
HAL Id: hal-02652614
https://hal.science/hal-02652614

Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accurate tempo estimation based on harmonic+noise
decomposition

Miguel Alonso, Gael Richard, Bertrand David

To cite this version:
Miguel Alonso, Gael Richard, Bertrand David. Accurate tempo estimation based on harmonic+noise
decomposition. EURASIP Journal on Advances in Signal Processing, 2007. �hal-02652614�

https://hal.science/hal-02652614
https://hal.archives-ouvertes.fr


1

Accurate tempo estimation based on
harmonic+noise decomposition
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Abstract

In this paper we present an innovative tempo estimation system that processes acoustic audio
signals and does not use any high level musical knowledge. Our proposal relies on a harmonic plus
noise decomposition of the audio signal by means of a subspace analysis method. Then, a technique to
measure the degree of musical accentuation as a function of time is developed and separately applied
to the harmonic and noise parts of the input signal. This is followed by a periodicity estimation
block that calculates the salience of musical accents for a large number of potential periods. Next, a
multi-path dynamic programming searches among all the potential periodicities for the most consistent
prospects through time and finally the most energetic candidate is selected as tempo. Our proposal
is validated using a manually annotated test-base containing 961 music signals from various musical
genres. In addition, the performance of the algorithm underdifferent configurations is compared. The
robustness of the algorithm when processing signals of degraded quality is also measured.

I. I NTRODUCTION

The continuously growing size of digital audio informationincreases the difficulty of its access and
management, thus hampering its practical usefulness. As a consequence, the need for content-based
audio data parsing, indexing and retrieval techniques to make the digital information more readily
available to the user is becoming critical. It is then not surprising to observe that automatic music
analysis is an increasingly active research area. One of thesubjects that has attracted much attention
in this field concerns the extraction of rhythmic information from music. In fact, along with harmony
and melody, rhythm is an intrinsic part of the music. It is difficult to provide a rigorous universal
definition, but for our needs we can quote Parncutt [1], “a musical rhythm is an acoustic sequence
evoking a sensation of pulse” which refers to all possible rhythmic levels,i.e., pulse rates, evoked
in the mind of a listener (see figure 1). Of particular importance is thebeat, also calledtactusor
foot-tappingrate, which can be interpreted as a comfortable middle pointin the metrical hierarchy
closely related to the human’s natural movement [2]. The concept ofphenomenal accenthas a great
relevance in this context, Lerdahl and Jackendoff [3] defineit as: ”the moments of musical stress in
the raw signal (who) serve as cues from which the listener attempts to extrapolate a regular pattern”.
In practice, we consider as phenomenal accents all the discrete events in the audio stream where
there is a marked change in any of the perceived psychoacoustical properties of sound,i.e., loudness,
timbre and pitch.

Metrical analysis is receiving a strong interest from the community because it plays an important
role in many applications: automatic rhythmic alignment ofmultiple instruments, channels or musical
pieces; cut and paste operations in audio editing [4]; automatic musical accompaniment [5], beat
driven special effects [6], [7] music transcription [8] or automatic genre classification [9].

A number of studies on metrical analysis were devoted to symbolic input usually in MIDI or other
score format [10], [11]. However, since the vast majority ofmusical signals are available in raw or
compressed audio format, a large number of recent work focuson methods that directly process the
time waveform of the audio signal. As pointed out by Klapuri [8], there are three basic problems
that need to be addressed in a successful metrical analysis system. First, the degree of musical stress
as a function of time has to be measured. Next, the periods andphases of the underlying metrical
pulses have to be estimated. Finally, the system has to choose the pulse level which corresponds to
the tactus or some other specifically designated metrical level.

A large variety of approaches have already been investigated. Histogram modelsare based on the
computation of the Inter-Onset Intervals (IOI) histogramsfrom which the beat period is estimated.
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Fig. 1. Example showing how the rhythmic structure of music can be decomposed in rhythmic levels formed by equidistant
pulses. There is adouble relationship between the lowest rhythmic level and the nexthigher rhythmic level, on the contrary
there is atriple relationship between the highest rhythmic level and the next lower level.

The IOI are obtained by detecting the precise location of onsets or phenomenal accents and the
detectors often operate on subband signals (see for example[12], [13], [14] or [15]). The so-called
Detection Function modeldoes not aim at precisely extracting onset positions, but rather at obtaining
a smooth profile, usually known as the ”detection function”,who indicates the possibility of finding
an onset as a function of time. This profile is usually built from the time waveform envelope [16].
Periodicity analysis can be carried out by a bank of oscillators based on comb-filters [17], [8] or
by other periodicity detectors [18], [19].Probabilistic modelssuppose that onsets are random and
exploit Bayesian approaches such as particle filtering to find beat locations [20], [21].Correlative
approaches have also been proposed, see [22] for a method that compares the detection function with
a pulse-train signal and [23] for an autocorrelation based algorithm.

The goal of the present work is to describe a method which performs metrical analysis of acoustic
music recordings at one pulsation level: the tactus. The proposed model is an extension of a previous
system that was ranked first in the tempo contest of the ”2nd Annual Music Information Retrieval
Evaluation eXchange” (MIREX) [24]. Our model includes several innovative aspects including:

• the use of a signal/noise subspaces decomposition,
• the independent processing of its deterministic (sum of sinusoids) and noise components for

estimating phenomenal accents and their respective periodicity,
• the development of an efficient audio onset detector,
• the exploitation of a multi-path dynamic programming approach to highlight consistent estimates

of the tactus and which allows the estimation of multiple concurrent tempi.

The paper is organized as follows. Section II describes the different elements of our algorithm, then
section III presents the experimental results and comparesthe proposed model with two reference
methods. Finally, section IV summarizes the achievements of our system and discusses possible
directions for future improvements.

II. D ESCRIPTION OF THE ALGORITHM

The architecture of our tempo estimation system is providedin Figure 2. First, the audio signal is
split in P subbands signals which are further decomposed into deterministic (sum of sinusoids) and
noise components. From these signals, detection functionswhich measure in a continuous manner the
degree of musical accentuation as a function of time are extracted and their periodicity is then estimated
by means of several different algorithms. Next, a multi-path dynamic programming algorithm permits
to robustly track through time several pulse periods from which the most persistent is chosen as
the tactus. The different building blocks of our system are detailed below. Note that, throughout the
rest of the paper, it is assumed that the tempo of the audio signal is stable over the duration of the
observation window. In addition, we suppose that the tactuslies between 50 and 240 beats per minute
(BPM).

A. Harmonic+Noise decomposition based on subspace analysis

In this part we describe a subspace analysis technique (sometimes referred to as high resolution
methods) which models a signal as a sum of sinusoidal components and noise.
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Fig. 2. Overview of the tempo estimation system.

Our main motivation to decompose the music signal is the ideaof emphasizing phenomenal accents
by separating them from the surrounding disturbing events,we explain this idea using an example.
When processing a piano signal (percussive or plucked string sounds in general) the sinusoidal
components hamper the detection of the non-stationary mechanical noise of the attack, in this case the
sound of the hammer hitting the cords. Conversely, when processing a violin signal (bowed strings
or wind instrument sounds in general) the non-stationary friction noise of the bow rubbing the cords
hampers the detection of the sinusoidal components.

The decomposition procedure used in the present work refersto the first two blocks of the scheme
presented in Figure 2 and is founded on the research carried out by Badeauet al. [25], [26]. Related
work using such methods in the context of metrical analysis for music signals has been previously
proposed in [19]. Letx(n), n ∈ Z, be the real analyzed signal, modeled as the sum:

x(n) = s(n) + w(n), (1)

where

s(n) =

2M
∑

i=1

αiz
n
i (2)

is referred to as the deterministic part ofx. Theαi 6= 0 are the complex amplitudes bearing magnitude
and phase information and thezi are the complex poleszi = edi+j2πfi wherefi ∈ [− 1

2 ,
1
2 [ are the

frequencies withfi 6= fk for all i 6= k and di ∈ R are the damping factors. It can be noticed that
sinces is a real sequence,zi’s andαi’s can be grouped inM pairs of conjugate values. Subspace
analysis techniques rely on the following property of theL-dimensional data vectors(n) = [s(n−L+

1), . . . , s(n)]T (with usually2M � L): it belongs to the2M -dimensional subspace spanned by the
basis{v(zk)}k=0,...,2M−1, wherev(z) = [1 z . . . zL−1]T is the Vandermonde vector associated with
a non-zero complex numberz. This subspace is the so-calledsignal subspace. As a consequence,
v(zk) ⊥ span(W⊥) whereW denotes aL × 2M matrix spanning the signal subspace andW⊥

an N × (N − 2M) matrix spanning its orthogonal complement, referred to as the noise subspace.
The harmonic+noise decomposition is performed by projecting the signalx respectively on the signal
subspace and the noise subspace.
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Initialization: US =

»

I2M

0(N−2M)×2M

–

For each time step n iterate:
1- A(n) = H(n)US (n − 1) fast matrix product
2- A(n) = US(n)R(n) skinny QR factorization

TABLE I

SEQUENTIAL ITERATION EVD ALGORITHM .

Let the symmetricL× L real Hankel matrixHs be the data matrix:

Hs =











s(0) s(1) · · · s(L − 1)

s(1) s(2) · · · s(L)
...

...
. . .

...
s(L− 1) s(L) · · · s(N − 1)











, (3)

whereN = 2L− 1, with 2M ≤ L. Since each column ofHs belongs to the same2M -dimensional
subspace, the matrix is of rank2M and thus is rank deficient. Its eigenvalue decomposition (EVD)
yields

Hs = UΛsU
H (4)

whereU is an orthonormal matrix,Λs is theL× L diagonal matrix of the eigenvalues,L− 2M of
which are zeros.UH denotes the Hermitian transpose ofU. The2M -dimensional space spanned by
the columns ofU corresponding to the non-zero entries ofΛs is the signal subspace.

Because of the surrounding additive white noiseHx is full rank and the signal subspace,US ,
is formed by the2M -dominant eigenvectors ofHx, i.e., the column ofU associated to the2M
eigenvalues having the highest magnitudes.

In practice, we observe the noisy sequencex(n) and its harmonic part can be obtained by projecting
x(n) onto its signal subspace as follows:

s = USU
H
S x (5)

A remarkable property of this method is that for calculatingthe noise part of the signal, the
estimation and subtraction of the sinusoids is not requiredexplicitly. The noise is obtained by
projectingx(n) onto the noise subspace:

w = x − s = (I − USU
H
S )x. (6)

Subspace tracking.Since the harmonic plus noise decomposition ofx(n) involves the calculation
of one EVD of the data matrixHx at every time step, decomposing the whole signal would require
a highly demanding computational burden. In order to reducethis cost, there exist adaptive methods
that avoid the computation of the EVD [27], a survey of such methods can be found in [26]. For
the present work, we use an iterative algorithm calledsequential iteration[25], shown in Table I.
Assuming that it converges faster than the variations of thesignal subspace, the algorithm operation
involves two auxiliary matrices at every time stepA(n) and R(n), in addition of a skinny QR
factorization. The harmonic and noise parts of the whole signal x(n) can be computed by means of
an overlap-add method:

1) the analysis window is recursively time-shifted. In practice, we choose an overlap of3L/4,
2) the signal subspaceUS is tracked by means of the previously mentioned sequential iteration

algorithm presented in Table I.
3) the harmonic,s, and noise,w, vectors are computed according to Eq. (5) and Eq. (6),
4) finally, consecutive harmonic and noise vectors are multiplied by a Hann window and respec-

tively added to the harmonic and noise parts of the signal.

The overall computational complexity of the harmonic plus noise decomposition for each analysis
block is that of step 2, which is the most computationally demanding task of the whole metrical
analysis system. Its complexity isO(Ln(n+ log(L)).
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Subspace analysis methods rely on two principles. From one part they assume that the noise is
white and secondly, that the order of the model (number of sinusoids) is known in advance. Both of
these premises are not usually satisfied in most applications.

A practical remedy to overcome the colored noise problem consists in using a pre-accentuation
filter1 and in separating the signal in frequency bands, which has the effect of leading to a (locally)
whiter noise in each channel. The input signalx(n) is decomposed intoP = 8 uniform subband
signalsxp(n), wherep = 0, . . . , P − 1. Subband decomposition is carried out using a maximally
decimated cosine modulated filter bank [28], where the prototype filter is implemented as a 150th

order FIR filter with 80 dB of rejection in the stop band. Usingsuch a highly selective filter is relevant
because subspace projection techniques are very sensitiveto spurious sinusoids.

Estimating the exact number of sinusoids present in a given signal is a considerably difficult task
and a large effort has been devoted to this problem, for instance [29] [30]. For our application we
decided to slightly overestimate the model order since according to Badeau [26, page 54] it has a small
impact in the algorithm performance compared to an underestimation. Another important advantage
of the bandwise processing approach is that there are less sinusoids per subband (compared to the
full band signal) which allows at the same time to reduce the overall computational complexity,ı.e.,
we deal with more matrices butP -times smaller in size.

In this way, further processing in the subbands is the same for all frequency channels. The output
of the decomposition stage consists in two signals:sp(n) carrying the harmonic andwp(n) the noise
part of xp(n).

B. Calculation of a musical stress profile

The harmonic+noise decomposition previously described can be seen as a front-end that performs
“signal conditioning”, in this case it consists in decomposing the input signal in several harmonic and
noise components prior to rhythmic processing.

In the metrical analysis community there exists an implicitconsensus about decomposing the music
signal in subbands prior to conducting rhythm analysis. According to experiments carried out by
Scheirer [17], there exists no optimal decomposition sincemany subband layouts lead to comparable
satisfactory results. In addition, he argues that a ”psychoacoustic simplification” consisting in a simple
envelope extraction in a number of subbands is sufficient to extract pulse and meter information from
music signals. The tempo estimation system herein proposedis built upon this principle.

The concept of phenomenal accent as a discrete sound event plays a fundamental role in metrical
analysis. Humans hear them in a hierarchical structure, that is, a phenomenal accent is related to a
motif, several motifs are clustered into a pattern and a musical piece is formed of several patterns
that may be different or not. In the present work, we attempt to be acute (in a computational sense)
to the physical events in an audio signal related to the moments of musical stress, such as magnitude
changes, harmonic changes and pitch leaps. That is, acoustic effects that can be heard and are musically
relevant for the listener. The attribute of being sensitiveto these events does not necessarily implies
the need of a specific algorithm for detecting harmonic or pitch changes, but solely a method which
reacts to variations in these characteristics.

In practice, calculating a profile of the musical stress present in a music signal as a function of time
is intimately related to the task of detecting onsets. Robust onset detection for a wide range of music
signals has proven to be a difficult task. In [31] Bello provides a survey of the most commonly used
methods. While we propose an approach that exploits previous research [16], [22] as a starting point,
it significantly improves the calculation of the Spectral Energy Flux (SEF) or spectral difference [32].
See Figure 3 for an overview of the proposed method. As in the previous section, the algorithm will
be presented for a single subband case and only for the harmonic componentsp(n), since the same
procedure is followed for the noise partwp(n) and the rest of the subbands.

Spectral energy flux. The method that we present resides on the general assumption that the
appearance of an onset in an audio stream leads to a variationin the signal’s frequency content.
For example, in the case of a violin producing pitched notes,the resulting signal will have a strong
fundamental frequency that leaps in time as well as the related harmonic components at integer

1Since the power spectral density of audio signals is a decreasing function of frequency, the use of a pre-accentuation
filter that tends to flatten this global trend is necessary. Inour implementation we use the same filter as in [26], that is:
G(z) = 1 − 0.98z−1
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Fig. 3. Overview of the system to estimate musical stress.

multiples of the fundamental attenuating as frequency increases. In the case of a percussive instrument,
the resulting signal will tend to have sharp energy boosts. The harmonic componentsp(n) is analyzed
using the STFT, leading to

S̃p(m, k) =

∞
∑

n=−∞

w(Mm− n)sp(n)e−j
2π

N
kn (7)

wherew(n) is a finite-length sliding window,M the hop size,m the time (frame) index andk =

0, . . . , N − 1 the frequency channel (bin) index. To detect the above mentioned variations in the
frequency content of the audio signal, previous methods have proposed the calculation of the derivative
of S̃p(m, k) with respect to time

Ep(l, k) =
∑

m

h(l −m)Gp(m, k) (8)

and whereEp(l, k) is known as the Spectral Energy Flux (SEF),h(m) is an approximation to an
ideal differentiator

H(ej2πf ) ' j2πf (9)

and
Gp(m, k) = F{|S̃p(m, k)|} (10)

is a transformation that accentuates some of the psychoacoustically relevant properties of̃Sp(m, k).
In solving many physical problems by means of numerical methods, it is a challenge to seek

derivatives of functions given in discrete points. For example, in [16], [22] authors propose a first
order difference withh = [1, −1], which is a rough approximation to an ideal differentiator.In this
paper, we use a differentiator filterh(m) of order2L based on the formulæ for central differentiation
developed by Dvornikov in [33] which provides a much closer approximation to (9). Other efficient
differentiator filters can be used providing comparable results, for instance, FIR filters obtained by the
Remez method [34]. The underlying principle of the proposeddigital differentiator is the calculation
of an interpolating polynomial of order2L passing through2L + 1 discrete points which is used
to find the derivative approximation. A comprehensive description of the method and its accuracy
to approximate Equation (9) can be found in [33]. The analytical expression to compute the firstL
coefficients of an antisymmetric FIR differentiator is given by g(i) = 1

iα(i) with

α(i) =

L
∏

j = 1

j 6= i

(

1 −
i2

j2

)

(11)

and i = 1, . . . , L. The coefficients ofh(m) are given by

h = [−g(L), . . . , 0, . . . , g(L)]. (12)
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Fig. 4. The smoothing effect of the energy integration function emphasizes signal attacks but masks rapid modulations.The
image shows apitched frequency channel corresponding to piano signal (upper part) before smoothing and (lower part) after
smoothing.

In our proposal, the transformationG(m, k) calculates a perceptually plausible power envelope for
frequency channelk and is formed of two steps. First, psychoacoustic research on computational
models of mechanical to neural transduction [35] shows thatthe auditory nerve adaptation response
following a sudden stimulus change can be characterized as the sum of two exponential decay
functions:

φ(m) = αe−m/T1 + βe−m/T2 for m ≥ 0 (13)

formed by a rapid decline component with time constant (T1) in the order of 10 ms and a slower
short-term decline with a time constant (T2) in the region of 70 ms. This adaptation function performs
energy integration, emphasizing the most recent stimulus but masking rapid modulations. From a signal
processing standpoint, this can be viewed as two smoothing low-pass filters whose impulse response
has a discontinuity that preserves edge sharpness and avoids dulling signal attacks. In practice, the
smoothing window is implemented as a 2nd-order IIR filter with z-transform

Φ(z) =
α+ β − (αz2 + βz1 z

−1)

1 − (z1 + z2)z−1 + z1z2 z−2
. (14)

whereT1 = 15 ms, T2 = 75 ms, α = 1, β = 5, z1 = e−1/T1 and z2 = e−1/T2 . Figure 4 shows
the role of the energy integration function after convolving it with a pitched channel of a signal’s
spectrogram representation.

The second part of the envelope extraction consists in a logarithmic compression. This operation
has also a perceptual relevance since the logarithmic difference function gives the amount of change
in a signal’s intensity in relation to its level, that is

d

dt
log I(t) =

∆I(t)

I(t)
. (15)

This means that the same amount of increase is more prominentin a quiet signal [16], [36].
In practice, the algorithm implementation is straightforward, and is carried out as presented in

Figure 3. The STFT in Equation (7) is computed using anN point fast Fourier transform (FFT).
The absolute value of every frequency channel,|S̃(m, k)| is convolved withφ(m). The smoothing
operation is followed by a logarithmic compression. The resulting G(m, k) is given by

G(m, k) = log10

(

∑

i

|S̃(i, k)|φ(m− i)

)

. (16)

At those time instants where the frequency content ofsp(n) changes and new frequency components
appear,E(l, k) exhibits positive peaks whose amplitude is proportional tothe energy and rate of change
of the new components. In a similar way, when frequency components disappear fromsp(n), the SEF
exhibits negative peaks, marking theoffsetof a musical event. Since we are only interested in onsets,
we apply a half-wave rectification (HWR) toE(l, k), i.e., only positive values are taken into account.
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Fig. 5. Trumpet signal example, see text for a description. From top to bottom: harmonic part waveform, spectrogram
representation, the corresponding spectral fluxE(l, k) and the detection functionv(l).

To find a global stationarity profilev(l), better known as thedetection function, contributions from
all channels are integrated across frequency

v(l) =
∑

k
E(l,k)>0

E(l, k). (17)

v(l) displays sharp peaks at transients and note onsets, those instants where the positive energy flux is
large. Figure 5 shows an example for a trumpet signal. From top to bottom: waveform of the harmonic
part for the subbands0(n); the respective STFT modulus, highlighting the signal’s harmonic structure;
SEFE(l, k), dotted vertical edges indicate the regions where the SEF islarge; the bottom part presents
the detection functionv(l), onset instants and intensity are indicated by peaks location and height
respectively.

The output of the phenomenal accent detection stage is formed of two signals per subband: the
harmonic part detection functionvsp(l), and the noise part detection functionvwp (l).

C. Periodicity estimation

The basic constituents of the comb-like detection functions vsp(l) and vwp (l) are pulsations repre-
senting the underlying metrical levels. The next step consists in estimating the periodicities embedded
in those pulsations. This analysis takes place at a subband level for both harmonic and noise parts.
As briefly mentioned in Section I, many periodicity estimation algorithms have been proposed to
accomplish this task. In the present work, we test three different methods widely used in pitch
determination techniques: the spectral sum, the spectral product and the autocorrelation function. The
procedure described below is repeated2p times to account for the harmonic and noise parts in all
subbands. In this stage, no decisions about the pulse frequencies present invp(l) are taken, but only
a measure of the degree of periodicity present in the signal is calculated. First,vp(l) is decomposed
into contiguous framesgn with n = 0, . . . , N − 1 of length ` and an overlapping ofρ samples, as
shown in Figure 6. Then, a periodicity analysis of every frame is carried out producing a signalrn
of lengthK samples generated by any of the three methods explained below:

1) Spectral sum:The spectral sum (SS) method relies on the assumption that the spectrum of
the analyzed signal is formed of strong harmonics located atinteger multiples of its fundamental
frequency. To find periodicities, the power spectrum ofgn, i.e., |Gn(e

j2πf )|, is compressed by a
factor λ, then the obtained spectra are added, leading to a reinforced fundamental. For normalized
frequency, this is given by

rn =

Λ
∑

λ=1

|Gn(e
j2πλf )|2 for f <

1

2Λ
(18)
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whereΛ is the upper compression limit that ensures that half the sampling frequency is not exceeded.
The spectral sum corresponds to the maximum likelihood solution of the underlying estimation
problem.

2) Spectral product:The spectral product (SP) method is quite similar to the above mentioned SS,
the only difference consists in substituting the sum by a product, that is

rn =

Λ
∏

λ=1

|Gn(e
j2πλf )|2 for f <

1

2Λ
(19)

3) Autocorrelation: The biased deterministic autocorrelation (AC) ofgn

rn =
1

`

∑

l

gn(l + τ)gn(l). (20)

Data fusion.Once allrn have been calculated, they are fused in a two step process. First, every
rn from the harmonic and noise parts is normalized by its largest value and weighted by a peakness
coefficient2 cn calculated over the correspondinggn. In this way, we penalize flat windowsgn (bearing
little information) by a low weighting coefficientcn ≈ 0. On the opposite side, a peaky windowgn
leads tocn ≈ 1. The second step consists in adding information from all subbands coming from both
harmonic and noise parts:

γn =
1

2P

P
∑

p=1

csn,pr
s
n,p +

1

2P

P
∑

p=1

cwn,pr
w
n,p (21)

where the superscripts andw on the right side indicate the harmonic and noise part respectively.
Since this frame process is repeatedN times, then all the resultingγn are arranged as column vectors
(γn) to form a periodicity matrixΓ of sizeK ×N as follows

Γ = [γ0 γ1 · · · γN−1]. (22)

Γ can be seen as a time–frequency representation of the pulsations present inx(n), since rows exhibit
the degree of periodicity at different frequencies, while columns indicate their course through time.

D. Finding and tracking the best periodicity paths

At this point of the analysis, we have a series of metrical level candidates whose salience over
time is registered in the columns ofΓ. The next stage consists of parsing through the successive
columns to find at each time instantn the best candidates and thus track their evolution. Dynamic
programming (DP) is a technique that has been extensively used to solve this kind of sequential
decision problems, details about its implementation can befound in [37]. In addition, it has also
been proposed for metrical analysis [22], [38]. At each timeframen there existsK potential path
candidates calledΓ(n,k). The DP solves this combinatorial optimization problem by examining all
possible combinations of theΓ(n,k) in an iterative and rational fashion. Then, a path is formed by
concatenating a seriesψn of selected candidates from each frame: theΓ(n,ψn). The DP procedure
iteratively defines a scoreS(n,k) for a path arriving at candidateΓ(n,k) and this score is a function of

2In the present work we use as peakness measurec = 1 − φ, whereφ =
“

Q`
l=1 g(l)

”1/`
/

“

1/`
P`

l=1 g(l)
”

. Sinceφ

(the ratio of the geometric mean to the arithmetic mean) is a flatness measure bounded to the region0 < φ ≤ 1, whenc → 1
it means thatg(l) has a peaked-shape. On the contrary, ifc → 0, means thatg(l) has a flat-shape.
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Fig. 8. Tracking of three most salient periodicity paths forMozart’s Rondo Alla Turca. The relationship among them is 1:2:4

three parameters: the score of the path at the previous frameS(n−1,ψn−1), whereψ(n−1) represents
the candidate through which the path comes from timen−1; the periodicity salience of the candidate
under analysisΓ(n,k); and a transition penalty, also called local constraint,D(ψn−1,k) who deprecates
the score of a transition from candidateψn−1 at timen − 1 to candidatek at timen according to
the rule shown in Figure 7. These three parameters are related in the following way:

S(n,k) = S(n−1,ψn−1)D(ψn−1,k) + Γ(n,k). (23)

The transition-penalty rule relies on the assumption that in common music, metrical levels generally
vary slowly in time. In our implementation, a transition in the vertical axis of one position corresponds
to about1 BPM (the exact value depends on the method used to estimate the periodicity). Thus, the
DP smoothes the metrical level paths and avoids abrupt transitions. In addition, the DP stage has been
designed such that paths sharing segments or being too close(< 10 BPM) to more energetic paths are
pruned. Figure 8 shows an example of the DP performance, in the upper part can be seen an image
of the time–frequency matrixΓ for Mozart’s pieceRondo Alla Turcashowing in black shades the
salience. In the lower part are shown the three most salient paths obtained by the DP algorithm and
representing metrical levels related as 1:2:4. To estimatethe tactus, the path with highest energy (i.e.,
the most persistent through time) is selected and the average of its values is computed. If a second
most salient periodicity is required (for example, as demanded in the MIREX’05 ”tempo extraction
contest”) the average of the second most energetic path obtained by the DP algorithm is provided as
secondary tactus.

III. PERFORMANCE ANALYSIS

In this section, we present the evaluation of the proposed system. Its performance under different
situations is also addressed, along with a comparison to another reference method. Note that the
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tempo estimation system includes beat-tracking capabilities, although this task is not evaluated in the
present paper.

A. Test data and evaluation methodology

The proposed system was evaluated using a corpus of 961 musical excerpts taken from two different
datasets. Approximately 56% of the data comes from the authors’ private collection, while the rest is
thesong excerptspart of the ISMIR’04 “tempo induction contest” [39] for which data and annotations
are freely available. The musical genres and tempi distribution of the database used to carry out the
tests are presented in Figure 9. Genre categories were selected according to those ofAmazon.comR©.
To construct both databases, musical excerpts of 20 s with a relatively constant tempo were extracted
from commercial CD recordings, converted to monophonic format and downsampled at 16 kHz with 16
bits resolution. In the authors’ private database, each excerpt was meticulously manually annotated by
three skilled musicians who tapped along with the music while the tapping signal was being recorded.
The ground-truthwas computed in a two step process. First, the median of the inter-beat intervals
was calculated. Then, concording annotations from different annotators were directly averaged, while
annotations differing by an integer multiple were normalized in order to agree with the majority before
being averaged. If no consensus was found the excerpt was rejected. Thesong excerptsdatabase was
annotated by a professional musician who placed beat marks on song excerpts and the ground-truth
was computed as the median of the inter-beat intervals [40].

Quantitative evaluation of metrical analysis systems is anopen issue. Appropriate methodologies
have been proposed [41], [42], however they rely on an arduous or extremely time-consuming
annotation process to obtain the ground-truth. Due to such limitations in the annotated data, the
quantitative evaluation of the proposed system was confinedto the task of estimating the scalar value
of the tactus (in BPM) of a given excerpt, instead of an exhaustive evaluation at several metrical
levels involving beat-rates and phase locations. A first step towards benchmarking metrical analysis
systems has been proposed in [40]. In a similar way, during our evaluation two metrics are used:

• Accuracy 1: the tactus estimation must lie within a 5% precision windowof the ground-truth
tactus,

• Accuracy 2: the tactus estimation must lie within a 5% precision windowof the ground-truth
tactus or half, double, three times or one-third of the ground-truth tactus.

The reason for using the second metric is motivated by the fact that the ground-truth used during
the evaluation does not necessarily represent the metricallevel that most of human listeners would
choose [40]. This is a widespread assumption found among metrical systems evaluations.

B. Experimental results

1) Effect of window length and overlap:it is interesting to know if the combination of the three
periodicity algorithms that we use (SS, SP and AC) would reach a score higher than individual entries.
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For this reason we created a fourth entrant calledMethod Fusion(MF) that combines results from the
three other methods using a majority rule. If there exists noagreement between methods, preference
was given to the SS. To measure the impact of the window length`, the overlapping was fixed to
ρ = 0.5`. Then, several values of̀ were tested as shown in Figure 10. For the spectral methods a
performance gain is obtained as` increases. This improvement is especially important for the approach
based on the SP. In the case of the AC, increasing` was counterproductive, since it slightly degraded
the performance probably due to the influence of the spuriouspeaks invp(l). There exists a trade off
between window length and adaptability to rhythmic fluctuations. From Figure 10 it can be seen that
accuracy for the SS and MF methods has practically reached its maximum wheǹ = 5 s. We then
study the overlappingρ parameter influence on the overall performance for a fixed window length
(` = 5 s). Figure 11 clearly shows that introducing this redundancy in the time–frequency matrixΓ
yields a significant gain in performance for the SS, SP and MF methods, this can be explained by
the fact that the DP stage has a larger data horizon and adaptsbetter to metrical levels paths. For
the AC method, varyingρ does not seem to have a significant effect in the results. As inthe ` case,
large ρ values bring a loss in adaptability. We fixed the overlappingto ρ = 0.6`, since it provides
a ”good” trade-off between accuracy and tracking capability. Hereafter, all results will be computed
using` = 5 s andρ = 0.6`.

2) Performance per genre:Figure 12 presents the algorithms’ performance in the form of bars
showing accuracyvs. musical genre, these results were calculated using theAccuracy 1criterion.
Figure 13 presents the algorithms’ performance but this time using theAccuracy 2criterion. Results
are in general considered satisfactory. With the only exception of greek music, for all genres at least
one of the periodicity methods obtained a score above 90%. For the reggae, soul and hip-hop genres
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Fig. 12. Operation point (5 s, 60% overlap) performance,Accuracy 1.
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in some cases even a success rate of 100% was obtained (under the Accuracy 2criterion), although
such results must be taken with cautious optimism since these genres are not particularly difficult and
their representation in the dataset is rather limited, as shown in Figure 9. For enhancement purposes,
it is perhaps more interesting to analyze the instances where the algorithm failed. For the classical
genre, the cases where the algorithms failed are mostly related to smooth onsets (usually in string
passages) that are not detected. In some excerpts a wrong metrical level was chosen (for example 2/3
of the tempo). In the jazz case, most failures are related to poly-rhythmic excerpts where the tactus
found by the algorithm differed from the one selected by the annotators. For the latin, pop, rock,
“other” and greek genres, the large majority of the errors are found in excerpts with a strong speech
foreground or having large chorus regions, both incorrectly managed by the onset detection stage.
For the greek genre, poly-rhythmic excerpts with a peculiartime-signature are often the cause of a
wrong detection. In techno music, some digital sound effects lead to false onsets.

3) Impact of the harmonic+noise decomposition:A natural question arises when we inquire about
the influence of the harmonic plus noise decomposition in thesystem’s performance. To answer it, the
proposed method has been slightly modified and thesubspace projectionblock presented in Figure 2
has been bypassed. This modified approach is based on a previous system that has been compared to
other state of the art algorithms and was ranked first in the ”2nd Annual Music Information Retrieval
Evaluation eXchange” (MIREX) in the ”Audio Tempo Extraction” category. Evaluation details and
results are available on-line [24], [43]. Besides, we decided to assess the contribution of the harmonic
plus noise decomposition proposed in section II-A (EVD H+N)by comparing it to a more common
approach based on the STFT (FFT H+N). The principle used to perform this decomposition is close to
that proposed by [44]. In addition, we compared the above mentioned system variations to the well-
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interval calculated as1.96
q

pq
N

wherep corresponds to the accuracy (in the[0 1] range) of the algorithm under analysis,q

is computed byq = 1 − p andN is the total number of excerpts under analysis [45, page 47].

known classical method proposed by Scheirer3 [17]. A small modification of Scheirer’s algorithm
output was carried out, since it was conceived to produce a set of beat times rather than an overall
scalar estimate of the tactus.

The accuracies of the algorithms can be seen in Figure 14. While the proposed system (EVD
H+N) attained a maximum score of 92.0%, it was slightly outperformed by its variation based on
the STFT decomposition (FFT H+N), who obtained 92.3% of accuracy (both under the SS method).
All tests showed better performance for the H+N based approaches, with the exception of the STFT
decomposition (FFT H+N) when combined with the SP periodicity estimation method. The results
shown in Figure 14 suggest that the statistical significancein the accuracy between carrying out a H+N
decomposition or not, depends on the method used. While the SS and MF show a small but consistent
improvement, the SP and AC fail to present the H+N decomposition as statistically advantageous.
Nevertheless, a general trend indicating a better performance is perceived.

After taking a closer look at the improvement obtained by using the H+N decomposition, we can
see that it is mainly formed of excerpts containing weak attacks such as bowed-string and wind
instruments, and to a lesser extent of signals with a rather clear rhythm but with a salient speech
foreground (vocals). When we examined the excerpts for which none of the algorithms succeeded,
we found practically the same kind of signals: bowed-strings with large vibratos and weak attacks,
orchestral pieces and signals with a strong speech foreground. In fact, the weakness of the algorithm
lies in the musical stress estimation module. This can be seen as a single problem formed of two
different facets:

• the incapability of detecting soft attacks mainly seen in classical pieces, while visual inspecting
the set of detection functions we noticed that true attacks do not surpass the noise level;

• the presence of too many false attacks in the detection function, mainly provoked by the appear-
ance of local frequency variations seen in vibratos and speech signals.

Both kinds of malfunctions produce an erroneous periodicity profile and consequently a wrong tempo
estimation.

As can be seen from Figure 14, the majority rule combination of the three periodicity estimation
methods (MF) did not obtain the best performance. Since the SS has the higher score among all
methods proposed, it will be the only one considered in the next part of the analysis.

4) Robustness to signal degradation:In order to evaluate robustness to signal degradation, we
used the scenario suggested by Gouyonet al. [40] with minor modifications: every excerpt was
downsampled, GSM4 encoded/decoded, up-sampled at 16 kHz, band-pass filtered in the 500–4000
Hz range, reverberation with a delay of one second was added and finally corrupted by white Gaussian

3This version of Scheirer’s algorithm was ported from the DecAlpha platform to GNU/Linux by Anssi Klapuri.
4Based on the digital speech codec GSM 06.10 “Regular Pulse Excitation Long-Term Predictor” (RPE-LTP) compressing

at 13 kbps.
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noise at three different SNRs. The performance of the evaluated systems are presented in Figure 15.
While the EVD H+N version displays an outstanding robustness to signal distortion, its counterpart
FFT H+N shows to be more sensitive, even than the non-decomposition approach. This fact becomes
more evident as the SNR reduces, however the interest of the H+N approach for noise robustness is
questionable in this case since the difference is not statistically significant. The EVD H+N robustness
to signal degradation has been previously exploited in the literature as a denoising tool for speech
signals in automotive applications [46], [47]. As long as the SNR is high enough to guarantee that
the 2M -dominant eigenvectors ofHx (see Section II-A) effectively correspond to the audio signal,
the harmonic part (sp(n)) will be noise free. If the SNR is further reduced, spurious components will
be detected among the dominant eigenvectors, as a result theharmonic part will be corrupted. Figure
15 also shows Scheirer’s algorithm robustness to signal distorsion.

5) Computational cost:A key attribute of any tempo estimation system is its computational
complexity. Since we implemented our algorithm under Matlab c© 6.5.1 (R13) and we use a number of
built-in functions, a meticulous evaluation appears to be rather complicated. The approach we adopted
to estimate the burden is not the most infallible, but it is the most straightforward yet providing a
tangible opinion about the true complexity. We measured thetime it takes to the EVD H+N algorithm
to process a 20 s excerpt taken from the test-base. Figure 16 shows the percentage consumption per
analysis block and the total processing time was23.248 s. This figures were obtained using a Pentium
4 machine running at 2.4 GHz with 512 MB of memory under DebianGNU/Linux 3.1 (Sarge). The
subspace projection stage is by far the most time consuming block.
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IV. CONCLUSIONS

In this paper we have presented a system that successfully analyzes acoustic music recordings in
order to extract tactus information. The proposed method was validated using a large dataset containing
961 instances covering several musical genres. Without requiring any high-level music information,
our system shows that a good accuracy can be obtained using a common system configuration and the
same parameter set. Moreover, our results indicate that decomposing the audio signal into harmonic
and noise parts prior to rhythm analysis yields a small but consistent improvement in performance and
proved to be robust to signal distortion. The major drawbackof the system is that this accuracy increase
was obtained at the expense of a high computational cost. It must be remarked that the combination
of the system components (harmonic and noise) is rather crude and this may explain that only a
small improvement in performance is obtained. Further workshould be dedicated to the elaboration
of improved fusion strategies. We have also presented a technique to estimate the musical stress as a
function of time which copes with a large variety of music signals. In addition, we use a multi-path
dynamic programming algorithm to provide temporal stability as well as a robust multi-periodicity
tracking, even in the presence of arrhythmic or slight musical passages. Compared to a previous
variant of our algorithm [34], the major changes in this new version consist in incorporating a dynamic
programming block and in avoiding any thresholding (neither hard or adaptive). These upgrades have
notably increased the system performance and robustness. However, it appears that further effort
should be devoted to the musical stress module to improve theoverall system performance. In fact,
a significant number of errors are the consequence of non-detected or over-detected attacks in the
musical stress profile. This is especially the case for signals containing tenuous attacks or predominant
vocal passages. Although the current system displays a highperformance when computing the main
tempo, future work is still needed to obtain a complete and structured metrical description of a
musical piece that will fully exploit the information related to the metrical levels that is provided
by the dynamic programming stage. If the reader is interested, a detailed list containing the name
of excerpts used during the evaluation, the BPM annotationsand all algorithm results can be found
on-line atwww.tsi.enst.fr/∼grichard/jasp06/.
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