supervised case of NMF, we fix
the spectral shapes WF0 and only estimate the corresponding
amplitudes HF0 . The estimation of the pitch with estimated
spectral shapes may be unreliable, especially when these
shapes are unconstrained, as shown in [32]. In the proposed
framework, the pitch used to generate the basis WF0 prevents
from the need to determine the pitch of each estimated shape.

2) Pitch salience: The interpretation of the estimates we
obtain are also similar to [10]: hF0

un reflects the energy of the
source component u at frame n, which is related to the fixed
F0 value F(u). An example of an estimated HF0 is given
on Fig. 3. In [31], a similar pitch salience representation is
proposed, but the reference pitch has to be estimated from the
obtained spectral atom.

Following Goto [10], we believe that representations such as
his or ours are very powerful: they provide salience functions
that are specially designed to avoid classical octave estima-
tion errors. Indeed, assuming that an ideal decomposition of
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Fig. 3: Estimated HF0 for the song by Tamy, from [33], the
intended notes are drawn as red rectangles for the singing
voice and green rectangles for the guitar.

the signal onto the given basis WF0 exists and is sparse,
the only non-zero coefficients correspond to sounds that are
present in the mixture. However, due to the flexibility of the
approaches, several spurious non-zero coefficients may occur,
as seen on Fig. 3. For instance, at around 3s, the unvoiced
component [sh] leads to an amplitude vector hF0

n with
values relatively uniform: a wide band noise can indeed be
roughly approximated by a weighted sum of harmonic combs.
A post-processing is therefore needed, depending on the target
application, as will be seen in Section III.

Such a representation should be compared with other pitch
salience functions such as those proposed in [34], [35]. These
approaches rely more on a perceptual basis for analysis, while
decomposition approaches as the proposed one are analysis-
by-synthesis approaches. The former approaches tend to focus
on what is assumedly important in the signal, while the latter
ones first model the signal, and then interpret the desired
parameters. Indeed, our method first estimates the parameters,
and then analyzes HF0 . This aspect is discussed in detail in
Section III-A.

3) Timbre analysis: At last, using the filter parameters,
we can extract a “spectral envelope” for the mixture. A
first estimation round does not usually provide a meaningful
envelope, since it corresponds, in our framework, to the global
envelope of the mixture. We could estimate one envelope
per frame and per component, as in [10]. The choice of a
limited number of filters however comes from the desire to
limit the range of possible timbres, hence limiting the number
of instruments that are caught. Since the proposed model
is originally designed to focus on only one instrument, a
second round of estimation of the parameters, with an explicit
restriction on the instrument to catch, provides a more useful
estimation of the spectral envelope.

One can thereafter process these envelopes for instance to
infer the lyrics, without an explicit separation of the signals
as done in [4].

M̂VUIMM

Wiener

Filters
Wiener

Round

Round

Round
1st Estimation

2nd Estimation

3rd Estimation

Melody
Tracking Melody

random Θ0

Initial HF0 = H̄F0

HF0

Θ

Θ

unvoicing in WF0

random Θ0

X

V̂VIMM

M̂VIMM

V̂VUIMM

Filters

Fig. 4: Block diagram of the complete system: a melody
estimation block followed by a first parameter re-estimation
block for the VIMM separation, then a second re-estimation,
for the VUIMM separation.

III. APPLICATIONS

The block diagram of the complete system is given in Fig. 4.
It illustrates each target application, namely the main melody
estimation and the separation of the corresponding instrument
(with both variants VIMM and VUIMM), respectively detailed
in Section III-B and III-C. The use of the IMM as a mid-level
representation is first discussed in Section III-A, along with
its underlying interpretations, in order to illustrate the charac-
teristics of the proposed model. In addition, some supporting
material, sound examples, annotation files and source code can
be found at http://www.durrieu.ch/research/jstsp2010.html.

A. IMM as a mid-level representation

It is possible to build, using the IMM, a new mid-level rep-
resentation, interesting for pitch content analysis. Indeed, the
matrix HF0 gathers the necessary information for inspecting
the pitched content, as discussed in Section II-C2.

In this section, the resulting F0 salience representation for
a polyphonic music excerpt is first described in detail, high-
lighting both the advantages and drawbacks of the proposed
model. These characteristics are then discussed against other
representations based on harmonic summations (HS).

1) Detailed example: A polyphonic excerpt from “Three
views of a secret” (J. Pastorious) is analyzed by the single-
channel version of the IMM. The chosen excerpt is interesting
because it exhibits a rather dense polyphony, with a leading
theme played by several instruments, on two octaves. The
parameters of the model for the analysis were fixed as follows,
using the NMF model for SM = WMHM :

Parameter Fmin Fmax Ust K P R Niter

Value 100Hz 2.5kHz 20 20 35 1 60

Fig. 5a shows a detail of the resulting matrix HF0 . The
presence of several concurrent tones, at t=2s, is evidenced by
the strong contours marking the corresponding midi notes at
numbers 81 (A5) and 93 (A6).

http://www.durrieu.ch/research/jstsp2010.html
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A first property arising from our decomposition-based
model is the sparsity of the representation: in the best
cases, non-null coefficients correspond to active F0s, with very
localized peaks in the representation. It therefore provides a
comfortable pitch representation, with a good readability. It is
worth noting how the different F0 lines are distinguishable on
Fig. 5a: in the 1s-2s interval, the evolutions of two different F0
lines at MIDI number 81 can be observed, and the F0 line at
93 is clearly different from those at 81, which tends to confirm
that it is another distinct F0 line, and not an artefact of the
algorithm which could be caused by the active F0s one octave
below.

Second, the lead instruments are usually well represented in
HF0 , and the main F0 lines on Fig. 5a indeed correspond to
lead instruments. This makes the model particularly suitable
for the applications explored in Section III-B and III-C, respec-
tively main melody estimation and lead instrument separation.

For real world signals, as can be seen on Fig. 3 and Fig. 5a,
the obtained HF0 is however much noisier than wished for.
Several reasons explain this result: first, since WF0 is not a
basis, the decomposition is not unique. The algorithm in Tab. I
may therefore lead to local minima of the criterion in Eq. (13).
For instance, coefficients of overtones of active F0s are very
likely to be non-null. Second, since that criterion does not
explicitly include sparsity constraints, the result itself is not
guaranteed to be sparse. Such constraints have been proposed,
for instance in [36] or [37] and could easily be included in the
proposed framework. However, for the applications presented
in the following sections, the HF0 matrices, estimated without
such constraints, lead to satisfying results in terms of melody
estimation and separation.

Other potential limitations lie in the possible discrepan-
cies between the assumed properties of the model and the
characteristics of real world signal. The chosen matrix WF0

may be unadapted for inharmonic instruments, for which the
correction brought by SΦ may be too restricted. Another
limitation is the quantification of the F0 scale. If the real F0
does not belong to the scale, the method will likely use the
neighboring quantified values to represent the sound. This can
be seen on Fig. 3, where the fast pitch variations of the singer
lead to a blurrier graph.

2) Qualitative comparison: In this section some of the
advantages and drawbacks of the proposed representation are
discussed and qualitatively compared to other representations.

Two other existing methods are discussed: the weighted
harmonic sum (HS) of [1] and its improved version [35]. The
HS method, implemented using the same parameters as in [1],
is one of many methods using sub-harmonic summation as
pitch salience function. For a given F0, it consists in adding the
amplitude of the frequency bins that lie within a certain range
from the expected harmonics of F0, weighted by a function of
the harmonic number. The method described in [35] performs
a further processing improving the salience of fundamental
frequencies, while reducing the salience of “spurious” peaks
which inherently appear in the representation3. This section

3The authors are thankful to Prof. A. Klapuri for providing a Matlab
implementation of his algorithm [35].

mainly focusses on HS because many pitch salience functions
rely on a similar principle, including [38], [39].

Fig. 5b and 5c respectively show the representation obtained
with the weighted HS (WHS) [1] and the pitch salience of [35].
For all the figures, the colors have been scaled such that the
result is visually satisfying. The F0 granularity (y-axis) of each
representation was chosen or re-mapped to fit the above IMM
choices.

First, the HS-based representations are inherently more
dense than the previously presented HF0 matrix: a single sinu-
soid indeed leads to a rather complex pattern [35], with many
non-zero coefficients which do not correspond to any “true”
F0. Harmonic sounds therefore correspond to sophisticated
patterns, as illustrated on Fig. 5b and post-processing steps
from HS results need to take into account these patterns. For
instance, the problem of finding the optimal salience function
in [35] can be seen as an inverse problem of finding the
sources (and their F0s) which have generated these patterns.
To a certain extent, as discussed earlier, the proposed method
provides such a solution directly from the power spectrum.

Furthermore, on Fig. 5b or 5c, the F0 lines around note
81, in the 1s-2s interval, are hidden within one unique lobe.
Although with each representation and appropriate algorithms,
it would probably be possible to retrieve these lines, it is worth
noting that with the IMM, such a task may be greatly sim-
plified when the decomposition is “ideal”. On that particular
excerpt, the octave line, note 93, seems easier to distinguish
from its lower octave on Fig. 5a than on the others: this is not
surprising, since the sparsity induced by our decomposition
approach very likely helps in obtaining F0 lines which are
more localized than HS-based methods.

As mentioned above, the purpose of this section is not
to formally compare or classify the above representations
but rather to illustrate some properties of our framework. In
practice, a mid-level representation has no intrinsic perfor-
mance outside the framework within which it is developed:
the proposed representation could not replace that of the
multiple F0 estimation system in [1] without proper changes
in the whole processing chain. It however provides detailed
and meaningful information about the pitch content (through
HF0), the timbre (SΦ) and the residual (SM ), tending towards
invertibility, since the whole spectrogram is modeled (except
for its phase). It then allows further processing steps such as
main melody estimation or source separation based on pitch,
as shown in the subsequent sections, in a unified framework.
In comparison, the signal model used to estimate the melody
in [40], also based on an HS salience, is different from the
model used to remove the singing voice therein, which is based
on an NMF decomposition approach.

At last, the main drawback of the proposed method, com-
pared to HS-based ones, is its complexity. It requires quite a lot
of memory to store all the matrices of the model. Furthermore,
its use in a real-time system is not straightforward, since
the estimation algorithm also requires many computationally
heavy iterative steps.
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Fig. 5: Pitch representations for an excerpt from “Three Views
Of A Secret” (J. Pastorius). The rectangles show some of
the notes played by the predominant instruments (mostly
trumpets): (a) Estimated HF0 (60 iterations), each frame is
normalized by its maximum, displayed in dB. ; (b) Salience
function from [1] (HS with parametric weights), normalized
frames, displayed in dB; (c) Salience function from [35] (HS
with learnt weights), normalized frames.

B. Main melody extraction

The input song is here assumed to be composed of two main
contributions: a leading voice, produced by a given instrument,
playing a predominant melody line, and the complementary
music, or accompaniment. Such a framework was already
studied in [19], and is only briefly described here.

Ideally with the lead instrument/accompaniment model
V(U)IMM, the estimated SV = SΦ • SF0 represents the
lead voice signal, while the estimated SM represents the
accompaniment. As seen previously, the estimation of HF0

actually describes a pitch salience for the processed mixture
signal: the desired main melody but also occasionally some
accompaniment notes. For this reason, a post-processing step
is necessary in order to extract the main melody from these
other sources. We have proposed in [19] a simple yet satisfying
system, shown in Fig. 4.

The matrix HF0 is first estimated without any constraint on
the number of active sources, such that more than one non-
null pitch per frame can be active. As previously seen, the
estimation is usually effective in keeping the most energetic
F0s in HF0 . The melody F0s can therefore be detected using
a Viterbi algorithm. The underlying assumption is that the
melody line is smooth and that it can therefore be modeled
thanks to a hidden Markov model (HMM), balancing the
smoothness of the melody line with its energy dominance
over the other active F0s. This results in the sequence of
melody index {ξn}n=1...N ∈ [1, U ]N , such that the sequence
of melody F0s is {F(ξn)}n=1...N . In addition, as described
in [19], the lead instrument present or absence was decided
thanks to the energy of each frame.

In addition to the state-of-the-art results obtained at interna-
tional campaigns [41], [42], we have tested our system on the
development dataset from the SiSEC evaluation campaign for
Professionally Produced Music Recordings [43] and [33]. We
have annotated the 5 available stereo audio excerpts: using
the proposed system, the melody was first estimated on the
vocals, then manually corrected. Each annotation is therefore
a sequence of melody F0s, in Hz, evaluated on windows of
46.44ms, every 5.8ms.

The proposed IMM model requires several manually set
parameters for the leading instrument (Fmin, Fmax, Ust, P , the
overlapping rate for WΓ, K), for the accompaniment (R) and
Niter. Several combinations of these parameters were tested
in [19]. In this section, we propose to analyze the effect of
the choice of R and Niter. We set the other parameters such
that Fmin = 100, Fmax = 800, Ust = 20, P = 30, K = 10
and an overlapping rate for WΓ of 75%. The tested values of
R were 1, 5, 10, 20, 32, 40, 50, 70, 100 and 200. Niter was
taken from 15, 30, 50, 70 and 100.

Each system outputs a sequence of F0, one per frame.
The returned value is assumed to be a “True Positive” (TP)
if it is within a semitone around the ground-truth value.
“False Positives” (FP) are non-null returned values of F0 for
silent frames, “True Negatives” (TN) count the number of
times the system correctly detected silent frames, while “False
Negatives” (FN) are the frames incorrectly detected as silent.
The precision (Pr = #TP

#TP+#FP ), recall (Rc = #TP
#TP+#FN ) and

F-measure (F = 2 PrRc
Pr+Rc ) were computed and analyzed.

Tab. II provides the best results for each of the SiSEC
songs, obtained by the proposed single-channel VIMM system
performed on the mean of the 2 channels. Fig. 6 also shows
Pr with respect to Niter.

We performed an analysis of variance (ANOVA) on the
results. It appears that all the parameters (R, Niter and the
so-called “song” factor) have a non-negligible effect on the
performances. Not surprisingly, the differences between the
songs imply most of the differences in the results. As seen in
Tab. II, the best overall result is obtained for the song by Tamy
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TABLE II: Precision (Pr), Recall (Rc) and F-measure (F ) for
melody estimation. The best result among all tests is reported,
along with the corresponding parameters R and Niter.

Song R Niter Pr (%) Rc (%) F (%)
Bearlin 100 50 55.0 76.1 64.0

Tamy 100 100 79.9 95.1 86.9
Another Dreamer 10 70 47.7 69.4 56.5

Fort Minor 1 100 36.1 45.5 40.2
“Ultimate” 20 100 52.6 68.2 59.4

(with, in average, P = 77%, R = 92% and F = 84%), while
the worst result is obtained for the rap song by Fort Minor
(P = 31%, R = 38% and F = 34%). The performance
of the system clearly depends on the actual content of the
excerpt: in the best case, there is only one singer, plus a
guitar, with repetitive and soft chords, easily fitted by our
accompaniment model. On the contrary, in the rap song, the
accompaniment is dense and very present, and the “singer”
recites, with voiced components that are less sustained, hence
breaking the assumption of smoothness of the melody line,
hence disturbing the algorithm.

A better discrimination between vocal and instrumental
notes is also crucial to improve the system. This is particularly
true for the song by Tamy, with a very good recall score, i.e.
our algorithm finds many of the notes that were sung, but
a relatively low precision, i.e. when the singer is silent, our
algorithm tends to catch another instrument.

Furthermore, the ANOVA reveals that the more elements
there are in WM , and the better the results are. Similarly,
the performances grow with the number of iterations. It
however seems that there exists some interaction between
these two factors, such that, depending on the song, there are
different optimal combinations, as shown in Tab. II. From our
experiments, as a trade-off, the combination of R = 40 and
Niter = 50 can lead to satisfying results.

It is also interesting to note that, at low values of R, even
with R = 1, and for a sufficient number of iterations, the
melody estimation does not break down. This tends to confirm
that a polyphonic signal can be modeled in SV , as presented
in Section II-A1.

At last, a detailed analysis of the estimated pitch deviations
to the ground-truth shows that, with a small number of
iterations (under 10), octave errors seem to happen more often
than with more iterations.

C. Lead instrument/Accompaniment separation

The proposed representation is also useful for audio source
separation. We have demonstrated in [44] and [18] that the
previously described melody estimation can be successfully
used to separate the lead instrument from the accompaniment.
The systems in these references, one single-channel and one
stereo-channel system, are designed such that both the melody
estimation and the separate signal estimations are done within
a unified framework. Indeed, contrary to common represen-
tations in melody pitch estimation [10], [14], the proposed
model provides a representation of the signal which does
not miss important information, in particular the envelope of

each note in the signal. Furthermore, as shown in [24], the
statistical model underlying the choice of the IS divergence
makes the computation of the Wiener filters straightforward,
and the time-domain signals can be retrieved, by an overlap-
add procedure, from the estimated STFTs, for channel C:

V̂C =
ŜV,C

ŜX,C
XC and M̂C =

ŜM,C

ŜX,C
XC (17)

We propose two main systems, based on the VIMM and the
VUIMM models. As shown on Fig. 4, we first estimate the
main melody {ξn} (first block line), with the single-channel
VIMM algorithm, performed on the mean of the 2 available
channels. Then, H

F0 is created from HF0 and the estimated
melody to simulate an “ideal” source coefficient matrix where
only the coefficients on the path of the melody and around a
quarter-tone thereof are non-null:

h
F0

un = hF0
un, if |u− ξn| < Ust/2

= 0, otherwise.

Such a H
F0 matrix as initial HF0 for the stereo-channel

VIMM parameter estimation therefore limits the number of
active F0s in V to 1 per frame, fulfilling the monophonic
assumption for the lead instrument. This leads to the VIMM
separation result (second block line). At last, we add the
unvoiced basis element in WF0 before a last parameter
estimation round, leading to the VUIMM results (third block
line).

One drawback of the proposed methods is the sub-optimal
solution which consists in first estimating the melody, and then
re-estimating the parameters to compute the Wiener masks.
The joint estimation of the melody and of the separation
parameters is however a difficult problem. The proposed
solution, although sub-optimal, still provides good results, as
discussed in this section. Improvements may rather come from
a revised signal model, with more constraints narrowing the
potential lead instrument, for instance, or directly integrating
the HMM for the states of the source part during the estimation
of the parameters.

The separation results for the above experiences, testing
the number of iterations and the number of elements in the
accompaniment part, were also computed, in terms of Signal-
to-Distortion Ratio (SDR) [45]. The ANOVA suggests that the
separation performance also depends on all the factors: R, Niter
as well as the differences between the songs. In particular, the
SDR grows with R, up to about R = 40, then decreases as R
grows. This effect can be explained by the imperfections of the
model for the lead instrument V : when the harmonic combs
in WF0 or when the filter smoothness constraint is too rigid,
some elements in WM may be fitting the lead instrument
part, replacing the estimation in SV . This will more likely
occur when there are more elements in WM than necessary.
The parameter R should therefore be adapted to the processed
song, in accordance with its actual content. Furthermore, a
close inspection of the results suggests, as for Precision (Pr),
that an optimal combination of R and Niter exists for each
song. Again, the values of R = 40 and Niter = 50 seem to
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the corresponding SDR gains.

lead to a good trade-off for a general use of the systems for
separation purposes.

In addition, Fig. 6 shows the melody estimation Precision
Pr against Niter, with R = 40, and the corresponding SDR
gains with respect to Pr, for the 5 songs from SiSEC 2010.
The SDR gains are computed as the SDR of the estimated
vocals, to which the original Signal-to-Interference Ratio
(SIR), here the vocal to accompaniment energy ratio, has been
subtracted. As the melody Pr grows, the SDR gains also grow,
but the absolute gain itself does not seem to be related in a
linear way to Pr.

Tab. III provides the resulting vocal SDRs for several
systems. First, the original SIR for each song is provided,
in dB. The Wiener system corresponds to the estimation of
the V and M using a Wiener mask computed thanks to
the original separated tracks: in Eq. (17), ŜV,C = |VC |2,
ŜM,C = |MC |2 and ŜX,C = ŜV,C+ ŜM,C . The Oracle systems
compute the Wiener masks with V(U)IMM parameters directly
estimated on the original individual tracks. Then, we ran the
V(U)IMM systems with different initial conditions, providing
the annotated melody (Melody), the voiced-vocal presence for
each frame (Pres., based on the annotated melody) and at last
without prior knowledge. For the oracle systems, as well as
for the Pres. systems, Niter was fixed to 50. For the other
V(U)IMM systems, the best results were chosen, among the
different experiments with R and Niter.

From Tab. III, several remarks can be made:
• All the SDR gains are positive, which shows that our

systems always improve the separation, and rarely miss
the desired lead instrument.

• The Wiener estimations are satisfying with regards to
many criteria, although the underlying assumption of
independence between the audio sources is not always
true.

• The performance differences between the oracle systems
and V(U)IMM systems with annotated melody show that
the melody alone is not a sufficient cue to achieve an
optimal separation. A better estimation of the accompa-
niment part might explain the difference and future work

TABLE III: Vocal SDR results for several systems: see text for
details. The song labels are: #1 Bearlin, #2 Tamy, #3 Another
Dreamer, #4 Fort Minor and #5 “Ultimate nz tour”

Song #1 #2 #3 #4 #5
Original SIR -5.3 0.2 -3.0 -7.2 -7.5

Wiener 10.9 13.7 11.5 11.4 10.1
VIMM - Oracle 8.5 12.4 8.4 7.4 6.4

VUIMM - Oracle 8.6 12.4 8.8 6.8 6.2
VIMM - Melody 6.9 11.3 5.7 4.2 4.9

VUIMM - Melody 7.5 11.8 6.6 4.5 5.5
VIMM - Pres. 5.9 10.5 5.3 2.6 4.4

VUIMM - Pres. 6.7 10.7 6.1 2.7 4.8
VIMM 6.0 11.3 5.3 3.3 4.3

VUIMM 6.5 11.6 5.8 3.3 4.9
Best SiSEC2010 x x 3.1 3.9 2.6

should probably aim at better exploiting the accompani-
ment characteristics, such as repetitions or steadiness in
comparison with vocal signals.

• The automatic systems sometimes perform better than the
Pres. systems: the provided voiced-presence might be too
restrictive for the systems. A fuzzier knowledge, provided
as probabilities of presence, may improve the results,
especially at the boundaries of presence/non-presence and
for frames with lead instrument unvoiced parts.

• VUIMM improves the result of VIMM, thanks to the
addition of the unvoiced element in WF0 . However, many
spurious unvoiced sounds, especially drum elements, are
caught in VUIMM. A pre-processing step reducing these
effects could be held, for instance using [46]. Note
however that for some signals, such as the rap song (by
Fort Minor), the vocal signal seems easier to understand
with VUIMM than with VIMM.

• The lowest SDR is obtained for the rap song by Fort
Minor. In this case, the singing part is closer to speech
than singing. For rap songs, a possible work-around is
probably to explicitly take into account the repetitive as-
pect of the accompaniment: the lead vocal is predominant
mostly because it varies more than the rest, not because
of its energy. Our systems are essentially based on the
energy cue to detect the melody and are therefore less
suitable for these specific signals.

• Our V(U)IMM systems achieve better results than the
algorithms that participated to the SiSEC 2010 evalua-
tion campaign, on the vocal SDR basis for songs #3 and
#5 [43]. The interested reader is also invited to compare
our separated vocals to those at http://www.irisa.fr/metiss/
SiSEC10/professional/dev eval.html. These encouraging
results show that, when the singing style exhibits suffi-
ciently smooth melody lines, a lead instrument separation
system based on melody estimation achieves state-of-the-
art results.

IV. CONCLUSION

The proposed method models an audio mixture power
spectrum as a decomposition onto a dictionary of pre-defined
spectral shapes. The algorithm to estimate the decomposition
parameters, both for single and multiple channel cases, is also
described. The model and its parameters can be successfully

http://www.irisa.fr/metiss/SiSEC10/professional/dev_eval.html
http://www.irisa.fr/metiss/SiSEC10/professional/dev_eval.html
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used as a mid-level representation of the mixture, displaying in
our case its polyphonic pitch content, but also for applications
such as melody extraction and lead instrument separation from
its background accompaniment.

These applications obtain state-of-the-art results, as shown
by international evaluation campaigns. However, there is room
for improvement, especially in modeling specific singing
styles, such as rap or spoken texts. Deciding whether an
unvoiced sound belongs to the lead instrument, e.g. a singer,
rather than to some other instrument, such as the drums, might
actually be an ill-posed problem. Indeed, some people can
rather genuinely imitate percussive sounds, which also means
that some unvoiced parts of speech signals might be harder
to discriminate from the accompaniment, without an explicit
learning stage. Using several channels to take advantage of
spatial information may help in the decision process.

At last, it is believed that the proposed model could be
advantageously used in other scenarios than those explored in
this article, such as lyrics recognition, chroma computation or
multiple pitch extraction.
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