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Abstract

Basic notions linked with concept theory can be accounted for by

partial order relations. These orders translate the fact that, for an

agent, an object may be seen as a better or a more typical exemplar

of a concept than an other. They adequately model notions linked

with categorial membership, typicality and resemblance, without any

of the drawbacks that are classically encountered in conjunction the-

ory. An interesting consequence of such a concept representation is

the possibility of using the tools of non-monotonic logic to address

some well-known problems of cognitive psychology. Thus, conceptual

entailment and concept induction can be reexamined in the framework

of preferential inference relations. This leads to a rigorous definition

of the basic notions used in the study of category-based induction.

Keywords categorization, prototype theory, categorial membership, typi-
cality, inference relations, nonmonotonic logic, category-based induc-
tion, resemblance theory, deep learning.

Introduction

This paper aims at providing a mathematical formalism for concept repre-
sentation. Its starting point is the binary model proposed by Osherson and
Smith [26], in which the notions of categorial membership and typicality re-
ceive independent treatments. Order relations can be defined from the two
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fundamental sets that, in this model, govern concept analysis: the defining
feature set and the characteristic one. As we shall see, such orders reveal
themselves to be an adequate tool to address the classical problems encoun-
tered in this domain.

Concept analysis, with which this paper is concerned, is an important
domain of cognitive psychology. The results we present here follow in a
long line of uninterrupted theoretical and experimental studies that go back
to the beginning of the seventies. They di↵er from the ones obtained in
[11], [12] and [13] in several points. First, the domain of this study has
been noticeably enlarged. It now covers most familiar concepts and is no
longer restricted to the family of concepts recursively obtained from sharp
ones, as was previously the case. Next, an operational distinction has been
drawn between concepts and features. Such a distinction renders possible the
construction of three di↵erent orders associated with a given concept: one,
based on the defining feature set, that compares the categorial membership
of two items, the second, based on the characteristic set, that compares the
typicality of two exemplars, and the last one, built on the union of the two
preceding ones, that can be used to evaluate resemblance between concepts.
With the help of these orders, a refinement of the notion of subconcept
has also been operated, providing an interesting solution to the problem of
within-category induction.

We have to emphasize that the model we propose is not universal. It
only applies to the subfamily of concepts for which categorial membership
and typicality can be defined through auxiliary sets of features. This model
is not objective either, in the sense that the concepts on which is based our
study and their attached feature sets are those that a given (human) agent
considers at a given time. Finally, the reader has to be aware that, at this
stage, this model is to be considered as a simple working hypothesis, since
no experiment has yet tested its validity.

Plan of this paper

In order to make this paper self-contained, we revisit in the first part the
fundamental notions on which is built concept theory. We first recall the basic
definitions that are linked with the notion of concept. After characterizing
the family of concepts that constitutes our domain of study, we propose an
ordered model to evaluate categorial membership for simple or composed
concepts (Sections 2 and 3). A similar construction is introduced in Section
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4 to account for the notion of typicality. There we characterize the family of
subconcepts that can be seen as a determination of a given concept. Section
5 deals with resemblance theory: it introduces a new way of computing a
resemblance degree between concepts.

The second part of this paper is devoted to concept entailment. In section
6 we present a logical model that parallels that used by Kraus, Lehmann and
Magidor to represent preferential inference relations ([22]). This, as we show
in Section 7, provides a particularly well adapted framework to revisit some
classical problems in category-based induction. Section 8 is a conclusion.

The proofs of the propositions are given in the Appendix.
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Part I

Representing the basic notions
of concept analysis

1 Concepts, features and objects

We denote by O the set of all objects, real or imaginary, that a human agent
has at her disposal at a given time. Together with this set, we suppose given a
set of concepts F that reflects the agent’s knowledge of her environment, and
on which she builds her reasoning process. For simplification, we shall adopt
the original presentation of Frege [9] who assimilated concepts with one-place
predicates. In this perspective, concepts will be generally introduced through
the auxiliary to-be followed by a noun: to-be-a-bird, to-be-a-vector-space, to-
be-a-democracy.

Objects are entities that are identified as such by some agent. The process
of identification may consist in recognizing an object as falling under one or
several concepts that are part of the agent’s knowledge. In this case, concepts
appear to be prior to objects, and this conforms with Quine’s famous No
entity without identity [28]. A concept may also arise from the observation
of an object. This is for example the case for some nominal or scientific
concepts. Thus, the concept to-be-a-group stemmed from the study by Galois
of an object, which was the set of permutations of the roots of an algebraic
equation... In any case, whatever process has been used by an agent to
recognize and name the objects of her environment, the starting point of this
study is the existence in her mind of these two sets O and F , which are
related by a categorial membership relation. The agent will consider that an
object x falls under a concept ↵, or that ↵ applies to x, if this relation is
satisfied between x and ↵. For example, we may say that ‘Beethoven’s opus
111 falls under the concept to-be-a-piano-sonata’, or that ‘The dog Tobby
does not fall under the concept to-be-a cat ’.

An object that falls under a concept is said to be an exemplar or an
instance of this concept. The set Ext↵ of exemplars of a concept ↵ forms
its associated category or extension.

Restricting if necessary our field of study, we shall suppose that the cat-
egorial membership relation is complete. This means that, given any object

4



of her environment, the agent is able to decide whether or not this object
falls under a given concept.

The notion of feature di↵ers from that of concept. Formally, features
may be introduced through a verb (e.g. to-fly), through the auxiliary to-
have followed by a noun (e.g. to-have-a-beak), or through the auxiliary to-be
followed by an adjective (e.g. to-be-tall). Features, like concepts, apply to
the objects at hand but, contrary to the concepts that an agent may use, they
are context-sensitive: they borrow part of their significance from the concept
to which they are attached1. Properties like to-be-tall, to-be-rich or to-be-red
take their full meaning only in a given context, that is when qualifying a
well-defined entity. Even simple verbal forms like to-fly, to-run, to-live-in-
water, to-be-made-of-metal need a principal referent concept to fully seize
the strength with which they apply to di↵erent items. The concept to which
a feature applies may be seen itself as a contextual determination of this
feature. To summarize, the meaning of a feature depends on the context
where this feature is used, contrary to the meaning of a concept, which, for
a given agent, exists by itself.

It does not seem at this stage that any formalism can fully account for
the di↵erence between features and concepts. It is true that in Description
Logics, a di↵erent treatment is applied for one and two-place predicates:
binary predicates characterize indeed the roles of the language, which are
used to express relationship between the concepts [23]. In such a framework,
to-be-a-tree will be a concept, expressible by a single symbol A, but to-have-
green-leaves is a role, expressed by a formula of the type ‘8 hasLeaves.Green’.
However, no di↵erence is made in Description Logics between the unary
predicates that translate a notion of concept and those that translate a notion
of feature.

In spite of these distinctions, features may be assimilated with concepts
when their meaning is well determined, that is when they intervene in a
given context. For instance, referring to men, the feature to-be-short is clear
enough, even though it is a vague concept. This identification between con-
cepts and unambiguous features renders possible a simplified universe of dis-
course.

In the classical theory of categorization, it is through its features that a

1
The concepts that an agent has in mind are themselves context-sensitive, but at a

di↵erent level: they indeed depend on the intellectual and social environment of this agent.

This sensitivity may be ignored when working, as we do, on a single agent’sWeltanschaung.
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concept is defined or characterized. Vertebrates that have beaks and feathers
will be labelled birds ; a car may be defined as a road vehicle powered by
an engine able to carry a small number of people; democracy is a system
of government by all the eligible members of a state. These features may
include the potential actions that are expected from instances of the concept
and that our perception is aware of [24]. To quote E. Gregoromichelaki [15]:
‘Perception of an entity will then be constituted by the set of expectations
concerning the possible actions enabled by it (its a↵ordance), rather than its
association with a mental symbol and stored propositional knowledge’. Thus,
to-drive-in-nails may be listed among the defining features of the concept
to-be-a-hammer.

In this perspective, where each concept is endowed with a set of attributes,
categorization relative to a concept boils down to categorization relative to its
defining features. On this attributional view rests the binary model ([32] and
[31]), in which two auxiliary sets are attached to a concept. On the one hand,
the defining feature set provides the conditions that an object should satisfy
in order to fall under a given concept; on the other hand, the characteristic
set lists the features that an object should have to be qualified as a typical
instance of this concept. Given for instance the concept to-be-a-fruit, an
agent may take as defining feature set the set consisting of the two elements
to-be-a-vegetable and to-have-seeds, while the characteristic set would include
features like to-grow-on-trees, to-be-sweet, to-be-raw-edible, to-yield-juice.

The attributional theory was thereafter rejected by most researchers, as
it appeared that concepts defined by a conjunction of features form an ex-
ceptional subclass. Fodor for instance [7] argued that there exists practically
no examples of successful definitions around. Without being so radical, it
is clear that a great deal of concepts are deprived of any set of defining
features: what list of attributes could be attached for concepts like to-be-a-
game, to-be-a-lie, or to-be-a-heap ? However, in spite of this fact, it appears
that the attributional view is justified for certain well-defined families of
concepts: such is for instance the case for most nominal concepts, i.e. con-
cepts that are conventionally defined, like to-be-a-mammal, to-be-a-theft or
to-be-a-refugee. In particular, this remains true for scientific concepts, like
to-be-a-vortex or to-be-a-square. Furthermore, it may happen that a concept,
first grasped through its exemplars, is thereafter sharpened with the help of
a set of defining features, as happened to the concept to-be-a-bird, a natural
kind concept that was revisited by naturalists and turned into the pseudo-
nominal to-have-feathers + to-have-a-beak + to-have-wings. Note also that
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even for non-definable concepts, class membership may still depend on aux-
iliary features: this occurs when categorial membership is induced through
resemblance to a prototypical exemplar. Then, it is the features of this pro-
totype that play the role of defining features.

These considerations show that the family of concepts whose categorial
membership and typicality may be defined through their corresponding set
of features is large enough to deserve a treatment of its own. Since this class
of concepts can be studied with the help of quite elementary mathematical
tools, there is no reason not to devote to them a special study. Such is the
aim of the present paper.

2 Categorial membership

An attributional concept being determined by its features, its categorization
process depends on the way these features apply to the di↵erent objects
that are part of the universe of discourse. As a first approximation, one
may use two-valued functions to measure the applicability of a feature to
an object, and decide that a concept applies to an object if and only if all
its defining features apply to this object. Such an attitude, however, would
reduce categorial membership to an all-or-none matter, ignoring the fact that
an object may be closer than another to falling under a concept, even if this
concept does not fully apply to it. This observation drove Eleanor Rosch [29]
and her successors to the conclusion that membership is a matter of degree.
In fact, even this assertion is disputable, as, in many cases, an agent will be
unable to assign a precise membership degree to a given item: the Neolithic
man was able to categorize and compare items without knowing anything
about degrees or scales, and the same is clearly true for young children.

At a basic level, one may consider that membership relative to a concept
boils down to a comparison relation between the objects of the agent’s uni-
verse. Thus, without trying to be more precise, and while unable to assign a
membership degree to the items at hand, an agent may judge that an arque-
bus is definitely less a-weapon-of-mass-destruction than a machine-gun. This
means that, for an agent, a concept may be grasped through the membership
order that this concept induces among the objects of the universe. The pro-
cess of categorization then consists in comparing items and evaluating their
relative membership to the target category. Note that, in some cases, this
membership order may generate a corresponding degree of membership. For
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example, the agent could consider a chain of objects that includes machine-
gun, dispose these objects on a [0,1] scale, and thereafter deduce from this
its respective membership degree. Thus, considering the chain

bludgeon  sword  crossbow  arquebus  gun  machine-gun 
flamethrower  conventional bomb  scud  atomic bomb

the agent may subsequently decide that a machine-gun is a WMD with degree
0.6. Nevertheless - and this is the hypothesis on which our whole study is
based - the point is that, in most cases, numerical values are attributed only
after a pre-recognized order has been set among the di↵erent items. An
example of such a construction will be examined in section 2.6.

Coming back to the notion of membership order, one may ask what spe-
cific properties should such a relation enjoy. Clearly, this kind of order cannot
be arbitrary. To correctly model membership relative to a concept, an order-
ing relation among the objects has to satisfy at least two properties. First,
its set of maximal elements should agree with the extension of the concept.
A concept should maximally apply to all its exemplars and only to them.
Next, the membership order should be finite, in the sense that any strictly
increasing chain of elements should be of bounded finite length. This does
not mean that the agent has only a finite number of objects at her disposal.
On the contrary, we are dealing with real or imaginary items, and the set O
is therefore supposed to be infinite. The finiteness condition simply means
that, relative to categorization, only a finite number of classes are to be con-
sidered: in the WMD example, any element of O either shares one of the ten
positions on the WMD chain, or is incomparable with the elements of that
chain.

A first way of building such a membership order could consist in simply
counting the features: an object x would be considered as falling less under a
concept ↵ than an object y if the number of ↵-defining features that apply to
x is less than the number of these features that apply to y. Alternatively, one
could consider that x falls less under ↵ than y i↵ the set of defining features
that apply to x is a subset of the set of defining features that apply to y.
These elementary approaches however su↵er from two drawbacks: first, they
suppose that the applicability of features to objects is an all-or-none matter -
a simplification that is supported by no rationale: clearly there exist degrees
in the way features apply to objects. For instance, the degree with which the
feature to-fly, taken in the context of to-be-a-bird, applies to the fluttering of
a hen is not the same as the degree with which it applies to the flight of an
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eagle. Secondly, these methods treat all the defining features of a concept at
the same level, ignoring the fact that, for an agent, some features may appear
to be more important than others. Thus, after having associated with the
concept to-be-a-bird the set of features {to-be-a-vertebrate, to-be-oviparous,
to-have-feathers, to-have-a-beak, to-have-wings}, an agent may consider that
having wings is a more important feature for birdhood than having a beak.
From this point of view, a bat will be endowed with more birdhood than a
tortoise.

2.1 Applicability functions and applicability orders in-
duced by concept features

The strength with which a feature f of a concept ↵ applies to an object is
usually measured in a given ontology through a percentage or an applicability
degree function �

↵

f

that takes its values in the unit interval. Concerning
the range of this function, it is important to observe that it can be most
often circumscribed to a finite subset of [0, 1]: this is clearly true for fuzzy
features like to-be-tall, to-be-rich or to-be-warm, since the measure of their
applicability is always approximative (to an inch, a cent or a degree). On
the Brittany coast of France, for instance, the set of water temperatures t

in July ranges from 15 to to 25 Celsius degrees, thus covering 11 possible
(integral) values. In this context, the function associated with the feature
warm may be given by �

↵

f

= t/10 � 1.5. The finiteness of the range of �↵
f

is even more obvious in the general process of categorization: ranking the
objects according to a feature of a given concept only yields a small number
of equivalence classes. Recall indeed that we are dealing with a phenomenal
representation of cognitive structures (see [14] for the di↵erence between
scientific and phenomenal representations). For instance, to determine to
which extent a flower may be considered as a poppy, one roughly evaluates
its redness, its shape and the size of its petals. Concerning the redness,
comparison with other objects shows that, even though it is theoretically
possible to list hundreds of di↵erent red shades, only a finite number of
discernible non-equivalent reds separate the color of that particular flower
from that of an ideal poppy. The same observation can be made concerning
the other features that define or describe poppies, like the shape and the size
of the petals.

For this reason, we consider that there is no loss of generality to re-
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strict the study of this paper to attributional concepts whose features can
be weighed on a finite scale. Given an attributional concept ↵, the way any
of its defining features f applies to an item is therefore accounted for by an
applicability degree function �

↵

f

that takes only a finite number of values in
the unit interval. Equivalently, we may say that f , as an ↵-feature, generates
an applicability order �↵

f

defined for any couple of objects (x, y) by:

x �↵

f

y i↵ �

↵

f

(x)  �

↵

f

(y).

The relation thus defined is a total pre-order that has only finitely many
equivalence classes : there exists only a finite number of intermediate states
between an object x totally deprived of f and an object y to which the feature
f fully applies.

Apart from the finiteness condition, any attributional concept will be
required to satisfy an agreement condition that guarantees the existence of
at least one object to which simultaneously apply all its defining features.
This simply means that every considered concept has a non-empty extension:
there exist objects to which this concept applies.

Definition 1 An attributional concept ↵ is a concept for which there exists a
non-empty finite set of defining features �(↵) that satisfy the two properties:

1. for every defining feature f , the corresponding applicability function
�

↵

f

takes a finite number of values.

2. There exists at least one item z such that �

↵

f

(z) = 1 for all defining
features f .

In the agent’s mind, the set �(↵) is constituted by a choice of attributes
that appear to be essential for the concept realization: the objects to which
↵ applies are exactly those that possess all these attributes.

It will be useful to assimilate a well determined feature f with an attri-
butional concept whose set of defining features is equal to {f}.

Recall that the extension Ext↵ of the concept ↵ is the set of all ob-
jects that fall under this concept. If ↵ is an attributional concept, we have
therefore Ext↵ = {x 2 O |�↵

f

(x) = 1 8f 2 �(↵)}.
In order to lighten the notation, the superscript of the applicability orders

and degrees will be omitted, so that �
f

and �

f

stand for �↵

f

and �

↵

f

. However,
it is necessary to keep in mind that the applicability order or the applicability
function of a feature is always defined relative to the concept it qualifies.
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2.2 Salience in the defining feature set

Let ↵ be an attributional concept and �(↵) the defining feature set that
an agent associates with it. As we noted, some defining features may be
considered as more important than others, or more salient to the eyes of this
agent. Thus, it is not only the number of features applying to an object, but
also their relative importance that have to be considered when evaluating its
categorial membership.

This can be easily done when salience is accounted for by a ranking func-
tion s that associates with each feature f its salience degree s(f). In this
case for instance, following Hampton [17], or [19], we can introduce for every
object x a membership degree �

↵

(x) defined by �

↵

= 1
N(↵)

P
f2�(↵) s(f)�f (x),

with N(↵) = |�(↵)|P
f2�(↵) s(f). The associated membership order is then

given by x 
↵

y i↵ �

↵

(x)  �

↵

(y).
Other systems exist, and the literature on the subject - multiple crite-

ria decision making - is abundant: see for instance [27], [33] or [35]. The
point, however, is that, in general, the agent is not supposed to endow each
defining feature with a specific rank of importance. Again, for an agent who
doesn’t know about numbers and scales for instance, comparing the relative
salience of two features may be simpler than attributing a precise salience
degree to each of them: salience is then simply viewed as a binary relation
of comparison between features.

If we want to model in all its generality an agent’s representation of
categorial membership, we have therefore to start from the very basic case
where the agent has equipped the set of defining features with a (possibly
empty) strict partial order >�(↵).

2.3 The membership order

In order to directly define a categorial membership order from the relation
>�(↵), we may proceed as follows:

Let ↵ be an attributional concept, and �(↵) its defining set equipped
with the salience order >�(↵). We consider that an object y is at least as
close to be an instance of ↵ as an object x if, for each defining feature that
applies more to x than to y, there exists a more salient feature that applies
more to y than to x. We set therefore:

x �
↵

y i↵ 8f 2 �(↵) | y �
f

x, 9g 2 �(↵), g >�(↵) f | x �
g

y.(1)
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We shall say in this case that the concept ↵ applies at least as much to
y as to x, or that y is at least as close to be an ↵ as x. This exactly means
that each defining feature that applies more to x than to y is dominated by
a defining feature that applies more to y than to x.

Before analyzing the positive and negative aspects of this construction,
let us check that the relation �

↵

is indeed a weak order.

Proposition 1 The relation �
↵

is a partial weak order on O.

(We recall that the proofs are given in the Appendix.)
We shall refer to �

↵

as the order induced by �(↵). The strict partial order
associated with �

↵

is easily seen to be given by:

x �
↵

y i↵ x �
↵

y and 9f 2 �(↵) such that x �
f

y.(2)

We can now check that �
↵

correctly models categorial membership:

Proposition 2 An object is �
↵

-maximal in O if and only if it is an element
of Ext↵. One has z �

↵

x for any x 2 Ext↵ and z /2 Ext↵. Furthermore,
any increasing �

↵

-chain is of finite bounded length.

Let us evaluate an example of membership order induced by the concept
to-be-a-bird :

Example 1 Let ↵ be the concept to-be-a-bird, and suppose that, from the
point of view of a particular agent, its defining feature set in the context
of living beings is the set {to-have-two-legs, to-lay-eggs, to-have-a-beak, to-
have-wings}, equipped the salience order: to-have-a-beak >

s

to-lay-eggs >

s

to-have-two-legs, and to-have wings >
s

to-lay-eggs>
s

to-have-two-legs. Sup-
pose for the sake of simplicity that, in the agent’s mind, membership to any
of these features is a two-valued function. Let s, m, t, b and d respectively
stand for a sparrow, a mouse, a tortoise, a bat and a dragonfly. Then the
induced membership order is determined by the following array :

two� legs lay � eggs beak wings

sparrow ? ? ? ?

mouse
tortoise ? ?

bat ? ?

dragonfly ? ?

12



One readily checks that d �
↵

s, m �
↵

t, and m �
↵

b. Note that one has
b �

↵

d, since the concept to-have-two-legs under which the bat falls, contrary
to the dragonfly, is dominated by the concept to-lay-eggs that applies to the
dragonfly and not to the bat. On the other hand, one does not have d �

↵

b, as
nothing compensates the fact that the dragonfly lays eggs and the bat does not.
This yields b �

↵

d. Note also that the tortoise and the bat are incomparable:
one has neither b �

↵

t, nor t �
↵

b.
The strict ↵-membership order therefore reads:

m

b

d
t

s

⇢
⇢

c
c

c

c
c

c




Remark 1 The notion of extension is not su�cient to characterize a con-
cept. In the preceding example for instance, a di↵erent agent may agree on
the defining feature set of the bird-concept, while disagreeing on the asso-
ciated salience order. Thus, the concept to-be-a-bird would di↵er from one
agent to the other, although its exemplars would be the same.

This suggests that the original binary model needs to be completed: not
only the defining and characteristic feature sets have to be taken into account,
but also the salience orders provided therein. Thus, strictly speaking, a ‘per-
sonal’ (as opposed to ‘universal’) attributional concept ↵ should be defined by
a quadruplet (�(↵), >�(↵), �(↵), >�(↵)), where �(↵) and �(↵) are finite sets
of features respectively equipped with the strict partial orders >�(↵) and >

�(↵).

Coming back to the construction of the order proposed by formula (1),
we have now to mention two negative aspects.

The first one occurs when the salience order on �(↵) is empty. Then the
membership order �

↵

boils down to the intersection of the �
fi ’s: one has

x �
↵

y i↵ �

f

(x)  �

f

(y) 8f 2 �(↵). This is a very strict condition that only
few pairs of objects will satisfy. Furthermore, it leads to counterintuitive
results: for instance, an agent may consider that an a tortoise, that shares
with birds the features of having-a-beak and laying-eggs has more birdhood
than a monkey, to which only applies the single feature to-have-two-legs.
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For this reason, it seems preferable to require that, in the absence of any
salience order, �

↵

is the order:

x �
↵

y i↵
X

f2�(↵)

�

f

(x) 
X

f2�(↵)

�

f

(y).(3)

The second drawback of �
↵

is that a single feature dictates ↵-membership
whenever it is more salient than the others. That is, if such a feature applies
more to y than to x, y will be considered as closer than x to ↵, even if
all other features apply more to x than to y. Note that this phenomenon
can be also encountered in the orders defined through a membership degree
�

↵

= 1
N(↵)

P
f2�(↵) s(f)�f (x), as defined in section 2.2. Indeed, suppose that

for a particular feature f0, one has s(f0) >

P
f 6=f0

s(f). Suppose also that
f0 applies to an object x but not to an object y, but that all other features
apply to y and not to x. Then the ↵-membership degree of x will be greater
than that of y, although no feature, except one, applies to x, while all but
one apply to y.

It is doubtful that, for an agent, the defining feature set attached to a
concept includes more than a handful of features - those found, for instance,
in a dictionary. It follows that, in the phenomenal framework in which we
circumscribe this study, the hypothesis of a single feature overruling dozens
of others appears to be a theoretical one.

Henceforth, we shall suppose that the membership order induced by a
defining feature set is evaluated by the relation of weak partial order given by
equation (1), which will be denoted by�µ

↵

or�µ

�(↵). This will be considered as
the principal case. Some results established in this paper remain valid in the
special case where, the salience order on �(↵) being empty, the membership
order is given by (3): these will be marked with an asterisk (*). 2

2.4 Subconcepts

Let ↵ be an attributional concept. Following the usual definition, we shall
say that � is a subconcept of ↵ if Ext � ✓ Ext↵. This is equivalent to saying
that every defining feature of ↵ applies to the instances of �. An interesting
class of subconcepts is given by the following lemma:

2
An attempt to an alternative solution was proposed in [13]. The resulting membership

order appears to be free from the dictatorship phenomenon encountered in �µ
↵, but reveals

itself to be hard to implement, even in the simplest cases.
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Lemma 1 Every attributional concept � such that �µ

�

✓ �µ

↵

is a subconcept
of ↵.(*)

This leads to the following definition:

Definition 2 A regular subconcept of ↵ is an attributional concept � such
that �µ

�

✓ �µ

↵

.

Such regular subconcepts may be found by adding to �(↵) some defining
features considered as less salient than the defining features of ↵. In this
sense, a regular subconcept � does not show particularly original features
compared to those of ↵. For instance, for an agent who only knows that
the macaw is a kind of parrot, to-be-a-macaw will be considered as a regular
subconcept of to-be-a-parrot. On the contrary, to-be-a-parrot will not be
considered as a regular subconcept of to-be-a-bird : no agent indeed would
think that to-talk or to-have-scarlet-feathers is a less salient feature of parrots
than to-have-two-legs.

Definition 3 Two attributional concepts ↵ and � are similar if equality holds
between their membership orders.

Denoting by ⇠ the relation of similarity, we have therefore ↵ ⇠ � i↵
�µ

�

=�µ

↵

. An example of non-trivial similarity will be given in section 3.2.

2.5 Essence and extension

Definition 4 Let ↵ be an attributional concept and Ext↵ its extension. The
essence Ess↵ of ↵ is the set of all concepts � that apply to every element of
Ext↵: Ess↵ = {� 2 F ;Ext↵ ✓ Ext �}.

One may consider the elements of this set as the essential attributes of the
concept. Since ↵ 2 Ess↵, we have Ext↵ =

T
(Ext k)

k2Ess↵

, showing that
the extension of a concept can be retrieved from its essence. In the language
of Formal Concept Analysis, the pair (Ext↵, Ess↵) can be considered as a
formal concept in the context (O,F , I), where O is the set of objects, F the
set of concepts and (x, ↵) 2 I i↵ x falls under ↵.

The essence of a concept, as defined above, corresponds to the classical
one (see [10]), provided one remembers that the universe of discourse in-
cludes, with real objects, imaginary ones - that is objects that the agent my
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think of: eg. a unicorn, a pink elephant, a flying cow... Restricting the set
O to real objects would indeed lead to counterintuitive results: consider for
instance the concept to-be-the-US-president, and suppose that it is known
that all past and present US presidents were golf players. Then the attribute
to-be-a-golf-player applies to all instances of to-be-the-US-president ; if only
real existing objects were considered, the feature to-be-a-golf-player would
become part of the essence of to-be-the-US-president...! Enlarging the set of
real objects to imaginary ones avoids this drawback, because we can imagine
a US president that does not play golf.

Remark 2 The essence of a concept gathers two di↵erent families of con-
cepts or attributes. On the one hand, we find the specific attributes that
are attached to this concept and help distinguishing it from neighboring con-
cepts. In the example of to-be-the-US-president, such is for instance the
case of the concepts to-sleep-in-the White-House, to-convene-Congress, to-
command-the-US-armed-forces. In the current literature, this set is usually
referred to as the ‘Intension’ of the concept. On the other hand, we have the
generic attributes, which the concept has inherited from some super-concept:
for instance, the generic attributes of the concept to-be-US-president include
the features to-be-mortal, to-be-a-vertebrate or to-have-a-heart, which are
part of the essence of to-be-a-man. The distinction between specific and non
specific features plays an important role in category-based induction. It will
be more precisely studied in section 7.2.2.

2.6 Membership distance and membership degree

Since �µ

↵

is generally not a ranked order, it cannot be faithfully translated
by a numerical function It is however possible to approximate the notion of
membership degree by considering increasing chains of objects, similarly to
what was evoked in the WMD example. The following construction may be
used to evaluate how far an object x stands from falling under a concept ↵.

Consider the maximal length of a chain x �µ

↵

x1 �µ

↵

. . . �µ

↵

x

n

with last
term x

n

2 Ext↵. This length measures the distance that separates x from
Ext↵. It will be referred to as the membership distance of x, and denoted
by µ

↵

(x).
Let us denote by N

↵

the length of a maximal �µ

↵

-chain in O. The mem-
bership degree �

µ

↵

can be then defined, for all objects x, by �

µ

↵

(x) = 1� µ↵(x)
N↵

.
Hence, �µ

↵

(x) = 1 if and only x 2 Ext↵, and �

µ

↵

(x) = 0 if and only if x is
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maximally distant from Ext↵. Note that �µ
↵

(x) < �

µ

↵

(y) whenever x �µ

↵

y.

Example 2 In Example 1, the membership order yields µ

↵

(t) = 1 provided
that, for the agent, there exists no animal z such that t �µ

↵

z �µ

↵

s. Similarly
µ

↵

(d) = 1 and µ

↵

(b) = 2. Concerning the mouse, the agent may consider
that the chain m �µ

↵

k �µ

↵

b �µ

↵

d �µ

↵

s is a maximal one, where k stands for
a monkey, so that µ

↵

(m) = 4. The maximal length of a chain is 4, and the
membership degrees are �

µ

↵

(m) = 0, �µ
↵

(b) = 1/2, �µ
↵

(t) = �

µ

↵

(d) = 3/4) and
�

µ

↵

(s) = 1.

3 The case of compound concepts

Elementary concepts may aggregate in di↵erent ways to give birth to com-
pound ones. The simplest one seems to be the ordinary conjunction, &, which
corresponds to a simple juxtaposition of terms, as in (to-be-a-woman)&(to-
be-a-physician) or (to-be-a-car)&(to-be-a-home). For such an operation to
be meaningful, it is clearly necessary that the extensions of the components
have non-empty intersection. The result should yield a concept where both
components have same importance, so that the connective & should be a
symmetric operator. For di↵erent reasons however, examples are rare where
↵&� and �&↵ exactly convey the same notion. The order in which com-
ponents are articulated impacts the meaning one gives to the conjunction.
(To-be-a-woman)&(to-be-a-doctor) does not bear the same signification as
(To-be-a-doctor)&(to-be-a-woman). For this reason, we shall turn to a more
sophisticated operator. This connective was introduced in [11] to account for
the determination of a concept by another.

3.1 The determination connective

It is possible to determine a concept ↵ by another concept or by a feature �
whose meaning is unambiguous. We obtain in this way a compound concept,
denoted by � ?↵. This determination is most often realized by the combina-
tion of an adjective, or a verb in the participle form, with a noun, like in the
compositions to-be-a-carnivorous-animal, to-be-a-flying-bird, to-be-a-french-
student, to-be-a-red-apple. The determination can also take the form of a
noun-noun combination, like in to-be-a-pet-fish, to-be-a-barnyard-bird, and,
more generally, of a relative clause that will be globally encapsulated by the
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concept � (e.g. to-be-an-American-who-lives-in-Paris). Typically, the deter-
miner � becomes a simple feature of the compound concept � ? ↵. Its role
can be considered as secondary, compared with that played by the principal
concept ↵: to-be-red is a feature of the composed concept to-be-a-red-car,
and to-be-a-woman becomes a feature of a to-be-physician-that-is-a-woman.
Unlike conjunction, concept determination is not commutative : to take a
well-known example, the concept of games-that-are-sports di↵ers from the
concept of sports-that-are-games.

The idea of introducing a determination connective in the logic of concepts
goes back to J.P. Desclés - see for instance [4]. In his Object Determination
Logic, Desclés defined a partial operator from F x O into O, that associates
to a concept f and an object x, the ‘more determined’ object �f(x). A-red-
car would result for instance of the determination of an object a-car by the
concept to-be-red. In our framework, it seems simpler to directly work in
the set of concepts, as we consider that an ‘undetermined’ object should be
assimilated with a concept.

As a last remark, it is important to keep in mind that only the intersective
conceptual combinations are accounted for: we consider the determination of
↵ by � in the only case where Ext↵\Ext � 6= ;. (see [21] for the distinction
between intersective and non-intersective determiner). This shows that the
determination connective ? is only a partial operator: given arbitrary ↵ and
�, it may be meaningless to build the concept � ? ↵. For instance, there is
no sense in talking of a sailing-number or a wooden-salience. Such pseudo-
concepts correspond to nothing, and no object, real or fictitious, can be
thought of falling under them, contrary to imaginary concepts like a pink-
elephant, a striped-apple or a flying-cow : these latter definitely have a non-
empty extension, because we can imagine a pink elephant, a striped apple or
a flying cow.

Our aim is now to find a model that describes a precise type of concept
determination, in which the determiner plays only a secondary role. Other
types of connective exist, where the principal role is attributed to the deter-
miner, like in the concept to-be-a-Picasso-painting. These will not be studied
in this paper.

3.2 Membership order for compound concepts

Let ↵ be an attributional concept and � an attributional concept or a feature
whose applicability has been defined in the context of ↵. If the determination
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of ↵ by � is meaningful, that is if Ext↵ \ Ext � 6= ;, it is not di�cult to
define a membership order on the concept � ? ↵ that gives pre-eminence to
↵ over �. This can be done by setting:

x �µ

�?↵

y if x �µ

↵

y and either x �µ

↵

y, or x �µ

�

y.(4)

In this framework, the concept to-be-a-flying-bird will be considered as ap-
plying more to a penguin than to a bat: indeed, the principal concept is that
of being-a-bird, while to-fly appears as a simple feature, less important than
the concept it determines.

The relation �µ

�?↵

is reflexive and transitive. Since it is clearly a subrela-
tion of �µ

↵

, it makes � ?↵ a regular subconcept of ↵ in the sense of Definition
2. Its associated strict partial order reads:

x �µ

�?↵

y if and only if either x �µ

↵

y, or x �µ

�?↵

y and x �µ

�

y.(5)

It is interesting to observe that the compound order �µ

�?↵

can be directly
recovered from a fictitious set of defining features attached to the concept
� ? ↵:

Theorem 1 (*) � ? ↵ is similar to an attributional concept whose set of
features �(� ? ↵) is equal in the principal case to �(↵) [�(�).

It follows from this result that the set of attributional concepts is stable
under concept determination, so that concept determination can be iterated.
This operation satisfies idempotence and associativity:

Proposition 3 (*) Let ↵, � and � be three attributional concepts such that
Ext↵ \ Ext � \ Ext � 6= ;. Then

• ↵ ? ↵ ⇠ ↵.

• � ? (� ? ↵) ⇠ (� ? �) ? ↵.

As can be expected, the determination of a concept by one of its own
defining feature leaves unchanged its induced membership order:

Proposition 4 One has f ? ↵ ⇠ ↵ for every f 2 �(↵).
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The family of features f that satisfy f ? ↵ ⇠ ↵ therefore includes the
defining features of ↵. In fact, we can consider any element of this family as
a ‘generalized defining feature’, as can be seen from the following proposition.

Proposition 5 Let f be a feature such that f ?↵ ⇠ ↵. Then f can be added
to the set �(↵) without changing the order �µ

↵

.

By the above proposition, a generalized feature may be seen as a feature
that the agent could have included in her defining set, although consider-
ing it as less salient than the other ones. For instance, if an agent thinks
that, as far as class-membership is concerned, there is no di↵erence between
the concept to-be-a-bird and the concept to-be-a-bird-that-has-feathers, this
agent will consider that the feature to-have feathers, taken in the context of
being a bird, may be part of the defining feature set given in Example 1, this
feature being less salient than to-have-two-legs.

We now turn to the extension of a compound concept. By Theorem 1,
this notion can be directly defined similarly to what was done for simple
concepts (see paragraph 2.1).

Proposition 6 (*) The extension of (� ? ↵) is the set of �µ

�?↵

-maximal ele-
ments of O. It satisfies Ext (� ? ↵) = Ext↵ \ Ext �.

This proposition shows that full categorial membership is compositional :
an object falls under a determined concept if and only if it falls under the
concept and under its determiner. The category of red-cars exactly covers all
the items that are red and that are cars. It is however important to observe
that although compositionality holds for full membership, it does not hold
for relative membership: we do not have �µ

�?↵

=�
↵

\ �
�

. An object y may
fall more than an object x under � ?↵, while falling less than x under �: the
concept to-be-a-flying-bird for instance applies more to a penguin than to a
bat, although to-fly applies more to a bat than to a penguin.

Remark 3 We can see from (5) or from Theorem 1 that any strictly increas-
ing �µ

�?↵

-chain is of finite bounded length. As was done for simple concepts, a
membership distance can be defined for compound concepts of the form � ?↵:
for any object x, let µ

�?↵

(x) denote the length of a maximal �µ

�?↵

-chain start-
ing from x and ending in Ext (� ? ↵). Note that µ

↵

(x)  µ

�?↵

(x). If N
�?↵

is
the length of a maximal �µ

�?↵

-chain in O, the (� ? ↵)-membership degree of

x may be then defined by �

µ

�?↵

(x) = 1� µ�?↵(x)
N�?↵

.
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Given an attributional concept ↵, one may ask which concepts can be
characterized as a determination of ↵. The answer is given by the following
proposition:

Proposition 7 (*) Let ↵ and � be two attributional concepts. Then the
following conditions are equivalent:

1. � ⇠ (� ? ↵)

2. There exists a concept � such that � ⇠ (� ? ↵)

3. � is a regular subconcept of ↵ such that �µ

↵

✓�µ

�

.

3.3 The conjunction e↵ect

The conjunction e↵ect or guppy e↵ect was observed in 1981 by Osherson
and Smith [25]; it has been thereafter at the center of numerous research and
experiments (see in particular [16], [21] or more recently [1] and [8]); it can
be described by the fact that an item may be found to be more strongly a
member of the composition of two concepts than a member of one of them.
Thus, a cuckoo was found to be more strongly a member of the composed
concept (to-be-a-pet-bird) than a member of the concept to-be-a-pet on its
own, and a guppy was considered more a member of the concept (to-be-
a-pet-fish) than a member of the concept to-be-a-fish. This appears to be
paradoxical, since any item falling under a composition � ? ↵ must already
fall under each of its components.

A similar e↵ect, the Linda paradox, was observed in [34]: subjects were
told about a woman, Linda, who was involved in liberal politics in college.
Some subjects were then asked to rate the probability that Linda has be-
come a bank teller, other subjects were asked to rate the probability that she
became a feminist bank teller. The result showed that it was judged more
probable that Linda became a feminist bank teller. This again seems in con-
tradiction with classical logic and probability theory, since being a feminist
bank teller necessarily implies being a bank teller, so that the probability
of the first event should not exceed that of the second event. However, and
in spite of ‘desperate manipulations designed to induce subjects to obey the
conjunction rule’, the result of the experiments all concluded in the sense of
a so-called ‘violation’ of the conjunction rule.

These two ’paradoxes’ seem to have promoted the introduction in concept
theories of the quantum mechanics formalism: thus, Franco writes in [8] that
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‘Quantum mechanics, for its counterintuitive predictions, seems to provide a
good formalism to describe puzzling e↵ects of contextuality ’. Similarly, Aerts
[1] pleads for adopting in cognition theory the attitude of theoretical physi-
cists for whom ‘data showing deviations from set theoretic rules are a major
indication of the presence of quantum structure’; he thus devotes special at-
tention to the example of the guppy e↵ect as ‘none of the currently existing
concept theories provides a satisfactory description and/or explanation of
such e↵ect for concept combinations.’

We do not take sides on the question whether the rather complex and
artificial formalism of quantum mechanics is or is not suitable to model cog-
nitive theories; however, we depart from the quoted authors in that we think
that the guppy e↵ect and the conjunction fallacy can be simply described and
explained through a classical formalism, using for instance the tools which
we developed in the preceding sections. This can be seen in the following
example.

Example 3 Let us take again the degree computations of example 2. The
chain m �µ

↵

k �µ

↵

b �µ

↵

d �µ

↵

s being supposed to be maximal, one has
�

µ

↵

(k) = 1/4. If � is the feature to-be-black, equipped with a two-valued
membership degree function, one may think of a maximal � ? ↵-chain like

m �µ

�?↵

m

0 �µ

�?↵

k

0 �µ

�?↵

k �µ

�?↵

b �µ

�?↵

b

0 �µ

�?↵

d �µ

�?↵

d

0 �µ

�?↵

s �µ

�?↵

r,

with m: a white mouse; m0: a black cat; k0: a (red-brown) kangaroo; k: a
black macaque; b: a brown bat; b0: a black bat; d: a blue dragonfly; d0: a black
fly; s: a sparrow; r: a raven. This leads to N

�?↵

= 9, and �

µ

�?↵

(k) = 1/3,
showing that, in this model, the macaque is closer to the concept to-be-a-
black-bird than to the concept to-be-a-bird.

3.3.1 Objections to the compositional theory

Several arguments have been developed against a theory of compositionality
in which membership relative to a compound concept simply boils down to
membership relative to each of its constituents. It has been objected for
instance ([16] and [18]) that agents make a marked di↵erence between, for
instance, the concept s ? g (being-a-game-that-is-a-sport and the concept
g ? s (being-a-sport-that-is-a-game): consequently, these concepts should not
share the same exemplars... However, as we underlined (see remark 1) two
concepts may be di↵erent while sharing the same extension. We agree that
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the concepts s ? g and g ? s are di↵erent, but this does not at all preclude
their extensions of being the same. Our opinion is that an item which is
considered as definitely a sport that is a game must be both a sport and a
game. But this will not remain true for an object that is simply ‘close’ to
being a sport that is a game.

Concerning the composition of extensions, our model does not seem to
conform with Hampton’s conclusions ([16] or [18]) that a large number of
items ...(are) more often judged to belong in a conjunction such as school fur-
niture or protective clothing than in the categories from which these concepts
are supposedly drawn, namely furniture and clothing...Thus, items belonged
in a conjunction that did not belong in one of its constituent concepts.

This seems to stand in contradiction with the results of Proposition 5. But
if we look closely at the di↵erent experimental results displayed in Hampton’s
paper, we note that they are not really explicit as long as full membership is
concerned. Let us recall indeed that membership, in Hampton’s experiments,
was rated by a positive number from 1 to 3 ‘to indicate degree of typicality’,
while non-membership was rated by a negative number from -1 to -3 ‘to
indicate relatedness as a non member’. In other words, Hampton treated on
the same level categorial membership and typicality. It turns out that in the
case of proper concept determination (thus excluding the cases of kitchen
furniture, sport vehicle and protective clothing), the results, displayed pp.
22-23 of Hampton’s paper show that when an item’s membership relative to
one of the components is less than or equal to -1, its membership relative to
the conjunction is always strictly less than 1. This means that an item that
is known not to fall under one of the components of a conjunction will never
be considered as (fully) falling under this conjunction.

To be more specific, let us return to the blackboard example. Experiments
show that people consider such an item as a clear exemplar of the concept
to-be-school-furniture, although not an exemplar of the unmodified to-be-
furniture. Therefore, the extension of the compound concept is not equal to
the intersection of the extensions of its components, in apparent contradiction
again with Proposition 4.

From our point of view, however, we do not consider this fact as con-
tradicting our model, because we claim that to-be-school-furniture is not
a determination of the concept to-be-furniture. Indeed, by default, to-be-
furniture refers to to-be-home-furniture. This can be seen from the defini-
tions found in the dictionaries. In the Collins English Dictionary, for in-
stance, furniture consists of large objects such as tables, chairs, or beds that
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are used in a room for sitting or lying or for putting things on or in. In
the Oxford Lexico, after giving for principal definition the movable articles
that are used to make a room or building suitable for living or working in,
such as tables, chairs, or desks, a second meaning is proposed that reads:
usually with adjective or noun modifier, the small accessories or fittings that
are required for a particular task or function.

From this follows that the word furniture, when not preceded by a noun
modifier, is principally used in the sense of home-furniture. Since school-
furniture is not home-furniture that can be found in school, the corresponding
composed concept is not the result of a determination of home-furniture
by the relative clause used-in-school. The intersection of the extensions of
these two concepts is empty, and this prohibits their composition through
determination, as we underlined in section 3.2.

It is interesting to note that the compound concept to-be-school-furniture
cannot be translated in French through a determination or a modification
of the words meubles or ameublement, two expressions that are are used
to designate usual (home) furniture. The French word that translates the
concept of furniture dedicated to some specific use is mobilier : one speaks
then of mobilier d’école (school-furniture), mobilier urbain (urban-furniture),
or mobilier de bureau (o�ce-furniture). The compound concept obtained in
this way is fully compositional.

4 Typicality

Among the exemplars of a concept, some objects can be considered as typi-
cally representing this concept. For a European agent for instance, a robin,
a blackbird or a sparrow typically represents the concept of to-be-a-bird, con-
trary to a penguin or an ostrich, that would be qualified as atypical. Indeed
sparrows, blackbirds and robins fly, sing, and live in the trees, all attributes
that are usually expected from birds, and that do not possess penguins or
ostriches. The typical exemplars of a concept di↵er from the non-typical ones
in that they fall under a set of particular features that naturally come to mind
when evoking the concept. These features are not part of the essence of the
concept, but they are ‘by default’ supposed to apply to its non-exceptional
instances. In the agent’s mind, they form a characteristic set, that will play
for typicality a role that is analogous to that of the defining feature set in
categorial membership.
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4.1 Typical exemplars, essence and intension

As was recalled in section 1, in the binary model, for some concepts, typicality
is fully accounted for by their associated characteristic feature set. Using the
definition of attributional concepts given in Definition 1, we can parallel
the constructions operated in section 2, replacing the notion of categorial
membership by that of typicality. For this purpose, we shall consider the
following subfamily of attributional concepts.

Definition 5 A featured concept ↵ is an attributional concept for which
there exists a non-empty finite set of characteristic features �(↵) that satisfy
the two properties:

1. For every characteristic feature f the corresponding applicability func-
tion �

f

takes a finite number of values.

2. There exists at least one exemplar z of ↵ such that �
f

(z) = 1 for any
characteristic feature f .

This definition ensures that {x 2 Ext↵ | �↵
f

(x) = 1 8f 2 �(↵)} is a
non-empty set. We shall denote this set by Typ↵, and refer to its elements
as the typical exemplars of ↵.

As was done for attributional concepts (see section 2.1 in fine), it will
be useful to assimilate a well determined feature f with a featured concept
whose characteristic set is equal to {f}.

Definition 6 The intension Int↵ of a featured concept ↵ is the set of all
attributes that apply to every element of Typ↵. Its elements will be called
the typical attributes, or the typical features of ↵.

We have therefore
Int↵ = {f | �↵

f

(x) = 1 8x 2 Typ↵}, and
Typ↵ = Ext↵

T
k2Int↵(Ext k) =

T
f2(�(↵)[�(↵)) Ext f .

Clearly, Ess↵ is a subset of Int↵. Note that the set Int↵ \ Ess↵ is
usually larger than the characteristic set: this latter only gathers the fea-
tures that, for an agent, isolate the typical exemplars from the remaining
ones. Thinking of dogs, for instance, an agent may consider the set {to-bark,
to-gnaw-at-bones, to-be-a-cat-enemy} su�cient to characterize typical dogs,
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neglecting attributes like to-get-fleas or to-run-on-to-sticks.

As was the case for the defining feature set, some characteristic features
may be seen by the agent as more important than others. Consequently, we
shall suppose that the characteristic set is equipped with a salience order
which we denote by >

�(↵).

4.2 The typicality order

Like membership, typicality is generally not an all-or-none matter. Given
a featured concept ↵, the best tool to evaluate the relative typicality of its
exemplars is the construction, on the set Ext↵, of an ordering stemming from
its characteristic set. For this purpose, we can adapt the solutions proposed
in section 2.3. The typicality order will be defined on the subset Ext↵ of
O, and the role played by the defining features will be replaced by that of
the characteristic ones. Given two exemplars x and y of ↵, we shall therefore
consider that y is at least as typical as x i↵, for each characteristic feature
f that applies more to y than to x, there exists a more salient characteristic
feature g that applies more to y than to x:

x �⌧

↵

y i↵ 8f 2 �(↵) | y �
f

x, 9g 2 �(↵), g >

�(↵) f : x �
g

y.(6)

Again, we shall mark with an asterisk the results established for the order
�⌧

↵

that remain valid in the exceptional case where, the salience order on
�(↵) being empty, the typicality order on Ext↵ is given by

x �⌧

↵

y i↵
X

f2�(↵)

�

f

(x) 
X

f2�(↵)

�

f

(y).(7)

We have the analogue of Proposition 2:

Proposition 8 (*) The relation �⌧

↵

is a partial weak order on Ext↵. Its
maximal elements are the typical instances of ↵. One has z �⌧

↵

x for any
x 2 Typ↵ and z /2 Typ↵.

Membership and typicality orders fully determine a concept, as they de-
scribe how the universe of discourse is structured relative to this concept.
This leads to the definition of equivalent concepts:
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Definition 7 Two featured concepts ↵ and � are said to be equivalent, writ-
ten ↵ ⌘ �, if �µ

↵

=�µ

�

and �⌧

↵

=�⌧

�

.

This notion of equivalence is stronger than that considered in [11], where
equivalence only required the double equality Ext↵ = Ext � and Typ↵ =
Typ �. Indeed, we may have these equalities without having ↵ ⌘ �: such
will be the case for example whenever �(↵) = �(�) and �(↵) = �(�) but
>�(↵) 6=>�(�) or >�

(↵) 6=>

�(�).

Remark 4 As was done in section 2.6, it is possible to build from the relation
�µ

↵

a typicality distance ⌧
↵

and a typicality degree �⌧
↵

defined on the set Ext↵.
This construction exactly parallels that proposed for membership distance and
membership degree.

4.3 Typicality for compound concepts

Let �?↵ be the determination of ↵ by a concept �. Similarly to what was done
in section 3.2, we define the typicality order �⌧

�?↵

on the set Ext↵ \ Ext �

by:
x �⌧

�?↵

y if x �⌧

↵

y and either x �⌧

↵

y, or x �⌧

�

y.(8)

This relation is reflexive and transitive. The associated strict partial order
reads

x �⌧

�?↵

y i↵ x �µ

↵

y, and either x �µ

↵

y or x �µ

�

y.(9)

As was the case for membership, the typicality order for a composed con-
cept gives preeminence to the original concept: a typical exemplar of �?↵ has
maximal ↵-typicality among the elements of Ext (� ? ↵). Such a representa-
tion however leads to seemingly paradoxical results. It has been objected for
instance (Hampton, personal communication) that this construction makes
a gull a more typical exemplar of Antarctic-bird than a penguin, while, for
most people, the penguin appears to be the typical Antarctic bird. The ex-
planation, in our opinion, is that one confuses a typical Antarctic bird with
a bird that typically lives in Antarctic, this latter being usually interpreted
as a bird that mainly lives in Antarctic. Such is indeed the case for the pen-
guin, which, contrary to the gull, is an Antarctic endemic bird. Moreover,
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the penguin’s features are so di↵erent from those of a familiar European bird
that they may appear as ’typical’ of this atypical species.

Typicality, as we see, is often understood as a di↵erentiation tool: the
most typical exemplars of an atypical subcategory tend to be chosen among
the less typical exemplars of this category... Such an interpretation how-
ever does not correspond to the usual definition of typicality by means of
characteristic features. Indeed, it covers a di↵erent notion, that accounts for
representativeness rather than typicality. To precisely grasp the di↵erence,
it is necessary to introduce a representativeness order inside a subcategory:
for example, given two exemplars x, y of a subconcept � of ↵, one may say
that, relatively to ↵, y is a better representative of � than x if y is at the
same time more �-typical and less ↵-typical than x. It is this order relation,
di↵erent from typicality, that would render the penguin more representative
as an Antarctic bird than the skua or the petrel.

Using the notion of equivalent concepts yields some elementary properties
of the determination connective.

Proposition 9 (*) Let ↵, �, � be three arbitrary featured concepts such that
Ext↵ \ Ext � \ Ext � 6= ;. Then

• ↵ ? ↵ ⌘ ↵.

• � ? (� ? ↵) ⌘ (� ? �) ? ↵.

• If ↵ ⌘ �, then � ? ↵ ⌘ � ? �

4.4 The typical instances of a compound concept

Given two featured concepts ↵ and �, it follows from the definition of �⌧

�?↵

and the finiteness of �(↵) and �(�) that the set of �⌧

�?↵

-maximal elements
of Ext (� ? ↵) is not empty. This set will be denoted by Typ(� ? ↵) and its
elements referred to as the typical instances of � ? ↵.

Contrary to what was the case for membership (see Proposition 1 and
Proposition 6), this set cannot be defined as the set of instances of (� ? ↵)
that fall under the elements of �(↵)[�(�). Indeed, nothing guarantees that
this set is not empty. Typical walking-birds do not fall under the feature
to-fly. In fact, we do not even have for typicality a result similar to that of
Proposition 2: an element of Typ(�?↵) is not necessarily more (�?↵)-typical
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than an arbitrary element of Ext (� ? ↵) \ Typ(� ? ↵), as can be seen from
the following example.

Example 4 Let ↵ denote the concept to-be-a-student, and � the concept
to-be-married. We consider the case where, for an agent, the corresponding
characteristic sets are �(↵) = {k}, with k = to-live-with-one’s-parents, and
�(�) = {f, g, h}, with f = to-be-more-than-thirty-years-old, g = to-have-
children, and h = to-have-a-job. For simplicity, the applicability functions
associated with these features are supposed to be two-valued functions.

Suppose that the chosen agent cannot think of an exemplar of � ? ↵ to
which f , g and k would apply: for this agent, it is unconceivable that a
student over thirty, married, with children and having a job would live with
his or her parents. Then, from her point of view, typicality among married
students can be described as follows :

1. If the salience order on �(�) is empty, the typical instances of � ? ↵

are the exemplars that fall under g, h, k or under f , h, k. We have
z �⌧

�?↵

x for any x 2 Typ(� ? ↵) and z 2 Ext (� ? ↵) \ Typ(� ? ↵).

2. If f >

�(�) g, the typical instances of � ? ↵ are the exemplars of � ? ↵

that fall under f , h, k. We still have z �⌧

�?↵

x for any x 2 Typ(� ? ↵)
and z 2 Ext (� ? ↵) \ Typ(� ? ↵).

3. If g >

�(�) f , the typical instances of � ? ↵ are the exemplars of � ? ↵

that fall under g, h, k. We have again z �⌧

�?↵

x for any x 2 Typ(� ?↵)
and z 2 Ext (� ? ↵) \ Typ(� ? ↵)

4. If the salience order is given by >

�(�)= {(h, g)}, or >

�(�)= {(h, f)},
or >

�(�)= {(h, g); (h, f)}, we have once more the same result as in 1:
the typical instances of � ? ↵ are the exemplars that fall under g, h, k
or under f , h, k, and one has z �⌧

�?↵

x for any x 2 Typ(� ? ↵) and
z 2 Ext (� ? ↵) \ Typ(� ? ↵).

5. If finally the salience order is given by >
�(�)= {(g, h)}, >

�(�)= {(f, h)},
or >

�(�)= {(g, h); (f, h)}, the typical instances of of � ?↵ are again the
exemplars of � ? ↵ that fall under g, h, k or f , h, k. However, in
this particular case, there exist elements z of Ext (� ? ↵) \ Typ(� ? ↵))
that are not less (� ? ↵)-typical than some typical exemplars of � ? ↵.
For example, suppose that >

�(�)= {(g, h)}, that z is an element of
Ext (� ?↵) that falls under f and k but not under h, and that x is any
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element of Ext (� ? ↵) that falls under g, h, and k. Then x is (� ? ↵)-
typical, z is not (� ? ↵)-typical, but we no longer have z �⌧

beta?↵

x: for
an agent who considers that, in the context of being married, to-have-
a-job is less salient than to-have-children, a married thirty-something
student who has no children, no job and who lives at his or her parents,
is not less typical than a young student, married, with children who has
a job and lives at his or her parents.

The typical instances of � ? ↵ however dominate the exemplars of ↵,
provided there exist some exemplars of � that can be considered as typical
instances of ↵:

Proposition 10 (*) Typ(� ? ↵) ✓ Typ↵ whenever Typ↵ \ Ext � 6= ;. In
this case one has z �⌧

↵

x for any x 2 Typ(� ?↵) and z 2 Ext (� ?↵)\Typ(↵)
Contrary to membership, full typicality is not compositional. In general,

the typical instances of �?↵ cannot be retrieved from the typical instances of
↵ and �. The set Typ↵ \ Typ � may well be empty, for instance, as in the ex-
ample (to-be-an-ostrich)?(to-be-a-bird). That being noted, compositionality
can be retrieved in a particular case:

Theorem 2 (*) The equality Typ (� ?↵) = Typ � \ Typ↵ holds if and only
if Typ � \ Typ↵ 6= ;. When this is the case, the concept (� ?↵) is equivalent
to a featured concept whose characteristic set �(↵?�) is equal, in the principal
case, to �(↵) [ �(�).

Thus, typical black olives are typical olives that are typically black.

We finish this section with a characterization of the subconcepts of ↵ that
can be be seen as a determination of ↵.

Proposition 11 (*) Given two featured concepts ↵ and �, the following con-
ditions are equivalent:

1. � ⌘ (� ? ↵).

2. There exists a concept � such that � ⌘ (� ? ↵).
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5 On resemblance

The notion of resemblance is important in the categorization process. It
has been at the center of numerous theoretical and experimental studies.
Researchers have tried to clarify and study this notion, by defining a re-
semblance degree between two items, by determining the link between re-
semblance, membership and typicality (see [29], [34], [36]), or by using a
geometrical interpretation of the notion of similarity ([14] or [2]).

To investigate this notion, we need to circumscribe our study. Resem-
blance may be considered as a binary relation between objects (Henry re-
sembles his brother), or as a relation between concepts (the wolf resembles a
dog), or as a relation between an object and a concept (this picture resem-
bles a Picasso). We have therefore to specify the type of resemblance we are
considering. In this paper, we shall only deal with the two latter notions.

5.1 Resemblance between objects and concepts

What does it mean to say that Toby resembles a wolf ? At first glance, one
may be tempted to say that Toby is close to being a wolf, so that resemblance
between an object and a concept would be directly linked with categorial
membership. However, it appears that resemblance relative to a concept
is first perceived as resemblance with the typical instances of this concept.
When we say that a particular piece of music resembles Beethoven’s work,
the Beethoven we refer to is not the ‘young Beethoven’, whose compositions
still reflect Haydn influence, but the later Beethoven of the second or third
period. To take another example, if someone says that ‘Peter’s bedroom
looks like a boat cabin’, he clearly refers to a typical boat cabin, excluding
for instance a destroyer’s cabin.

It follows that, when an agent asserts that a particular item x resembles
a concept ↵, one may infer, first, that x is not known by the agent to be an
instance of ↵, and, secondly that, for this agent, x resembles a typical exem-
plar of this concept, sharing with it a certain amount of typical attributes.
Thus, looking at a bat, one may say it resembles a bird, just because it has
wings, flies, and has the size or the shape of a bird. Conversely, an animal
may be declared not to resemble a bird if it does not resemble a typical bird,
even though this animal is known to be a bird. For instance, looking at a
penguin, an assertion like ‘this animal does not resemble a bird’ is perfectly
justified. Resemblance first deals with the typical attributes of a concept.
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The notion of resemblance in itself is di�cult to analyze and model. As
is the case for membership and typicality, it is more through a relation of
comparison that we can address this problem. We will therefore be interested
in interpreting assertions of the form: the object y resembles more the concept
↵ than the object x.

Let ⇧(↵) gather the defining and the characteristic features of ↵, that
is ⇧(↵) = �(↵) [ �(↵). This set is referred to as the stereotypical set of ↵
(see [3], [6], or [20])). In view of what we said, the simplest way to grasp
resemblance is to define on ⇧(↵) a salience order stemming from the salience
orders of �(↵) and �(↵), and build thereafter a weak order relation on O,
similar to those proposed in section 2.3. However, the preeminence this
kind of order gives to hierarchy over number, together with the fact that
⇧(↵) includes more elements than �(↵) and �(↵), may pose a problem. For
instance, if ↵ is the concept to-be-a-bird, and if to-fly has maximal salience
in ⇧(↵), bird-resemblance will principally rest on the ability of an item to
fly; consequently, bats will be more bird-resemblant than kiwis, although
having feathers, singing and building nests, taken together, should, at least,
compensate the fact that kiwis do not fly.

An interesting alternative,is to use a salience degree directly built from
the salience orders on the defining or the characteristic feature set. :

Definition 8 Given a featured concept ↵, let >⇧(↵) be the strict order on
the set ⇧(↵) = �(↵) [ �(↵) that extends the salience orders >

�(↵) on �(↵)
and >�(↵) on �(↵) \ �(↵), and satisfies f >⇧(↵) g for all f 2 �(↵) and
g 2 �(↵) \ �(↵). Then the salience degree s

↵

(f) of an element f 2 ⇧(↵) is
defined by: s

↵

(f) = 1 + |{h 2 ⇧(↵); f >⇧(↵) h}|.
Using the f -applicability function �

f

(x) defined in 2.1 now allows mea-
suring the resemblance between an object and a concept:

Definition 9 The degree to which an object x resembles a concept ↵ is the

number �

⇢

↵

(x) =
⌃f2 ⇧(↵)s↵(f)�f (x)

⌃f2⇧(↵)s↵(f)
.

In the trivial case where the defining and characteristic attributes are
all measured through two-valued applicability functions, and no salience has
been defined on the sets �(↵) and �(↵), we have

�

⇢

↵

(x) =
(|�(↵)|+ 1)r + s

(|�(↵)|+ 1)(|�(↵)|) + |�(↵)|)(10)
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where r denotes the number of characteristic features that apply to x, and
s the number of defining features that apply to x. Note that resemblance to
a concept is not preserved through equivalence: we may have ↵ ⌘ � while
�

⇢

↵

(x) 6= �

⇢

�

(x).
In the general case, the elements of O that are maximally resemblant

to a concept ↵ are its typical instances. Their resemblance degree is equal
to 1. On the contrary, simple categorial membership cannot be directly
retrieved through resemblance. This comes from the fact that, in evaluating
resemblance, one compares objects with the typical instances of a concept,
rather than with arbitrary exemplars of this concept.

Example 5 Suppose that the defining feature set associated with to-be-a-
bird is �(↵) ={to-have-two-legs, to-lay-eggs, to-have-a-beak, to-have-wings}
with salience order: to-have-a-beak >�(↵) to-lay-eggs >�(↵) to-have-two-legs,
and to-have-wings >�(↵) to-lay-eggs >�(↵) to-have-two-legs. Suppose also
that the corresponding characteristic set consists of the three features to-
build-nests, to-sing, and to-fly, equipped with the order : to-fly>

�(↵)to-build-
nests and to-fly>

�(↵)to-sing. Computing the bird-resemblance degrees of a
bat b, a penguin p and a kiwi k yields �

⇢

↵

(b) = 11/26, �

⇢

↵

(p) = 9/26 and
�

⇢

↵

(k) = 19/26. The bat is less bird-resemblant than the kiwi, but more bird-
resemblant than the penguin.

The following result shows that, given a concept, there exists an asso-
ciated resemblance threshold, beyond which objects are endowed to some
degree with the characteristic attributes of this concept:

Proposition 12 Set ✏(↵) = |�(↵)|
⌃f2⇧(↵)s↵(f)

, and let x be an object such that

�

⇢

↵

(x) � 1 � ✏(↵). Then all the characteristic features of ↵ apply at least
partially to x.

If x is su�ciently ↵-resemblant, we have therefore �
f

(x) > 0 8f 2 �(↵). This
result is particularly interesting in the case where the applicability of the
characteristic features of ↵ is measured by two-valued functions. Then any
object su�ciently close to ↵ falls under its characteristic features. However,
this does not mean that such an object is a typical instance of ↵: nothing
indeed guarantees that x falls under ↵. But it may happen that, for an agent,
the typical instances of ↵ only apply to the typical exemplars of ↵, that is
Typ↵ =

T
f2Int↵ Ext f . In this case, x has an ↵-resemblance degree greater

than 1� ✏(↵) if and only if x 2 Typ↵.
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Example 6 Let ↵ = to-be-a-bird with the stereotypical set ⇧(↵) considered
in Example 5, all features being evaluated through two-valued functions. Then
one has ✏(↵) = 2/13. If an object x has a birdhood resemblance degree greater
than, say, 85%, x will fly, sing and build nests. For any agent for whom
only birds can at the same time fly, sing and build nests, x will necessarily
appear to be a typical bird.

5.2 Resemblance between concepts

Similarly to what happens when an object is compared with a concept, one
may interpret concept resemblance as resemblance between their typical in-
stances: judging for instance that ‘Braque resembles Picasso’ amounts to
saying that a typical painting of Braque resembles a Picasso. In other words,
we say that a concept ↵ resembles a concept � whenever every typical instance
of ↵ resembles the concept � in the sense of the preceding paragraph.

This observation can be used to define a resemblance degree between
concepts:

Definition 10 The ↵-resemblance degree of a concept � is the number
�

⇢

↵

(�) = Min

x2Typ�

�

⇢

↵

(x).

The resemblance of � to ↵ is therefore measured by taking among the
typical elements of � those that are the least ↵-resemblant. Note that this
notion of resemblance between concepts is not symmetric.

Remark 5 In distributional semantics, the resemblance degree of two items
is defined by comparing their linguistic context and evaluating their distance
in the underlying ‘semantic space’. This latter consists in a vector space
with several hundred thousands dimensions, each of which is associated with
a context word (see for instance [2] or [5]). Distance in a topological vector
space with ‘qualitative dimensions’ is also the tool that Gärdenfors uses in [14]
to evaluate similarity. By opposition to the sophisticated technics developed in
these two examples, the subjective notion of resemblance we define here only
requires some elementary calculations. These will not provide information
about the similarity of two items, but they will enable us to evaluate to what
degree a given agent may consider that an item resembles another.
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From Definition 9 and 10, we see that the maximally ↵-resemblant con-
cepts � are those for which Typ � ✓ Typ↵. This justifies the following
distinction:

Definition 11 A subconcept � of ↵ is smooth if Typ � ✓ Typ↵.

If � is a smooth subconcept of ↵, it has maximal resemblance to it. But
maximal resemblance may also be found among concepts that are not subcon-
cepts of ↵. For instance, although not all Caravaggio paintings are portraits,
we can consider that Caravaggio paintings maximally resemble portraits, be-
cause typical paintings from Caravaggio are typical portraits.

5.2.1 The case of compound concepts

We now extend the notion of resemblance between an object and a simple
concept to compound concepts. Let �?↵ be a determination of ↵ by a concept
� such that Typ↵ \ Typ � 6= ;. Then we know by Theorem 2 that � ? ↵

is equivalent to a featured concept for which the defining and characteristic
sets are �(� ? ↵) = �(↵) [�(�) and �(� ? ↵) = �(↵) [ �(�). Let ⇧(� ? ↵)
denote the set �(� ? ↵) [ �(� ? ↵) with the salience order that extends the
salience orders >

�(�?↵) on �(� ? ↵) and >�(�?↵) on �(� ? ↵) \ �(� ? ↵), and
satisfies moreover f >⇧(�?↵) g for all f 2 �(� ?↵) and g 2 �(� ?↵)\�(� ?↵).

Then the salience degree s

�?↵

(f) of an element f of ⇧(� ? ↵) is defined
by: s

�?↵

(f) = 1 + |{h 2 ⇧(� ? ↵); f >⇧(�?↵) h}|.

Definition 12 The (� ? ↵)-resemblance degree of an object x is the number

�

⇢

�?↵

(x) =
⌃f2 ⇧(�?↵)s�?↵(f)�f (x)

⌃f2⇧(�?↵)s�?↵
.

In the case where x is an element of Typ↵, its � ? ↵-resemblance degree
cannot be arbitrary small:

Proposition 13 One has �⇢
�?↵

(x) � ⌃f2⇧(↵)s↵(f)

⌃f2⇧(�?↵)s�?↵(f)
whenever x 2 Typ↵.

The (� ? ↵)-resemblance degree of a concept � can be now defined similarly
to simple concepts:

Definition 13 The (� ?↵)-resemblance degree of a concept � is the number
�

⇢

�?↵

(�) = Min

x2Typ �

�

⇢

�?↵

(x).
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We can now more accurately address the problem of resemblance between
concepts. Observe indeed that comparison between two concepts mainly oc-
curs when these concepts are considered as subconcepts of the same concept.
One compares apples to pears, considered as fruits, or dogs to cats, con-
sidered as pets, but (generally) not apples to cats... Resemblance between
concepts therefore principally concerns resemblance between two subconcepts
of a given concept.

As an immediate consequence of proposition 13, we obtain a threshold of
minimal resemblance:

Proposition 14 Suppose that Typ (� ? ↵) = Typ � \ Typ↵. Then, for any

smooth subconcept � of ↵, one has �

⇢

�?↵

(�) � ⌃f2⇧(↵)s↵(f)

⌃f2⇧(�?↵)s�?↵(f)
.

We shall come back to the notion of resemblance in the last section of
this paper to address the problem of induction through resemblance.

Now that the basic notions of concept analysis have been discussed, we
can turn to the dynamics of concepts, and study the main problems linked
with concept entailment.
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Part II

Concept entailment

6 Conceptual inference

In the section, we shall reinterpret the notions of essential and typical at-
tribute defined in section 4.1, and integrate it within the framework of non
monotonic inference relations.

6.1 Necessary induction

Consider first a concept ↵, and let � be an element of Ess↵. Recall (see sec-
tion 4) that, by definition, � applies to all exemplars of ↵. Thus, ↵ cannot be
‘true’ on an object without � being ‘true’ at the same time. In other words,
we can consider � as a necessary consequence of ↵. For instance, each of
the concepts to-have-a-beak, to-have-feathers or to-be-oviparous may be con-
sidered as a necessary consequence of the concept to-be-a-bird : if something
is a bird, then it is necessarily oviparous, and it has necessarily a beak and
feathers.

By analogy with the semantics of propositional calculus, one may trans-
late the binary relation � 2 Ess↵ into the form of a consequence relation,
written ↵ ` �, which we interpret as ‘if ↵, then necessarily �’.

Proposition 15 Set ↵ ` � i↵ � 2 Ess↵. The relation ` thus defined is
reflexive and transitive. Furthermore, it is monotonic, in the sense that
↵ ` � implies � ? ↵ ` � and ↵ ?  ` � for all concepts � and  for which
these expressions are meaningful.

Using logical calculus notation, the properties of Proposition 15 can be
written:

•
↵`↵ (Reflexivity)

• ↵`�
�?↵`�,↵?`� (Monotonicity)

We can add three other properties, the proof of which is straightforward
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• ↵⌘↵

0
, �⌘�

0
,↵`�

↵

0`�0 (Logical Equivalence)

• ↵`�,↵`�
↵`�?� (And)

• �?↵`�,↵`�
↵`� (Cut).

These properties do not put a special light on concept theory. Their inter-
pretation is obvious. For instance, the application of (Cut) to the concepts ↵
= to-be-a-bird, � = to-be-oviparous and � = to-build-nests yields the scheme
of reasoning: since birds are oviparous and oviparous birds build nests, birds
build nests... In fact, the real interest of the above proposition is to set a
new perspective for the study of concept analysis. It shows indeed that `
behaves like a monotonic consequence relation, and that the set of featured
concepts in which it operates plays a role similar to that of a propositional
language equipped with an equivalence relation ⌘ between propositions and
a (partial) connective ?. Thus, using the tools of classical and non-classical
logic, it will be possible to obtain interesting results on concept entailment.
Note however that the language is deprived of negation since the negation of
a featured concept is generally not a concept, unless it has a positive equiv-
alent. Out of any context, what meaning can we give, for example, to the
negation of to-be-a-dog? As observed by Hampton [18], it is true that within
a conjunctive phrase, a negation may make sense. In this case, the principal
term of the conjunction provides a context that circumscribes the possible
meanings, and Hampton rightly writes that ‘Games-which-are-not-sports is a
concept for which subjects can sensibly judge the membership and typicality
of items’. However, the complex construction necessary to define, character-
ize and study negated concepts in the general case goes far beyond the limit
of this work. The restricted language we are developing on is su�cient to ob-
tain a new and fruitful insight on the classical problems of concept entailment.

As we shall see now, the interpretation of typicality in the framework of
consequence relations can be extended to a weak form of inference.

6.2 Typical induction

The typical instances of a concept are those that best represent it. In this
sense, we may consider that non-typicality is exceptional among the instances
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of a concept ↵. This amounts to supposing that by default, any arbitrary
exemplar of ↵ is typical: thinking of a bird, for instance, an agent will most
often think of a flying bird, and the images that are given on the web for
birds all show flying birds.

This being noticed, let f be a typical attribute of ↵, that is an element of
Int↵. By definition (see section 4.1), f applies to every typical instance of
↵, and f therefore appears to be typically inferred from ↵: for instance, we
consider that the feature to-fly is typically inferred from the concept to-be-a-
bird, because, typically, birds fly. Equivalently, we could say that typically,
birds are flying birds, showing the existence of an inference relation between
the concepts ↵ = to-be-bird and � = to-be-a-flying-bird. This yields the
following definition:

Definition 14 Given two concepts ↵ and �, we say that ↵ typically induces
�, or that � is a typical consequence of ↵, if Typ↵ ✓ Ext �. This will be
denoted by ↵⇠�.

In the particular case where � is a feature f , the relation ↵⇠� exactly
translates the fact that �

f

(x) = 1 8 x 2 Typ↵, that is that f is a typical
attribute of ↵.

It is clear that the relation ⇠ is not monotonic: for instance, if ↵ is the
concept to-be-a-bird, � the concept to-fly and � the concept to-be-an-ostrich,
we have ↵⇠� because, typically, birds fly, but not (� ? ↵)⇠�, as typical
ostriches don’t fly. However, relative to the connective ?, the relation ⇠
enjoys several properties that are formally similar to those studied by Kraus,
Lehmann and Magidor in their seminal paper [22]. More precisely we have
the following result:

Proposition 16 Denote by ⇠ the relation: ↵⇠� i↵ Typ↵ ✓ Ext �. Let
↵, � and � be three featured concepts such that Ext↵ \ Ext � \ Ext � 6= ;.
Then the following properties hold:

• ↵`�
↵⇠�

(Supraclassicality)

• ↵⌘↵

0
, �⌘�

0
,↵⇠�

↵

0 ⇠�

0 (Logical Equivalence)

• ↵⇠�, �`�
↵⇠�

(Right weakening)
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• ↵⇠�,↵⇠�

↵⇠�?�

(And)

• ↵⇠�,↵⇠�

�?↵⇠�

(Cautious Monotonicity).

The first four properties directly follow from the definition of the typical
inference relation ⇠ . Cautious Monotonicity is a rule close to monotonicity:
it models reasonings like: typical birds fly and typical birds sing, therefore
typical flying birds sing.

The above proposition shows that typical inference is close to a cumulative
inference relation (see [22] for a study of these relations). However, the
important property of Cut mentioned in the preceding paragraph, which is
satisfied by cumulative relations, is not satisfied by typical induction:

Example 7 Let ↵ and � be respectively the concepts to-be-a-seed-eater and
to-be-a-bird, and take for � the feature to-fly. Suppose that for an agent, the
characteristic set of ↵ is {to-have-a-beak, to-have-wings, to-be-oviparous}
and the characteristic set of � is {to-fly, to-sing, to-live-in-the-trees}. Then
Typ↵ is the set of seed-eaters that are birds, and Typ � is the set of typical
birds. We have Typ (� ? ↵) = Typ↵ \ Typ � (see Proposition 7). This set
consists of all typical birds that eat seeds. For this agent therefore, � ? ↵⇠�

and ↵⇠�, but not ↵⇠�: seed-eaters that are birds generally fly, and birds
generally fly, but seed-eaters generally don’t fly.

The fact that Cut is generally not satisfied by typical inference shows that
the relation ⇠ admits no model analogous to the KLM cumulative models.
In particular, there exists no possible representation of ⇠ through order
relations in O. Of course, the conditional ↵⇠� holds if and only if the �⌧

↵

-
maximal objects falling under ↵ also fall under �. However, the chosen order
�⌧

↵

is here a local one, and depends on the antecedent ↵ of the conditional
↵⇠�.

It will be shown in section 7.2.1 that a slightly weaker form of Cut still
remains valid in our model.

7 Concept-based induction

Concept-based induction is the process through which, from a given concept,
one infers information relative to another concept. Such an inference is based
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on a link between the source and the target concept. For instance, one
may ask which attributes of a concept remain true for a given subconcept
or, conversely, which attributes of a subconcept can be raised to the whole
original one. One may also be interested in resemblance between concepts,
and look for the attributes that can be transposed from a concept to another
one that is considered as ‘su�ciently resemblant’. These three di↵erent kinds
of category-based induction will be successively examined.

7.1 Within-category induction

While the essential attributes (see section 2.5) of a concept apply to the
exemplars of any of its subconcepts, this is no longer true for its typical
attributes. Typical birds fly, but typical ostriches don’t. In spite of this,
typical ostriches inherit some other bird typical attributes, like that of having
feathers with remiges. This poses the problem of determining which attributes
of a concept remain valid for a given subconcept. To take a well-known
example (see [3]), knowing that ducks have webbed feet, can we deduce that
the same is true for quacking ducks ? Can we deduce that the same is true
for non-quacking ducks ?

This inheritance problem is of particular interest in the case of regular sub-
concepts obtained through concept determination. To quote J.A.Hampton
[20] ‘Given that an attribute is not universally true of a concept (...), how
should one determine whether the predicate should also be considered gener-
ically true of the complex concept formed when an adjectival or nominal de-
terminer is applied to the noun ? ’.

In the particular case where the determiner � is itself a typical conse-
quence of ↵, the rule of Cautious Monotonicity guarantees that inheritance
holds for the composed regular subconcept � ?↵: any typical instance � of ↵
becomes a typical instance of � ? ↵. Thus, flying-birds inherit all the typical
properties of birds.

In the general case, however, the answer depends on the nature of the
determiner, as will be seen in the next sections

7.1.1 Smooth subconcepts and non-exceptional determiners

Let us first distinguish between two di↵erent forms of concept determination:

Definition 15 A concept � is exceptional for ↵ if Typ↵ \ Ext � = ;.
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� is therefore exceptional for ↵ if no typical instance of ↵ falls under �.
For instance, taking for characteristic set of the concept to-be-a-bird the set
{to-fly, to-leave-in-trees}, we can say that to-talk is non-exceptional for birds
because there exist typical birds that talk.

When � is used to determine or modify ↵, we shall speak of an exceptional
or a non-exceptional determiner. This notion may be seen as a formal def-
inition of the compatible determiner introduced by [30]. It is tightly linked
with that of smoothness (see Definition 11), since it readily follows from
Proposition 10 that (� ? ↵) is a smooth subconcept of ↵ if and only if � is
non-exceptional for ↵.

We can interpret the notion of exceptional determiners in the framework
of inference relations. To say that � is exceptional for ↵ means that no typ-
ical instance of ↵ falls under �, or that typically, ↵’s are not �’s. Although
our language is deprived of negation, such a sentence can still be translated
by means of a new notation:

Notation We write ‘↵⇠¬�’ if � is exceptional for ↵, and ‘↵⇢⇢⇠¬�’ if �

is not exceptional for ↵.

Using this notation, it is possible to retrieve a well-known property that
characterizes rational inference relations:

Proposition 17 The following rule is valid in the proposed model:

• ↵⇠�,↵⇢⇢⇠¬�
�?↵⇠�

(Rational Monotony)

Proposition 17 provides a first answer to the within-category induction
problem: knowing that there exist typical birds that are white, and knowing
that birds generally sing, we can conclude that white birds generally sing.

7.1.2 The case of exceptional determiners

When � is exceptional for ↵, (� ? ↵) is no longer smooth in ↵ and the
full inheritance property does not apply anymore: non-flying-birds do not
inherit the birdhood typical property of flying. The inheritance problem then
amounts to determining which attributes of ↵ are preserved in the subconcept
(� ? ↵).

Since � is exceptional for ↵, we have ; = Ext � \ Typ↵, and thus (see
paragraph 4.1) Ext � \ Ext↵

T
f2�(↵) Ext f = ;.
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We shall examine the case where one single characteristic attribute k is
responsible for the ↵-exceptionality of �:

Proposition 18 Suppose that for a characteristic feature k of ↵, one has
Ext � \ Ext↵ \ Ext k = ;, but Ext � \ Ext↵ \ (

T
(Ext f)

f2�(↵)�{k}) 6= ;.
Suppose also that the applicability function �

k

induced by k is a two-valued
function. Then any characteristic feature of ↵ di↵erent from k remains a
typical attribute of (� ? ↵).

By this result, we see that inheritance to an exceptional subcategory still
holds for the characteristic features that do not directly contradict the de-
terminer. If ↵ is the concept to-be-a-bird for instance, with characteristic
feature set �(↵) = {to-fly, to-build-nests, to-sing, to-eat-seeds}, we can con-
clude from the above proposition that,typically, walking birds sing, walking
birds build nests and walking birds eat seeds.

7.2 Over-category induction

Over-category induction deals with the problem of extending to a whole cate-
gory an attribute that is known to hold for a subcategory. This problem may
be seen as the converse of within-category induction. However, it slightly
di↵ers in that one has to distinguish between essential and non-essential at-
tributes. We may therefore consider the four problems of raising an essential
or a typical attribute of a subcategory into an essential or a typical attribute
to the whole category.

Clearly, extending a typical attribute � into an essential attribute is pos-
sible only in the case where � itself is an essential attribute. Furthermore,
the problem of extending an essential attribute of a subcategory to an essen-
tial attribute of the category may be easily solved, at least for determined
concepts, by the property Cut which is satisfied by `. We are therefore left
with the problem of raising an essential or a typical attribute into a typical
one.

Let us first determine what essential attributes of a subcategory typically
apply to the whole category. For instance, knowing that ducks fly and have
webbed feet, which of these attributes can be extended to birds ?
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7.2.1 Over-category induction from typically determined concepts

Extending an essential attribute of a subconcept into a typical attribute of the
concept is generally impossible: to-walk is an essential attribute of walking-
birds, although birds generally don’t walk. However, a positive answer can
be given when the subconcept is obtained through a determination of the
initial one by one of its typical consequences : if � is a typical consequence
of ↵, every essential attribute of � ?↵ becomes a typical attribute of ↵. More
precisely, we can observe that a weak version of Cut is valid in our model:

Proposition 19 The following rule is valid:

• �?↵`�,↵⇠�

↵⇠�

(Cautious Cut)

Thus, from the fact that birds generally fly and that all flying-birds have
feathers with remiges, we can conclude that birds have generally feathers with
remiges.

Concerning finally the possibility of extending a typical consequence from
a typically determined concept, note that this is exactly the property of Cut,
which is not satisfied by ⇠ , as we observed before. However, a solution exists
in a particular case:

Proposition 20 The rule Cut holds for any concept determined by a typical
attribute:

• �?↵⇠�, �2Int↵
↵⇠�

By this property, knowing that flying-birds are generally small and that
birds generally fly, we can conclude that birds are generally small.

We shall be interested now in a particular family of subconcepts, which
we will refer to as typical. For this purpose, let us consider once more the
concept to-be-a-bird. When an agent says that the robin is a typical exemplar
of this concept, this assertion rests on the fact that robins inherit all the
attributes that, from her point of view, a typical bird should have - to fly,
to sing, to live in the trees, etc. This inheritance property then extends
from individual items to the whole category of robins, thus becoming an
essential attribute of the concept to-be-a-robin. These considerations lead to
the following definition:
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Definition 16 A subconcept � of ↵ such that Ext � ✓ Typ↵ will be called
a typical subconcept of ↵.

Note that a typical subconcept of ↵ is smooth in ↵ (see Definition 11). As
we shall see now, typical subconcepts play an important role in over-category
induction.

7.2.2 Over-category induction from typical subconcepts

During some experiments conducted on category-based induction [3], it ap-
peared that the predicates that were the best candidates for induction from a
subcategory to a mother category were the so-called blank predicates: these
predicates did not bear any special meaning, they were liable to apply to
any category that was considered close enough to the tested one. On the
contrary, features that were closely related or specific to the source category
had to be discarded.

This shows the need of distinguishing between specific and non-specific
attributes.

Definition 17 Let � be a typical subconcept of ↵. An essential attribute of
� is non-specific for � if it is shared by all the typical subconcepts of ↵.

For instance, to-fly is a non specific attribute of robin, considered as a subcat-
egory of birds. Indeed, to-fly is a typical attribute of any typical subconcept
of birds.

The following result now provides an answer to over-category induction from
typical subconcepts:

Proposition 21 Let � be a typical subconcept of ↵, and  an essential at-
tribute of �. Then  is a typical attribute of ↵ if and only if  is non-specific
to �.

By the above proposition, we see that to-have-webbed-feet can be raised
from the category of ducks to the category of aquatic birds, but not to the
whole category of birds.

After having studied the problem of in and over-category induction, we
now turn to the last problem of concept-based induction, which is that of
inducing a property from a category to another that su�ciently resembles
the first one.
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7.3 Induction through resemblance

When a concept � is su�ciently close to a concept ↵, one expects that some
attributes of ↵ also hold for �: for example, some features should transpose
from bats to birds, from horses to cows, or from camels to dromedaries. Ide-
ally, induction through resemblance should be encapsulated by a deduction

scheme of the form
↵⇠� �⇤↵

�⇠�

, where ⇤ would translate a certain kind of

resemblance between concepts.
Recall (see definition 10) that the ↵-resemblance degree of a concept �

is given by: �

⇢

↵

(�) = Min

x2Typ�

�

⇢

↵

(x), where �

⇢

↵

(x) =
⌃f2 ⇧(↵)sf �f (x)

⌃f2⇧(↵)sf
and

s

f

= 1 + |{h 2 ⇧(↵); f >⇧(↵) h}|. We noted then that the maximally ↵-
resemblant concepts � are those for which Typ � ✓ Typ↵. From this readily
follows the

Proposition 22
↵⇠�, �

⇢
↵(�)=1

�⇠�

.

Thus, if � is maximally resemblant to ↵, it shares with it all its typical at-
tributes.

In the case where � is only supposed to be ‘su�ciently ↵-resemblant’, we
still have an interesting result that can be easily deduced from Proposition
12. It asserts that a non exceptional determiner h of ↵ becomes a typical
attribute of any concept � that su�ciently resembles (h ? ↵).

Proposition 23 Let h ? ↵ be the determination of a featured concept ↵ by a
feature h whose applicability is given by a two-valued function. Let ✏(h ? ↵)
denote the number |�(h?↵)|

⌃f2⇧(h?↵)sh?↵(f)
. Then the following rule is valid:

• �

⇢
h?↵(�)�1�✏(h?↵), ↵⇢⇢⇠¬h

�⇠h

For instance, this result shows that a fruit that resembles a red apple is very
likely to be red itself . . .

It is interesting to observe that the principal role in this situation is
devoted to the determiner h and not to the principal concept ↵: the propo-
sition says nothing about the link, resemblance or induction, that may exist
between � and ↵.
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8 Conclusion

We showed in this paper that a model for concept representation can be
built from simple order relations. This model renders possible a mathemat-
ical definition of several notions that are at the heart of much research in
cognitive psychology. At the same time, it renders possible the formalization
of problems linked with concept entailment, for which it proposes an original
and e�cient answer. The results obtained in this framework however rest on
a hypothesis, which is that agents grasp some of their concepts through the
features they attach to them. If this assumption is founded, we may well ask
how agents gather and bring these features together to build their knowledge
of concepts. We may even wonder to what degree one could anticipate part
of their cognitive behavior, knowing their knowledge bases. Conversely, ob-
serving the significance that a concept may bear for an agent, it could be
interesting to deduce the nature and the role played by the features from
which it stems. In this regard, ordered or logical models seem to provide an
economical as well as a powerful tool for the study of categorization. They
constitute an interesting alternative to more sophisticated theories, as they
are su�cient to explain and foresee classical problems linked with concept
combination, prototype theory and category-based induction.

The binary model which we used as a basis of our investigation provides
a simple framework in which both the statics and the dynamics of concept
analysis can be studied. Nevertheless, it is probable that similar results could
be obtained using a unitary model, equipped with a single order that would
altogether account for categorial membership, typicality and resemblance.

As a last point, we have to underline that the validity of this theoret-
ical study depends on a confirmation by future experimentation. In this
perspective, the distinctions we introduced between the di↵erent kinds of
determiners in concept composition may be of some use. We also think that
the introduction and the formalization of fundamental notions, like those of
smooth or typical subconcept, remain of significant interest, independently
of the value of the proposed model.
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A Proofs

Proposition 1 The relation �
↵

is a partial weak order on O.

Proof: Reflexivity is immediate, and we have only to prove transitivity.
Let therefore x, y and z be three items such that x �

↵

y and y �
↵

z;
suppose that there exists f 2 �(↵) such that z �

f

x. We have to show that
there exists a feature g 2 �(↵), g more salient than f , such that x �

g

z. We
consider two cases:

• Suppose first that x �
f

y. Then we have z �
f

y, and there exists a
feature k 2 �(↵), k more salient than f , such that y �

k

z. We can
suppose that k is maximally salient in �(↵) for this property (recall
that �(↵) is finite). If x �

k

y, we get x �
k

z and we are done.
Otherwise, because of the connectedness of �

k

, we have y �
k

x. Since
we supposed x �

↵

y, this implies that there exists a concept g 2 �(↵),
g more salient than k, such that x �

g

y. We cannot have z �
g

y

otherwise there would exist h 2 �(↵), h more salient than g, such that
y �

h

z, contradicting the choice of k. We have therefore y �
g

z, hence
x �

g

z as desired.

• Suppose now that y �
f

x. Then there exists k 2 �(↵), k more salient
than f such that x �

k

y, and we can again suppose k maximally
salient for this property. If y �

k

z, we get x �
k

z and we are through.
Otherwise, we have z �

k

y and there exists g more salient than k such
that y �

g

z. Let us show that x �
g

y: if this were not the case, we
would have y �

g

x, so that there would exist h more salient than g

such that x �
h

y. But then h would be more salient than k, which is
impossible. We have therefore x �

g

y, hence x �
g

z, which completes
the proof. ⌅

Proposition 2 An object is �
↵

-maximal in O if and only if it is an element
of Ext↵. One has z �

↵

x for any x 2 Ext↵ and z /2 Ext↵. Furthermore,
any increasing �

↵

-chain is of finite bounded length.
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Proof: For the first part of the proposition, suppose that z is not in the
extension of ↵. By definition, there exists a defining feature f such that
�

f

(z) < 1. Let x be an element such that �
fi(x) =1 for all i. We have then

clearly z �
↵

x, showing that z is not �
↵

-maximal in O.
The second part of the proposition is a direct consequence of Definition

1: let indeed f

i

, 1  i  k, be a defining feature of ↵, and n

i

the number of
values taken by �

fi . Then f

i

appears as a ring of a strictly increasing chain
at most �

fi times. It follows that the length of such a chain is bounded byP
k

i=1 ni

. ⌅

Lemma 1 Every attributional concept � such that �µ

�

✓ �µ

↵

is a subconcept
of ↵.

Proof: We have to prove that Ext � ✓ Ext↵. But if z 2 Ext �, we have
x �

�

z for all objects x 2 O, and therefore x �
↵

z for all objects x 2 O,
showing that z is �

↵

-maximal. It follows that z 2 Ext↵. ⌅

Theorem 1 � ?↵ is similar to an attributional concept whose set of features
�(� ? ↵) is equal in the principal case to �(↵) [�(�).

Proof: In order to prove the theorem in the principal case, we need a
technical lemma:

Lemma Given two objects x and y, one has x �µ

↵

y and y �µ

↵

x i↵
8f 2 �(↵), �

f

(x) = �

f

(y.)

Proof of the lemma It is clear that x �µ

↵

y and y �µ

↵

x whenever
�

f

(x) = �

f

(y) 8f 2 �(↵). Conversely, suppose that x �µ

↵

y and y �µ

↵

x

and suppose that �
f

(x) 6= �

f

(y) for some element f 2 �(↵). We can choose
f of maximal salience for that property. We have for instance �

f

(x) < �

f

(y).
Since y �µ

↵

x, there would exist g 2 �(↵), g more salient than f , such that
�

g

(y) < �

g

(x, contradicting the choice of f . ⌅
Let us now prove the theorem in the principal case where the membership

order is given by Equation (1).
Consider the set �(�?↵) = �(↵)[�(�) equipped with the salience order

>�(�?↵) that extends those of �(↵) and �(�) \�(↵) and satisfies moreover
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g >�(�?↵) f for all g 2 �(↵) and f 2 �(�) \�(↵).
Denote by �µ

�(�?↵) the membership order induced by the concept � ? ↵

equipped with the defining feature set equal to �(� ? ↵). We have to prove
that �µ

�(�?↵) agrees with �µ

�?↵

.

• We first show that �µ

�?↵

✓�µ

�(�?↵). Suppose that we have x �µ

�?↵

y, that
is x �µ

↵

y and either x �µ

↵

y, or x �µ

�

y. Let f be an element of �(� ?↵)
such that y �

f

x. We have to prove that 9g 2 �(� ? ↵), g >�(�?↵) f ,
such that x �

g

y.

- If f 2 �(↵), the inequality x �µ

↵

y, implies the existence of g 2 �(↵),
g >�(↵) f , such that x �

g

y. We have therefore g 2 �(� ? ↵) and
g >�(�?↵) f , as desired.

-If f 2 �(�) \�(↵), the inequality x �µ

�?↵

y implies either x �µ

↵

y or
x �µ

�

y. In the first case, it follows from equation (2) that 9g 2 �(↵)
such that x �

g

y, and we conclude as above. For the second case,
the inequalities y �

f

x and x �µ

�

y show that there exists g 2 �(�),
g >�(�) f such that x �

g

y. This again implies g >�(�?↵) f .

• Conversely, let us prove that �µ

�(�?↵)✓�µ

�?↵

. Suppose that x �µ

�(�?↵) y.
To prove that x �µ

�?↵

y, let us first check that x �µ

↵

y. If f 2 �(↵) is
such that y <

f

x, we have f 2 �(� ?↵). Since x �µ

�(�?↵) y, there exists
g 2 �(� ? ↵), g >�(�?↵) f , such that x <

g

y. By the salience order on
�(� ? ↵), this necessarily implies g 2 �(↵) and g >�(↵) f . This proves
that x �µ

↵

y, as desired.

It remains to prove that we have either x �µ

↵

y, or x �µ

�

y.

Suppose that we do not have x �µ

↵

y, so that x �µ

↵

y and y �µ

↵

x. To
show that x �µ

�

y, let f 2 �(�) such that y <

f

x. Since x �µ

�(�?↵) y,
there exists g 2 �(� ? ↵), g >�(�?↵) f such that x �

g

y. By the above
lemma, we cannot have g 2 �(↵). It follows that g 2 �(�) \�(↵), so
that g >

�

f , completing the proof in the principal case.

We now prove Theorem 1 when the salience order on �(↵) is empty
and the order is given by equation (3). Defining the ↵-membership degree
of an object x by �

↵

(x) = 1
|�(↵)|

P
f2�(↵) �f (x), we have then x �µ

↵

y i↵

�

↵

(x)  �

↵

(y). It is easily seen that �
↵

takes only a finite number of values
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in the unit interval. In this sense, ↵ may be considered as a feature. This
observation leads to the following construction:

Consider the set �(� ?↵) = {↵}[�(�) equipped with the salience order
>�(�?↵) that extends that of �(�) and satisfies moreover ↵ >�(�?↵) f for
all f 2 �(�) \ ↵. Denote by �µ

�(�?↵) the membership order induced by
the concept � ? ↵ with associated defining set �(� ? ↵). We claim that
�µ

�(�?↵)=�µ

�?↵

.

• We first prove that �µ

�(�?↵)✓�µ

�?↵

. Suppose that x �µ

�(�?↵) y. Note
first that x �µ

↵

y: indeed, if this were not the case, we would have
y �µ

↵

x because of the connexity of �µ

↵

. By definition of the order
�µ

�(�?↵), this would imply the existence of a feature f of �(� ?↵) more
salient than ↵, which is impossible.

It remains to check that x �µ

�

y if we do not have x �µ

↵

y. Let f be
an element of �(�) such that y �

f

x. Since we supposed x �µ

�(�?↵) y,
we see that there exists an element g of {↵}[�(�), more salient than
f , such that x �

g

y. Since we do not have x �µ

↵

y, we have g 2 �(�),
and we have shown that x �µ

�

y.

• Conversely, to prove that �µ

�?↵

✓�µ

�(�?↵), suppose that x �µ

�?↵

y so that
x �µ

↵

y and either x �µ

↵

y or x �µ

�

y. Let us check that x �µ

�(�?↵) y. If
f 2 �(� ? ↵) is such that y �

f

x, we have necessarily f 2 �(�) \ {↵}.
If x �µ

↵

y, we are done, since ↵ >�(�?↵) f . If x �µ

�

y, there exists
g 2 �(�), g >�(�?↵)f such that x �

g

y as desired. ⌅

Proposition 3 Let ↵, �, and � be three attributional concepts such that
Ext↵ \ Ext � \ Ext � 6= ;. Then

• ↵ ? ↵ ⇠ ↵

• � ? (� ? ↵) ⇠ (� ? �) ? ↵.

Proof:

• It follows from the definition of �µ

�?↵

, that one has �µ

↵?↵

=�µ

↵

, so that
↵ ? ↵ ⇠ ↵.
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• A straightforward computation shows that, given two elements x and y

of O, one has x �µ

�?(�?↵) y if and only if x �µ

↵

y, or x �µ

↵

y, x �µ

�

y and
either x �µ

�

y or x �µ

�

y. This condition is readily seen to be equivalent
to x �µ

(�?�)?↵) y, showing that �µ

�?(�?↵)=�µ

(�?�)?↵). ⌅

Proposition 4 One has f ? ↵ ⇠ ↵ for every f 2 �(↵).

Proof: We have only to check that �µ

↵

✓�µ

f?↵

. Suppose therefore we have
x �µ

↵

y and that we have not x �
f

y. Then one has y �
f

x. Since f 2 �(↵),
this implies that there exists g 2 �(↵) such that x �

g

y. By equation (2), it
follows that x �µ

↵

y. ⌅

Proposition 5 Let f be a feature such that f ? ↵ ⇠ ↵. Then f can be added
to the set �(↵) without changing the order �µ

↵

.

Proof: We can suppose f /2 �(↵). Define the set e�(↵) = �(↵) [ {f}
equipped with the salience order >e�(↵) that agrees with >�(↵) on �(↵) and
satisfies moreover g >e�(↵) f for all g 2 �(↵). Let �e�(↵) be the membership

order induced by the set of features e�(↵). We claim that �e�(↵) = �µ

↵

.
We have readily �e�(↵) ✓�µ

↵

. For the converse inclusion, suppose that

x �µ

↵

y. Let g 2 e�(↵) be such that y �
g

x. We have to show that there

exists h 2 e�(↵), h >e�(↵) g such that x �
h

y.
- If g 2 �(↵), the hypothesis implies that there is an element h 2 �(↵),

h more salient than g such that x �
h

y. By the construction of >e�(↵), this
implies that h >e�(↵) g.

- If g = f , we have y �
f

x. From our hypothesis, since we supposed
x �µ

f?↵

y, we must have x �µ

↵

y. This implies by equation (2) that there
exits a defining feature h such that x �

h

y. By construction, we have then
h >e�(↵) g.

We have therefore proven the equality �e�(↵) = �µ

↵

, showing that the
membership order �µ

↵

remains unchanged if f is added to the set of defining
features. ⌅

Proposition 6 The extension of (� ?↵) is the set of �µ

�?↵

-maximal elements
of O. It satisfies Ext (� ? ↵) = Ext↵ \ Ext �.
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Proof: We have x 2 Ext (� ? ↵) i↵ �

↵

�

(x) = 1 8� 2 �(� ? ↵), that is i↵
�

↵

f

(x) = 1 8f 2 �(↵) [�(�). This shows that Ext (� ? ↵) = Ext↵ \Ext �.
To prove the second part of the proposition, let x 2 Ext↵\Ext �. Then

x is �µ

↵

and �µ

�

-maximal in O. If x were not �µ

�?↵

-maximal, there would exist
an object y such that x �µ

�?↵

y. Therefore, we would have either x �µ

↵

y or
x �µ

�

y, a contradiction.
Conversely suppose that x is�µ

�?↵

-maximal. Then x is clearly�µ

↵

-maximal
and therefore an element of Ext↵. If x were not �µ

�

-maximal, we would have
x �µ

�?↵

z for any element z of the (non-empty) set Ext↵\Ext �, contradict-
ing the choice of x. ⌅

Proposition 7 Let ↵ and � be two attributional concepts. Then the following
conditions are equivalent:

1. � ⇠ (� ? ↵)

2. There exists a concept � such that � ⇠ (� ? ↵)

3. � is a regular subconcept of ↵ such that �µ

↵

✓�µ

�

.

Proof: We have clearly 1) ) 2). To prove that 2) ) 3), note first that if
� ⇠ (� ? ↵), then �µ

�

=�µ

�?↵

✓�µ

↵

, showing that � is a regular subconcept of
↵. It remains to prove that �µ

↵

✓�µ

�

. Let x and y be two objects such that
x �µ

↵

y . Il follows from the definition of �µ

�?↵

that x �µ

�?↵

y, that is x �µ

�

y.
We cannot have y �µ

�

x because this would imply y �µ

↵

x, contradicting the
choice of x and y. We have therefore x �µ

�

y, as desired.
To prove that 3) ) 1), suppose that �µ

�

✓�µ

↵

and �µ

↵

✓�µ

�

. We have
to show that �µ

�

=�µ

�?↵

. If one has x �µ

�

y for two objects x and y, the
hypothesis implies that x �µ

↵

y. This together with the fact that x �µ

�

y

implies x �µ

�?↵

y, so that �µ

�

✓�µ

�?↵

.
Conversely, suppose that x �µ

�?↵

y. This implies x �µ

↵

y, and either
x �

↵

y - and therefore x �µ

�

y by 3) - or x �µ

�

y. In any case, we have
x �µ

�

y, and the proof of the proposition is completed. ⌅

Proposition 8 The relation �⌧

↵

is a partial weak order on Ext↵. Its
maximal elements are the typical instances of ↵. One has z �⌧

↵

x for any
x 2 Typ↵ and z /2 Typ↵.
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Proof: Similar to the proof of Propositions 1 and 2. ⌅

Proposition 9 Let ↵, �, � be three arbitrary featured concepts such that
Ext↵ \ Ext � \ Ext � 6= ;. Then

• ↵ ? ↵ ⌘ ↵.

• � ? (� ? ↵) ⌘ (� ? �) ? ↵.

• If ↵ ⌘ �, then � ? ↵ ⌘ � ? �

Proof:

• We already observed (proposition 3) that �µ

↵?↵

=�µ

↵

. Similarly, we
have �⌧

↵?↵

=�⌧

↵

, which proves the result.

• Since, by Proposition 3 we know that �?(�?↵) ⇠ (�?�)?↵, the second
part of Proposition 9 amounts to proving that �⌧

�?(�?↵) = �⌧

(�?�)?↵). A
straightforward computation shows that, given two elements x and y

of Ext↵ \ Ext � \ Ext � one has x �⌧

�?(�?↵) y if and only if x �⌧

↵

y or
x �⌧

↵

y, x �⌧

�

y and either x �⌧

�

y or x �⌧

�

y. This condition is readily
seen to be equivalent to x �⌧

(�?�)?↵) y.

• The last part of the proposition is a direct consequence of the definition
of �µ

�?↵

and �⌧

�?↵

. ⌅

Proposition 10 Typ(� ? ↵) ✓ Typ↵ whenever Typ↵ \ Ext � 6= ;. In this
case one has z �⌧

↵

x for any x 2 Typ(� ? ↵) and z 2 Ext (� ? ↵) \ Typ(↵).

Proof: Let x be an element of Typ(� ? ↵). Note that x 2 Ext↵ \ Ext �.
Suppose x /2 Typ↵. By hypothesis, there exists an object t 2 Typ↵\Ext �,
and it follows from Proposition 8 that one has x �⌧

↵

t. But this readily
implies x �⌧

�?↵

t, contradicting the choice of x.
We have therefore x 2 Typ↵. Since z /2 Typ↵, this implies, again by

Proposition 8, z �⌧

↵

x, whence z �⌧

�?↵

x, as desired. ⌅

Theorem 2 The equality Typ (� ? ↵) = Typ � \ Typ↵ holds if and only if
Typ � \ Typ↵ 6= ;. When this is the case, the concept � ? ↵ is equivalent to
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a featured concept whose characteristic set is equal, in the principal case, to
�(↵) [ �(�).

Proof: Since Typ (� ? ↵) 6= ;, the first part of the proposition amounts to
proving that Typ � \ Typ↵ = Typ (� ? ↵) whenever Typ � \ Typ↵ 6= ;.

• Let x 2 Typ � \ Typ↵. We have to show that x is �⌧

�?↵

-maximal. If
this were not the case, we would have x �⌧

�?↵

z or for some element z
of Ext↵ \Ext �, that is x �⌧

↵

z or x �⌧

�

z, contradicting the choice of
x.

• Conversely let y be an element of Typ (� ? ↵), that is a �⌧

�?↵

-maximal
element of Ext↵ \ Ext �. By hypothesis, there exists an element z of
Typ � \ Typ↵. We have therefore �

f

(z) = 1 8f 2 �(↵) [ �(�). If y
were not an element of Typ � \ Typ↵, we would have �

f

(y) < 1 for
some f 2 �(↵)[�(�). This would imply y �⌧

↵

z or y �⌧

�

z, contradict-
ing the �⌧

�?↵

-maximality of y.

To prove that �?↵ is equivalent to a featured concept, we distinguish between
the principal case and the exceptional one, and accordingly define the set
�(� ?↵) in a way similar to the construction of the sets �(� ?↵) in the proof
of Theorem 1. The proof that �⌧

�(�?↵)=�⌧

�?↵

then exactly parallels that of
Theorem 1. The fact that Typ � \ Typ↵ 6= ; ensures that condition 2 of
Definition 5 is satisfied, so that the concept � ?↵ equipped with the defining
set �(� ? ↵) and the characteristic set �(� ? ↵) is a featured concept. ⌅

Proposition 11 Given two featured concepts ↵ and �, the following condi-
tions are equivalent:

1. � ⌘ (� ? ↵).

2. There exists a concept � such that � ⌘ (� ? ↵).

Proof: Suppose that 2 holds, so that we have � ⌘ (� ?↵) for some concept
�. By proposition 9, we get � ? ↵ ⌘ � ? (↵ ? ↵) ⌘ (� ? ↵) ⌘ �, which proves
the proposition. ⌅

Proposition 12 Set ✏(↵) = |�(↵)|
⌃f2⇧(↵)s↵(f)

, and let x be an object such that
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�

⇢

↵

(x) � 1 � ✏(↵). Then all the characteristic features of ↵ apply at least
partially to x.

Proof: Let h be an element of �(↵). By construction, we have 0 < s↵(h)�
|�(↵)|, that is ⌃

f2⇧(↵)f 6=h

s

↵

(f) < ⌃
f2⇧(↵)s↵(f) � |�(↵)|. If �

h

(x) = 0, this

would imply
⌃f2 ⇧(↵)sf �f (x)

⌃f2⇧(↵)s↵(f)
< 1� |�(↵)|

⌃f2⇧(↵)s↵(f)
, and therefore �⇢

↵

(x) < 1� ✏(↵),

contradicting the choice of x. ⌅

Proposition 13 One has �

⇢

�?↵

(x) � ⌃f2⇧(↵)s↵(f)

⌃f2⇧(�?↵)s(�?↵)(f)
whenever x 2 Typ↵.

Proof: We know from the proof of Theorem 1 and Theorem 2 that the
salience orders on �(� ? ↵) and �(� ? ↵) extend the salience orders on �(↵)
and �(↵). By definition of the salience degrees s

↵

and s(�?↵), this implies
s(�?↵)(f) � s

↵

(f) 8f 2 �(↵). Similarly, one has s

↵

(f)  s(�?↵)(f) for all
elements of �(↵). If x 2 Typ↵, all defining and characteristic features of ↵
apply to x, and we have therefore ⌃

f2 ⇧(�?↵)s�?↵(f)�f (x) � ⌃
f2⇧(↵)s↵(f). ⌅

Proposition 14 Suppose that Typ (� ? ↵) = Typ � \ Typ↵. Then, for any

smooth subconcept � of ↵, one has �

⇢

�?↵

(�) � ⌃f2⇧(↵)s↵(f)

⌃f2⇧(�?↵)s�?↵(f)

Proof: Immediate from Proposition 13. ⌅

Proposition 15 Set ↵ ` � i↵ � 2 Ess↵. The relation ` thus defined
is reflexive and transitive. Furthermore, it is monotonic, in the sense that
↵ ` � implies � ? ↵ ` � and ↵ ?  ` � for all concepts � and  for which
these expressions are meaningful.

Proof: Straightforward, since ↵ ` � , � 2 Ess↵ , Ext↵ ✓ Ext �. ⌅

Proposition 16 Denote by ⇠ the relation: ↵⇠� i↵ Typ↵ ✓ Ext �. Let
↵, � and � be three featured concepts such that Ext↵ \ Ext � \ Ext � 6= ;.
Then the following properties hold:

• ↵`�
↵⇠�

(Supraclassicality)
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• ↵⌘↵

0
, �⌘�

0
,↵⇠�

↵

0 ⇠�

0 (Logical Equivalence)

• ↵⌘�,↵⇠�

�⇠�

(Left Logical Equivalence)

• ↵⇠�, �`�
↵⇠�

(Right weakening)

• ↵⇠�,↵⇠�

↵⇠�?�

(And)

• ↵⇠�,↵⇠�

�?↵⇠�

(Cautious Monotonicity).

Proof: To prove Cautious Monotonicity, note that the hypothesis ↵⇠�

implies Typ↵ ✓ Ext �, so that Typ↵ \ Ext � 6= ;. By proposition 10, we
have then Typ (� ? ↵) ✓ Typ↵. Since, by hypothesis, Typ↵ ✓ Ext �, the
conclusion follows. ⌅

Proposition 17 The following rule is valid in the proposed model:

• ↵⇠�,↵⇢⇢⇠¬�
�?↵⇠�

(Rational Monotony)

Proof: Since � is not exceptional for ↵, we have Typ↵ \ Ext � 6= ;, and
we conclude again with proposition 10. ⌅

Proposition 18 Suppose that for a characteristic feature k of ↵, one has
Ext � \ Ext↵ \ Ext k = ;, but Ext � \ Ext↵ \ (

T
(Ext f)

f2�(↵)�{k}) 6= ;.
Suppose also that the applicability function �

k

, induced by k is a two-valued
function. Then any characteristic feature of ↵ di↵erent from k remains a
typical attribute of � ? ↵.

Proof: Let f 2 �(↵), f 6= k. We have to prove that Typ (�?↵) ✓ Ext f . If
this were not the case, there would exist an element x 2 Typ (�?↵) such that
�

f

(x) < 1. Note that the hypothesis implies that �
k

(x) = 0. For any element
y of Ext � \ Ext↵ \ (

T
(Ext g)

g2�(↵)�{k}), we would then have x �⌧

↵

y, and
therefore x �⌧

�?↵

y, contradicting the �⌧

�?↵

-maximality of x in Ext (�?↵). ⌅

Proposition 19 The following rule is valid in the proposed model:
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• �?↵`�,↵⇠�

↵⇠ �

(Cautious Cut)

Proof: Straightforward, since one has Typ↵ ✓ Ext �, and therefore
Typ↵ ✓ Ext (� ? ↵). ⌅

Proposition 20 The rule Cut holds for any concept determined by one of
its typical attributes:

• �2Int(↵), �?↵⇠�

↵⇠�

Proof: If � 2 Int↵, all typical instances of ↵ fall under �, so that Typ↵ ✓
Ext �. Since � is a feature, one has �(�) = �(�) = {�}, and therefore
Typ � = Ext �. ByTheorem 2, this yields Typ(� ? ↵) = Typ↵, whence the
result.

⌅

Proposition 21 Let � be a typical subconcept of ↵, and  an essential at-
tribute of �. Then  is a typical attribute of ↵ if and only if  is non-specific
to �

Proof: Suppose first that  is an typical attribute of ↵. For any typical
subconcept � of ↵, we have Ext � ✓ Typ↵, showing that  is an essential
attribute of �, so that  is non-specific to �.

Conversely, suppose that  is a non-specific attribute of �. Denote by
�1,�2, . . .�n

the characteristic attributes of ↵, and let � be the ‘pseudo-
concept’ � = �1 ? �2 ? . . . ? �n

? ↵. Note that Ext � = Typ↵, showing that
� is a typical subconcept of ↵. It follows that  applies to Ext �, hence to
Typ↵. This proves that  is a typical attribute of ↵.

We may see the concept � thus defined as the concept to-be-a-typical-↵,
paralleling that of typical object introduced by Desclés [4].

Proposition 22
↵⇠�, �

⇢
↵(�)=1

�⇠�

Proof: Immediate.

Proposition 23 Let h ? ↵ the determination of a featured concept ↵ by
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a feature whose applicability is given by a two-valued function. Let ✏(h ? ↵)
be the number |�(h?↵)|

⌃f2⇧(h?↵)sh?↵(f)
. Then the following rule is valid:

• �

⇢
h?↵(�)�1�✏(h?↵), ↵⇢⇢⇠¬h

�⇠h

Proof: Note that the hypothesis ↵⇢⇢⇠¬h ensures that Typ↵ \ Ext h 6= ;.
Note also that, since h is a feature, we have �(h) = �(h) = {h}, and
consequently Typ h = Ext h, showing that Typ↵\Typ h 6= ;. The notion of
h ? ↵-resemblance is therefore well defined, and we can apply the results of
section 5.2.1, considering h ? ↵ as a featured concept with characteristic set
�(h ? ↵) = {h} [ �(↵).

Let now x be an element of Typ �. Supposing that �⇢
h?↵

(�) � 1� ✏(h?↵),
we have �

⇢

h?↵

(x) � 1 � ✏(h ? ↵). Since h is a characteristic feature of h ? ↵,
we know by proposition 12 that x 2 Ext h. This being true for all elements
of Typ (�), we see that Typ (�) ✓ Ext h, and we have therefore �⇠h as
desired. ⌅
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