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Efficient stability analysis of fluid flows using complex mapping 
techniques* 
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ABSTRACT 
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Global linear stability analysis of open flows leads to difficulties associated to boundaiy conditions, 
leading to either spurious wave reflections (in compressible cases) or to non-local feedback due to the 
elliptic nature of the pressure equation (in incompressible cases). A nove( approach is introduced to 
address both these problems. The approach consists of solving the problem using a complex mapping 
of the spatial coordinates, in a way that can be directly applicable in an existing code without any 
additional auxiliaiy variable. The efficiency of the method is first demonstrated for a simple 1D 
equation modeling incompressible Navier-Stokes, and for a linear acoustics problem. The application 
to full linearized Navier-Stokes equation is then discussed. A criterion on how to select the parameters 
of the mapping function is derived by analyzing the effect of the mapping on plane wave solutions. 

Finally, the method is demonstrated for three application cases, including an incompressible jet, a 
compressible hole-tone configuration and the flow past an airfoil. The examples allow to show that 
the method allows to suppress the artificial modes which otherwise dominate the spectrum and 
can possibly hide the physical modes. Finally, it is shown that the method is still efficient for small 
truncated domains, even in cases where the computational domain is comparable to the dominant 
wavelength. 

1. Introduction

Numerical simulations of real flow configurations in open 
domains require artificial boundary conditions to allow vortical 
structures to freely escape from the domain and avoid wave re­
flections. The most common Artificial Boundary Conditions (here 
denoted as ABC) chosen for compressible fluid flows are the 
sponge regions which imply the introduction of an artificial damp­
ing term in an outer 'sponge layer' located far away from the 
interesting regions. The main advantage of this method is its 
simplicity. However, it generally leads to extremely large meshes 
characterized by sponge layers much larger than the regions of 
interest. An alternative method is the Perfectly Matched Layer 
(PML) treatment of ABCs. First introduced by Berenger (1) for 
electromagnetic radiation problems and later extended for lin­
ear acoustics problems by Bermudez et al. (2), this method has 
proven its efficiency for studying compressible flows using lin­
earized Navier-Stokes Equations (LNSE) in the frequency do­
main. However, since the method introduces a spatial attenuation 
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which depends upon the frequency, it cannot be directly applied 
to global stability problems where the frequency is unknown. A 
possible solution is to introduce auxiliary variables in the buffer 
region leading to a formulation where the dependency with re­
spect to the frequency does not appear anymore, as done for 
instance by Hu et al. (3) and Whitney (4). However the introduc­
tion of these new variables significantly increases the dimension 
of the problems under investigation. As well, in the formulation 
of PML the estimation of a base state is required, which is not 
generally an easy task for flows with domains whose geometry is 
convoluted. 

ABC are also required for the stability analysis of purely in­
compressible open configurations such as swirling flows (see [SI). 
The difficulties are due to the strong convective amplification 
of vortical perturbations, which may still be active at the ourlet 
boundary, and to the elliptic nature of the pressure equation 
leading to nonlocal feedback between upstream and downstream 
boundary conditions. Lesshaft (6) showed that these two prob­
lems lead to the existence of two families of artificial eigenmodes 
which can in some situations dominate the spectrum and hide 
the physically relevant modes. Fabre et al. (7) observed similar 
difficulties in studying the response to harmonie forcing of a jet 
flow through a zero-thickness circular hole. ln this work, the 
authors introduced a method based on the Complex Mapping 



(CM) of the spatial coordinates. The key idea is to introduce a
spatial damping which is independent upon the frequency and
thus directly fitted to eigenvalue computations. In a subsequent
work Fabre et al. [8], the method was successfully applied to the
eigenvalue analysis of the jet through a circular hole of nonzero
thickness, allowing to capture unstable global modes arising from
the existence of a recirculation region within the thickness of the
hole.

The purpose of this work is to explain the principle of the
CM technique and to show that is applicable to the linear sta-
bility analysis of both compressible and incompressible flows.
We demonstrate that (i) it is efficient as a non-reflexion con-
dition for acoustic perturbations and (ii) it is able to provide a
sufficient decay for the large convective amplification of vortical
perturbations, thus efficiently fixing both problems identified
above.

The remainder of the paper is organized as follows: In
Section 2 we introduce the complex mapping methodology for
a linear PDE problem and we draw some parallels between CM
and PML. In Section 3 we apply CM to a canonical scalar PDE
problem, the Ginzburg–Landau equation. This toy model serves
to demonstrate how CM can be used to reduce non-local effects,
i.e. to suppress the (elliptic) feedback pressure mechanism in
the incompressible Navier–Stokes equations. In Section 4 we
discuss the effect of CM on the spectrum of the Helmholtz
equation that governs inviscid linear acoustics, showing that the
methods effectively work as a non-reflective boundary condition.
Sections 5 and 6 focus on the application of complex mapping to
Navier–Stokes equations. We first review the concept of global
stability of both incompressible and compressible flows, which
motivates the study of the effect of CM in plane acoustic and
hydrodynamic waves. Finally, in Section 6 three application
cases, where CM is used for stability computations, are presented.
First an incompressible jet flow which suffers from non-local
feedback due to strong spatial amplification of linear perturba-
tions. ABC are mandatory in this case to correctly characterize
the spectrum of the linear problem. Second, we study the effect
of CM in a compressible flow, the hole-tone configuration, by
looking at the performances of CM with respect to sponge layers.
The last numerical case is the weakly compressible flow past
a symmetric airfoil at a large angle of attack. In this last test
case, it is shown that complex mapping region is still effective
even when its length is shorter than the acoustic wavelength. The
Navier–Stokes and linear acoustics computations are performed
using the FreeFem++ solvers and Octave/Matlab drivers provided
by the StabFem suite (see the review paper by Fabre et al. [9]
for details). Programs reproducing most of the figures of the
paper are available online on the web page of the project (https:
//gitlab.com/stabfem/StabFem).

2. Introduction of the complex mapping technique for eigen-
value problems

2.1. Mathematical framework (1D case)

To introduce the method, let us first consider for simplicity a
one dimensional autonomous linear partial differential equation
(PDE) with the following form:
∂Ψ

∂t
= LΨ (1)

where Ψ (x, t) is defined on the domain x ∈ Ω = [0,∞], and L
is a linear operator. The asymptotic linear stability of such PDE is
driven by modal solutions with the form

Ψ (x, t) = Ψ̂ (x)e−iωt (2)

where ω is the complex eigenvalue. We are therefore led to a
linear eigenvalue problem with the form

− iωΨ = LΨ . (3)

The problem is then said to be linearly unstable if there exists
at least one eigenvalue such as ωi > 0. Note that the modal ansatz
(2) is also at the basis of the so-called frequency-domain approach
to harmonically forced non-homogeneous PDEs (such as wave
scattering problems). The difference is that in the frequency-
domain approach it is sufficient to consider the solution for real
values of the frequency ω, while in the linear stability approach
ω has generally to be solved as a complex number.

2.2. Motivation of the complex mapping

The difficulty we want to solve is associated to the existence
of solutions behaving as Ψ (x, t) ≈ eikx−iωt as x → ∞, which,
according to the argument of k, may be oscillating, or even worse,
exponentially growing. The idea is to consider an analytical con-
tinuation of the solution for complex x, and solve in a region of
the complex plane where all physically relevant solutions are
nicely decaying. To this aim, we will define a mapping from a
(real) numerical coordinate X defined in a truncated domain X ∈

[0, Xmax] to the physical coordinate x.

2.3. Definition of a smooth mapping

The application of the proposed method to a given problem
leads to two separate regions: (i) an unmodified domain for X <
X0 and (ii) a mapped region for X > X0, characterized by a
parameter γc defining the direction in the complex plane. The
simplest choice is as follows:

x = Gx(X) =

{
X for X < X0,[
1 + iγc

]
X for X > X0,

(4)

which transforms the x-derivatives as follows:

∂

∂x
=

⎧⎪⎨⎪⎩
∂

∂X
for X < X0,

1
1 + iγc

∂

∂X
for X > X0,

(5)

In practice it is desirable to design a mapping function which
gradually enters into the complex plane with a transition region
of characteristic length Lc , in order to avoid possible reflections
caused by an abrupt change at X = X0. This can be achieved using
a mapping function with the form:

Gx : R → C such that x = Gx(X) =

[
1 + iγcg(X)

]
X (6)

where g(X) has to be chosen as a smooth function such as g(X) =

0 for X < X0 and g(X) ≈ 1 for X > X0 + Lc up to Xmax for a length
LCM = Xmax −

(
X0 + Lc

)
where complex mapping is activated. We

found good performance using g(X) = tanh
([

X−X0
Lc

]2
)
. To apply

the method to a linear PDE of the form (3), one has simply to
modify the spatial derivatives as follows:

∂

∂x
≡ Hx

∂

∂X
with Hx(X) =

(
∂Gx

∂X

)−1

. (7)

For a given PDE problem, complex mapping function g ∈ Cr (Ω),
where r is equal to the highest derivative order of the considered
PDE problem. This requirement is due to the fact that the deriva-
tive should be continuous between the physical and the complex
mapping domain to avoid any numerical reflection.



Fig. 1. Numerical spectrum of the Ginzburg Landau equation (a) without and (b) with complex mapping, for domain size Xmax = 40 (red crosses), Xmax = 20 (blue
squares) and Xmax = 15 (green circles). The theoretical solution in infinite domain in absence of non-local feedback is displayed by black dots (discrete spectrum)
and black dotted line (essential spectrum).

2.4. Comparison with the perfectly matched layer method

The CM method introduced here shares similarities with the
PML technique. The PML technique was first introduced by Be-
ranger in the context of electromagnetic waves (Maxwell equa-
tions). The initial exposition of the method was formulated in the
temporal domain and involved the introduction of auxiliary vari-
ables. Soon after, the method was reformulated in the frequency
domain (i.e. considering solutions with modal temporal depen-
dance e−iωt ) by Teixeira [10] who showed that it is equivalent to
modifying the spatial derivative operators as follows :
∂

∂x
→

1

1 + i σ (x)
ω

∂

∂x
. (8)

Teixeira & Chew [10] also pointed out that this reformula-
tion is equivalent to solving for a complex variable defined as
follows:

x = GPML(X) = X +
i
ω

∫ X

σ (X ′)dX ′. (9)

Comparing these equations with the ones defining our com-
plex mapping, we immediately see that the two methods are
closely related, the difference being that in the PML the coor-
dinate mapping depends upon the frequency ω. Therefore, the
method is not directly applicable to eigenvalue problems, where
ω is unknown.

3. Application to a 1D model problem

3.1. Description of the model and theoretical solution

In this section we first demonstrate the efficiency of the
method for a one dimensional PDE which has often been used as
a model for global hydrodynamical instability of open shear flow,
namely the linear Ginzburg–Landau equation (see the recent book
of Schneider & Uecker [11, Ch. 10] for a rigorous mathematical
derivation and analysis of this equation):

− iωΨ = −U
∂Ψ

∂x
+ κ

∂2Ψ

∂x2
+ µ(x)Ψ + F(ψ). (10)

In this model, U represents the convective velocity, κ a diffusion
coefficient, µ(x) a local growth rate of the instability, F a non-
local coupling term. We use the following law for the local growth
rate:

µ(x) = µ∞ + µ1e−x/L∗ . (11)

where µ∞, µ1, L∗
∈ R are parameters of the problem. With

this choice, the homogeneous problem in a semi-infinite domain
(without the term F) admits a discrete spectrum ωn with n =

1, 2, . . . (where the linear operator is Fredholm and closed, that
is the solution belongs to the space, here H1

0 (R
+)). Discrete modes

are alike to eigenvalues in finite dimensional problems. The spec-
trum of Eq. (10) is also composed of a second set, denoted as
essential spectrum ωess(ℓ) with ℓ ∈ R (where the linear operator is
no longer Fredholm or closed, for more details on the spectrum
of infinite dimensional operators see the book of Kapitula &
Promislow [12, Ch. 3]). This set depends uniquely on asymptotic
coefficients of Eq. (10). The corresponding solution is given in
Appendix A ( Eq. (35) and Eq. (37)). Following Lesshafft [6], we
introduce a nonlocal feedback term defined as

F(ψ) = ϵe−
(x−xA)

2

b2 Ψ (xS) (12)

where ϵ is a coupling parameter, xS is the location of a ‘‘sensor’’
(located close to the outlet) and xA the location of an activator
(located close to the inlet). Such a feedback exists in real flows
through the pressure, either as a result of backward-propagating
pressure waves (in compressible flows) or as an instantaneous
non-local effect (in incompressible flows). Lesshaft [6] showed
that this nonlocal term leads to the appearance of a family of
artificial eigenmodes called ‘‘arc branch modes’’ which are clearly
dependent on the size of the domain and hence have to be ruled
out when one wants to focus on the discrete modes. We will
show that the complex mapping technique efficiently reaches this
objective.

3.2. Numerical solution and effect of CM

In this section, we assume the following values for the model
parameters: µ∞ = −1, µ1 = 10, κ = 1 − i, U = 6.5 and
L∗

= 10. With this choice, the problem is absolutely unstable
in the range x ∈ [0, 4.6], convectively unstable in the range
x ∈ [4.6, 23], and locally stable for x ∈ [23,∞]. Moreover, the
analytical solution (see Appendix A) tells us that the two first
modes of the discrete spectrum are unstable while the higher-
order discrete eigenvalues and the essential spectrum are stable.
In the following we will consider the numerical solution of the
problem using a feedback term with parameters xA = 1, b = 0.2,
xB = Xmax − 1, ϵ = 0.1. The numerical solution is done using a
Chebyshev collocation method.

Fig. 1 (a) displays the numerically computed spectra without
complex mapping (x ≡ X) for three values of the numerical
domain size, namely Xmax = 15, 20 and 40. In all cases, the
numerically computed spectra are dominated by the ‘‘arc-branch’’
artificial modes whose location clearly depends upon the size of
the domain. Note that with the chosen parameters, the arclength
modes are located in the unstable (ωi > 0) half-plane. For the
smallest domains (Xmax = 15 and 20) these modes completely



mask the physically relevant discrete modes. Computing the most
unstable mode is only possible with the largest domain (Xmax =

20), and yet some mismatch with the theoretical solution can
be observed on the figure. Fig. 1 (b) displays the numerically
computed spectra using the complex mapping technique, with
the same values of the numerical domain size (Xmax = 15, 20
and 40), and applying the complex mapping starting from L0 =

Xmax − 5. The other parameters affecting the complex mapping
are γc = 10 and Lc = 1.

As one can observe, the introduction of CM has the effect of
completely suppressing the arc-branch of artificial modes, and
for all cases the two unstable discrete eigenvalues (plus two
stable ones) are correctly recovered. One still observes a branch
of artificial eigenvalues, but they are rejected far away from the
unstable region, and below the theoretical essential spectrum. It
is remarkable that the CM technique allows to correctly compute
the unstable discrete modes independently of the size of the
domain, even in the two smallest cases (Xmax = 15, Xmax = 20)
where the problem remains convectively unstable at the location
of the numerical truncation.

4. Application to linear acoustics

4.1. Physical problem and asymptotic solution

In this section, we demonstrate the efficiency of the complex
mapping method for a purely linear acoustic wave problem, cor-
responding to a cylindrical pipe of radius D

2 and length L opening
to a semi-infinite domain. This is a classical problem in linear
acoustics, the interested reader is referred to the book of Fletcher
& Rossing [13, Ch. 8] for a brief review.

In an inviscid framework, it is classical to express the velocity
and pressure in terms of the velocity potential Φ , namely u =

∇Φ , p = ρ ∂Φ
∂t . The problem reduces to the Helmholtz equation:

∇
2Φ +

(
ω

c∞

)2

Φ = 0 in Ω (13)

where c∞ is the speed of sound. Eq. (13) is complemented with
boundary conditions. At the walls, the bottom and the axis we
impose non-penetration conditions:

∇Φ · n = 0 at Γin,Γwall,Γa (14)

In addition, in an unbounded space, the relevant asymptotic
condition is the Sommerfeld condition (see the review of
Schot [14]):

∂Φ

∂rs
−

(
i
ω

c∞
Φ +

Φ

rs

)
→ 0 as rs =

√
r2 + z2 → ∞ (15)

Physically this condition means that away from the outlet,
the acoustic field matches with a monopolar source leaving the
domain, and there is no wave coming from infinity. In practice,
when working with a truncated domain, this asymptotic condi-
tion has to be replaced by an artificial boundary condition at the
outlet surface Γout which does not lead to any notable reflection.
We will show in the next subsection that the use of CM efficiently
fulfills this goal. Note that the physical problem considered here
admits an analytical solution in the limit of long pipes (L/D ≫ 1).
This solution is obtained by matching a plane-wave description
within the pipe to a monopolar radiation in the outer domain,
and details are given in Appendix B. The corresponding result is
as follows:

ω ≈ (n − 1/2)π
c∞

L +∆
−

iπ2

32
(2n − 1)2c∞D2

(L +∆)3
with n = 1, 2, . . .

(16)

where ∆ = 4D/3π is the so-called correction length [13]. The
first term in this expression means that the acoustical wavelength
λac = 2πc∞/ωr is 4/(2n − 1) times the effective length (L + ∆)
of the pipe, which corresponds to the resonance condition of
an ideally open pipe. The second term represents the damping
rate due to radiation in the semi-infinite space, which is found
to be largest for higher-order modes. In addition, the physical
problem in infinite domain admits an essential spectrum whose
outer boundary, the Fredholm border (FB), is located on the real
ω-axis, corresponding to weak solutions of the problem which
are not square-integrable and do not satisfy the Sommerfeld
condition, and defined as:

ωFB = c∞ℓ, for ℓ ∈ R (17)

Physically, these solutions correspond to plane waves coming
from infinity and reflecting along the wall (with weak influence
of the pipe).

4.2. Numerical results

In this section we present results obtained using the CM
method. Technically, the method was used by applying the map-
ping equation (6) to both r and z coordinates, namely r = G(R)
and z = G(Z) where R, Z are the numerical coordinates in the
truncated domain Ω . Hence, both r and z derivatives appearing
in the Laplacian operator are modified using Eq. (7). We apply
the mapping outside of the box (R, Z) = [0, R0] × [−H, Z0]
(corresponding to the dashed box in Fig. 2).

Fig. 3 displays the computed spectra for a long and a short
pipe, respectively L/D = 10 and L/D = 3. The results of the
CM method are compared to a reference solution using a much
larger domain (Rmax = 50) and imposing directly the Sommerfeld
boundary condition at the outlet (see Appendix C for details about
implementation of this case). For the longest pipe, the both the
CM method and the reference case allow to compute accurately
the discrete spectrum (8 discrete modes can be found in the range
displayed in the figure). In the reference case without CM, the
numerically computed spectrum also contains a large number of
artificial eigenvalues, all located in the stable range (ωi < −0.05),
which correspond a discretized version of the essential spectrum
discussed above.

For the physical modes, the numerical results fit well with
the asymptotic formula equation (16) for the lowest modes. For
the higher frequency modes the asymptotic formula overpredicts
the damping; this is not surprising since the asymptotic theory
assumes monopolar radiation while high frequency modes are
known to be more directive, hence less energy is radiated.

For the shortest pipe ( Fig. 3 (b)), the discrete modes are much
more damped. As one can observe, the computation without CM
only allows to compute the first mode of the series. All the others
are located in the region occupied by the artificial modes, leading
to the impossibility to compute them. Note that the agreement
with the asymptotic formula equation (16) is less good than for
the long pipe because the hypothesis L/D ≫ 1 does not hold.
Considering the second mode, the pressure component along the
axis for L/D = 3 is reported in Fig. 2 (b). The pressure field in
the physical case (without CM) is approximately a standing wave
within the pipe (with real and imaginary parts in phase) and an
outward propagating wave outside of the pipe (with a π/2 phase
shift). As can be seen, use of the CM leaves the pressure field
unaffected within the pipe and up to z = Z0, but the structure
is completely damped for farther distances.

As for the artificial eigenvalues, using the CM technique has
the effect of ‘sweeping’ them towards much larger damping rates,
and allows to correctly compute the 6 first modes of the series.
Moreover, it can be seen that the imposition of the CM method
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dramatically affects their location in the complex plane. Mathe­
matical analysis if the essential spectrum shows that the effect of 
CM is to 'tilt' it from the real axis (as defined by (17)) to a line in 
the complex plane defined by 

WfB = Coo
l--1-. - = icoo

le-iarcran(ycl, for l E 
JR. 

1 +1yc 
(18) 

The artificial modes obtained with CM are obseived to lie approx­
imately along this line. 

Note that in addition to be more accurate with shorter do­
mains, the CM is numerically less demanding than the Sommer­
feld method. ln elfect, as the eigenvalue appears only as w2

, it is 
enough to formulate the problem for <I> and solve for w2

• On the 
other hand, using Sommerfeld method, as the eigenvalue appears 
as w2 in the Helmholtz equation and w in the boundary condition, 
it is required to solve for an augmented state vector [ <I>, <l>i]

with </>1 = w<I>. The corresponding formulation is detailed in 
Appendix C. 

To investigate the performance of the CM method, we display 
in Table 1 the numerical values of the three first eigenvalues 
of the short pipe (with L/D = 3) for various choices of the 
domain size Raut and complex mapping parameters r0, z0, Le and 
Yc· We note that the results agree within 1% . Considering that 

the acoustic wavelength of the first mode is Àac � 2:,r / w1,, � 

13.7, it is specially remarkable that the CM method is able to 
produce accurate result with a domain as short as Rout = 5, which 
represents a fraction of this wavelength. 

5. Application to global srability anatysis

5.1. Governing equations 

Let us consider both compressible or incompressible Navier­
Stokes equations written in compact operator form as 

ôq(x· t)
B--'- = NS(q(x; t)). 

ôt 
(19) 

Here q denotes the state vector defined as q = [u; p; T; p) using 
non-conseivative variables for compressible or q = [u; p) for 
incompressible flows. B is a linear operator specifying how the 
time derivative applies to variables. Finally, NS is the nonlinear 
Navier-Stokes operator. A detailed form of the compressible op­
erator is given by Fani et al. (15) and the incompressible case is 
detailed in the review article of Fabre et al. (9). ln the following 
sections, Reynolds number is defined as Re = U,Lr where L,,
U, are the characteristic length and velocity scate"f of the flow 



Table 1
Eigenvalues of a short open pipe (L/D = 3) for various choices of the complex-mapping parameters.
Rout r0 z0 Lc γc ω1 ω2 ω3

20 2 2 1 1 0.4623−0.0076i 1.4089−0.0560i 2.3894−0.1197i
10 2 2 1 1 0.4624−0.0076i 1.4091−0.0560i 2.3898−0.1200i
5 2 2 1 1 0.4639−0.0061i 1.4085−0.0561i 2.3895−0.1199i
10 2 2 1 0.2 0.4624−0.0076i 1.4091−0.0560i 2.3898−0.1200i
10 5 5 2 1 0.4627−0.0089i 1.4092−0.0562i 2.3897−0.1199i

configuration and ν∞ is the kinematic viscosity at the far field.
For compressible cases, the Mach number is defined as the ratio
of the characteristic velocity to the speed of sound at the far field,
M =

Ur
c∞

.

5.1.1. Base flow solution & linearized Navier–Stokes-modal decom-
position

Stability studies rely on the linearization about a base state q0.
We define here q0 as the base flow corresponding to the solution
of the steady Navier–Stokes equations :

NS(q0(x)) = 0 (20)

In addition, the base-flow has to fulfill a set of boundary con-
ditions which depend on the application case and will be detailed
in Section 6.

In the framework of LNSE, we are led to consider small-
amplitude perturbations of this base flow:

q = q0(x) + ϵq′(x, t), (21)

where ϵ is a small parameter and the perturbation is expressed
as in Eq. (3) under the modal form

q′(x, t) = q̂e−iωt
+ c.c. (22)

For both the forced and the autonomous problem, injecting the
modal ansatz in Navier–Stokes equations (21) leads to a linear
problem which can be written as follows:

− iωBq̂ = LNSq̂ (23)

Here LNS is the Linearized Navier–Stokes operator whose def-
inition may be found in the analysis of Fani et al. [15] for the
compressible and in see Fabre et al. [9] for the incompressible
case. In addition to the case-dependent set of physical bound-
ary conditions, an unbounded problem requires another set of
asymptotic conditions. Physically, we can expect the velocity
perturbations associated with vortical structures to decay under
the effect of viscous diffusion, and the pressure perturbations to
behave like a divergent acoustic wave as function of the spherical
coordinate rs = |x|. In the compressible case these conditions are
expressed as follows

û,∇û ≈ 0 for rs = |x| → ∞; (24)

rs

[
c∞
∂ p̂
∂rs

+

(
U∞

∂

∂x
− iω +

1
rs

)
p̂
]

≈ 0 for rs = |x| → ∞.

(25)

where the second expression is recognized as the so-called Som-
merfeld condition, which coincides with Eq. (15) in the case of
quiescent ambient flow. In the incompressible setting Eq. (24) is
the unique boundary condition, because pressure is automatically
set by the velocity–pressure Poisson equation. Note that this way
of exposing the boundary conditions is not fully rigourous and
involves a number of pedagogical shortcuts. For instance, the as-
sumption that vortical perturbations are eventually damped relies
on the effect of viscosity, while the Sommerfeld condition comes
from an inspection of the inviscid equations. To express the con-
ditions more rigourously one should also separate the perturba-
tions of the thermodynamical variables into adiabatic (acoustic)

and non-adiabatic (entropy) components. However, this pair of
equations contains all problems related to artificial boundary
conditions and is well suited to the discussion in the next section.

5.2. Effect of CM in the spatial structure of modes

5.2.1. Study of plane-wave solutions for a parallel flow
The condition that the base-flow is asymptotic to a uniform

flow u ≈ U∞ex is generally impossible to reach in a truncated
domain with reasonable dimensions. On the other hand, it is gen-
erally reasonable to assume that in the vicinity of the truncation
plane, the flow approaches a parallel shear flow. We will thus first
investigate the behavior of possible solutions of the LNSE under
this hypothesis. We thus consider a parallel shear flow defined as
u0 = U(y)ex (or for problems with axial symmetry u0 = U(r)ex)
developing in the half-space defined by x > 0, here ex denotes
a unit vector in the x positive direction. We suppose that U(y)
tends to U∞ when y is sufficiently large, and note Uc = U(0) the
velocity at the centerline. This situation represents both a wake
(with Uc < U∞) or a jet (with Uc > U∞) (see Fig. 4). It is also
reasonable to assume that Uc and U∞ are both positive which
means that the local velocity profile is convectively unstable (see
the book of Huerre & Rossi [16]).

Under those hypotheses, the solution of the eigenvalue prob-
lem can be expected as a superposition of plane-wave solutions,
namely

q̂(x, y)e−iωt
=

∑
k

q̂(y)k,ωei(kx−ωt) (26)

Two kinds of solutions can be expected. The fist kind corresponds
to acoustic waves. Restricting to longitudinal waves (independent
of the y-direction) and assuming Uc ≈ U∞ for simplicity, two
solutions are defined as
ω

k±
ac

= ±c∞ + U∞ (27)

If the mean flow is subsonic (U∞ − c∞ < 0), then the solution
k−
ac (representing an acoustic wave propagating in the negative

direction) does not verify the condition equation (25) and has
to be canceled by the ABC. On the other hand, k+

ac must not be
affected by the ABC.

The second kind corresponds to vorticity waves. The corre-
sponding values for k can be obtained from the local stability
analysis of the considered shear flow. This topic is well known
and such solutions can be found in several textbooks (e.g. Huerre
& Rossi [16] ). The possible solutions are given by a dispersion
relation D(kH , ω). In the spatial stability framework which is rele-
vant here, the solutions kH (ω) are of two different types, noted
k+

H and k−

H . Only the k+

H branches should appear in a solution
developing in the positive x-direction, so one should check that
the ABC does not result in any problem related to the k−

H branches.
For the present discussion, we will consider the simplest case
of a shear layer of zero thickness (see Fig. 1b). The problem
corresponds to the classical Kelvin–Helmholtz instability, and the
corresponding solutions for k as given by:
ω

k+

H,s

=
U∞ + Uc

2
− i

|U∞ − Uc |

2
ω

k+

H,u

=
U∞ + Uc

2
+ i

|U∞ − Uc |

2

(28)
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and k! are damped 
when reaching the boundary, so no reneccion is generaced. 

Here kt is the spatially unstable Kelvin-Helmholtz wave and 
kt is a'"spatially stable wave which does not lead to particular 
priblems but has to be retained in the discussion. Note that bath 
solutions belong to the kt category and should thus be present 
in the solution of the problem for x � +oo. The zero-thickness 
shear layer does not possess any kïj solutions (for reasons dis­
cussed in Huerre & Rossi (161) but continuous U(y) profiles admit 
such solutions which, except in cases where U00 and/or Uc are 
negative, are always located in the half-plane lm(k) < 0 and far 
away from the kt s solutions. 

,u 

5.2.2. Effect of CM on plane-waves 
For the present discussion we will thus restrict to five solu­

tions. Acoustic waves ktë, the KH waves kt s and a possible kij 
solution. The behavior of these solutions as'"lxl � oo is one of 
the three following cases: 

(i) Dominant if lm(kx) < 0, i.e. arg(kx) E [-rr, 0) (29) 
(ii) Evanescent if lm(kx) > 0, i.e. arg(kx) E (0, rr] (30) 

(iii) Oscillating if lm(kx) = 0, i.e. arg(kx) = 0, 1r (31) 

We will consider the asymptotic effect of complex mapping equa­
tion (4). The situation differs according to the argument of w. We 
consider three cases: 

Case 1: arg(w) = 0 
The case where w is real is particularly important as it is 

relevant to bath the Jorced problem resolved in frequency do­
main, and to the stability problem at marginal conditions. Fig. 6(a) 
sketches the location of the fwe considered plane-wave solutions 

in the complex k-plane. The region lm(k) < 0 corresponding to 
dominant solutions in the absence of mapping is indicated by the 
gray area. Bath solutions kt u and kij belong to this region, while 
kt s is evanescent and k! are bath oscillating. 

· As sketched in Fig. 6(b), the effect of the complex map­
ping Eq. (4) for xis to 'tilt' the boundary between dominant and 
evanescent solutions by an angle arg(yc)- As a result, the choice 
Yc > 0 is sufficient to turn the physically relevant k;t; into an 
evanescent wave and the unwanted k;;; into a dominant wave, 
which will thus be damped as it propagates backwards. However, 
if Yc is small, the solution will still contain a dominant kt u wave. 

This solution corresponds to the spatially growing' Kelvin­
Helmholtz instability, and is perfectly relevant from a physical 
point of view. However, if the spatial growth of this wave is 
larger than the spatial damping of the backward-propagating k;;;
induced by the mapping, the k;, solution may still be present in 
the domain as a reflection of the kt u· The remedy to avoid this is 
to chose Yc such as kt u becomes evanescent, see Fig. 5 (b). This 
requirement leads to the following condition: 

+ . IUoo - Ucl arctan(yc) > - arg(kH,u), 1.e. Yc > ---- (32) 
Uoo + Uc 

The corresponding situation, where only the k;, wave is dom­
inant, is sketched in Fig. 6 (b). CM is also effective in a situation 
where kt u does not decay enough before reaching the outer 
boundary,' but backward propagating wave does before escaping 
complex mapping region and reaching the physical domain. lt 
is found that in that case CM is more effective for compressible 
flows and Eq. (32) turns to be the condition for the low Mach 
limit, see Appendix D for details. 
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Fig. 7. Diagram displaying a complex mapping 9,,(X) ror an unscable rrequency w, in the complex plane or the wave-veccor k. Legend or symbols is the same as in 
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Fig. 8. Diagram displaying a complex mapping 9,,(X) ror a stable rrequency w, in the complex plane or the wave-veccor k. Legend or symbols is the same as in Fig. 6. 

Case 2: 0 < arg(w) « !} 
This second case corresponds to the expected behavior of a 

temporally unstable mode. As seen in Fig. 7, this case is more 
favorable, as the k; wave is already in the dominant region 
without need of the mapping. If one wants to turn the kt u wave 
into an evanescent as in Fig. 5 (b) one needs to choose Yc 'in such 
a way it possesses a sufficient decay (see Fig. 7): 

(IUoo - Ucl) 
arctan(yc) > arctan 

Uoo + Uc 
- a�(w) 

Case 3: -!} « arg(w) < 0 

(33) 

Now we consider a value w corresponding to a stable global 
mode. This case is the less favorable, as without mapping (see Fig. 8 
(a)). The k� wave is in the dominant region, meaning that it will 
be amplified as propagating backwards, destroying any chances to 
correctly compute the mode. The condition to change this mode 

into a dominant one and turn the kt u into an evanescent one 
is still given by Eq. (33), but it is more restrictive here than in 
previous cases since arg(w) < O. 

6. Application cases

6.1. Incompressible flow through a single hale 

ln this section we will discuss the application of the complex 
mapping methodology to incompressible Navier-Stokes equa­
tions. The hole diameter is considered as the reference length, 
denoted by L,- and the characteristic scale, Ur is the mean velocity 
across the hole. The application case is the flow past a single hole 
of finite thickness. This configuration has been recently studied by 
Fabre et al. see (8, Sec. 3) for the definition of the problem and a 
discussion about boundary conditions. Severe numerical difficul­
ties arise in the solution of the linearized Navier-Stokes equations 
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Table 2 
Description or meshes M; ror i = 1, 2, 3. N

0 
denotes the number or verrices of 

the mesh. GeometricaJ parameter l"'' denotes the axial longitude of the mesh 
and Rour is the radial extension or the numerical domain. 

Description of numerical domains M1 - M3 

Mesh Lour Rour Xo Le Yc Nu 

M1 20 15 5 0.5 17915 
M2 30 20 30695 
M3 60 20 78300 

due to the strong spatial amplification of linear perturbations, in 
particular pressure (see Fig. 9). 

An artificial boundary treatment is a mandatory technique for 
this type of study. Large amplifications of linear perturbations 
lead to physical perturbations far downstream the hole. ldeally, 
this would require an infinite domain, at least in the streamwise 
direction. However, numerical computations are realized in trun­
cated domains. If the computational domain is not sulficiently 
large, that is amplitude of the perturbed field is negligible close 
to the outer boundary, "spurious eigenvalues" constituting the 
discretized version of the continuous spectrum may arise. ln the 
case of large perturbations, these "spurious eigenvalues" can be 
even located in the unstable side of the spectrum and close to 
discrete physical eigenvalues as Reynolds number increases. 

The linear stability study of the flow past a hole in a thick 
plate shows that dynamics of Re < 3000 can be explained by 
the presence of three discrete physical modes, here denoted by 
H1, H2 and H3. For validation purposes we have designed three 
computational meshes Mi for i = 1, 2, 3, the first one with CM 
uniquely in the axial direction and the other two without any ABC 
but with longer axial dimension, denoted Lout (see Table 2). 

Fig. 11 displays the numerically computed spectra using nu­
merical domains M1, M2 and M3 for Re= 1700, Re= 2000. The 
spectra here displayed presents three discrete eigenvalues Hi for 
i = 1, 2, 3 and a set of "spurious eigenvalues", named arc-branch 
by Lesshafft (6), which arise due to non-local feedback mecha­
nism of spurious pressure signais from the truncated boundary 

4 
x=Lm 

LJ 2 

0 

-2

n-4
-2 0 2 4 6 8 

EigenvaJue computations ror Re= 1600. 

M1 -0.1156i + 0.5024 0.0854i + 2.0985 

M2 -0.1259i + 0.5017 0.13916i + 2.1051 

M3 -0.1189i + 0.5017 0.0826i + 2.107 

Table 4 
EigenvaJue computations ror Re= 2000. 

M1 -0.0435i + 0.5615 0.3032i + 2.2436 
M2 -0.0421i + 0.5645 0.3114i + 2.2467 
M3 -0.0420i + 0.5628 0.2965i + 2.2399 

-0.0926i + 4.1230 
-0.105 li+ 4.1359 
-0.0944i + 4.1240 

0.2418i + 4.3184 
0.2287i + 4.3268 
0.1232i + 4.2807 

and upstream locations. Computations of the spectra without 
ABC, M2 and M3, lead to the presence of unstable spurious eigen­
values (w; > 0). Moreover, as the Reynolds number increases they 
tend to approach discrete eigenvalues H;. The use of CM results in 
a good separation of physical and spurious eigenvalues. However, 
CM methodology with Yc > 0 does not allow to identify the 
complex conjugate modes of Hi located in w, < O. The exploration 
of the other side of the spectrum can be determined by choosing 

Yc < O. ln Fig. 10 it is possible to visualize the elfect of complex 
mapping on the structure of the pressure component of the H2 

mode. lndeed, one may observe how CM can efficiently transform 
a convective dominant wave into evanescent, hence any non-local 
effect, i.e. arc-branch eigenvalues, is avoided. 

Finally, Table 3 and Table 4 display a comparison of the nu­
merical elficiency of numerical methodologies M; for i = 1, 2, 3 
for the computation of discrete eigenvalues. Following, similar 
arguments as in Fabre et al. (8) we conclude that CM methodology 
allows a precise identification of discrete spectrum with a lower 
number of vertices with respect to methodologies without ABC. 

6.2. Hole-tone configuration 

The problem of the flow passing through a circular hole in a 
plate is encountered in many practical applications and has been 
widely studied by experimental and numerical investigations. 
This situation is encountered in various applications, including 
the whistle of a tea kettle, which has been studied by Henrywood 
& Agarwal (17) or birdcalls (devices used by hunters to imitate 
bird singing) analyzed by Fabre et al. (18) (see Fig. 12). 

Attempts to characterize the instability mechanism were pre­
viously made using incompressible (see Fabre et al. [181) and 
compressible (see Longobardi et al. (191) LNSE. These efforts 
allowed to identify the dilficulties associated to boundary condi­
tions. The diameter of the first hole is taken as the characteristic 
length scale L, and the mean velocity along the hole as the refer­
ence velocity scale U,. This test case has been previously used to 
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Fig. 10. Pressure componenr or the eigenmode H2 with mesh M1 (upper) and mesh M3 (lower). 
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Fig. 11. Specrrum compured wirh rhree meshes. x (red online) denores eigenvaJues compured wirh Mi. ,. (green online) with M2 and + (blue online) wirh M3 for 
(a) Re= 1700 and (b) Re= 2000. (For inrerprerarion of the references ro color in rhis figure legend, the reader is referred ro the web version of Chis article.)
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Fig. 12. Sketch of the hole-rone configuration, frame of reference and definirion 
of geomerricat paramerers. An exampte of compurarionat mesh is also reporred 
in lighr gray. An acruat birdcall is depicred in the upper righr corner. e den ores 
the thickness of the caviry wall, radius of hales Rh.i, i = 1, 2, radius and tengrh 
of the caviry are denored by Re •• and Hca, respecrivety. Values of geomerricat 
paramerers can be round in Longordardi er al. Il 9 ]. 

show CM efficiency by Sierra et al. [20), where more details about 
governing equations, i.e. compressible Navier-Stokes, boundary 
conditions and methodology may be found. 

6.2.1. Eigenvalue computations 
We study some characteristics of the spectrum of the flow 

by solving Eq. (19) in the compressible setting. Linear dynamics 
of the birdcall flow at a sufficiently high Reynolds number is 
governed by a set of unstable discrete modes, the continuous 
spectrum remains stable. ln the studied range of Re and M00, 

we have appreciated the presence of four unstable modes up 
to Re = 1600. These modes have been computed with two 
techniques, sponge as boundary condition at the far field and 
complex mapping. Artificial boundary conditions are needed to 
compute physically relevant modes and to avoid the appearance 
of spurious modes in the spectrum due to boundary conditions. 

To identify these modes at threshold we have used complex 
mapping. Complex mapping technique allows to tilt the continu­
ous branch of the spectrum to leave discrete modes isolated and 
easy to be identified at the threshold. This phenomenon is briefly 
described in Section 4. At Fig. 13, spectrum is displayed for two 
Reynolds numbers at M00 = 0.05. The spectrum corresponding 
to the simulation with sponge boundary condition at far field at 
threshold presents some discrete eigenvalues and a continuous 
branch along the real axis. Let us consider the case Re = 320 
and M00 = 0.05. At that configuration Mode 1 is neutrally 
stable. However, we are not able to identify it by numerical 
means since it is clustered inside the continuous branch. So, one 
should increase further the Reynolds number hoping to find the 

mode in the unstable zone. With the complex mapping technique 
continuous branches are rotated from the origin with an angle 
arg x whereas discrete modes remain invariant. This allows to 
identify modes near and at threshold. These modes are displayed 
in Fig. 14. ln that figure it is possible to appreciate the hydro­
dynamic instability which is the part of the mode of highest 
amplitude. lt is possible to remark a few properties of these 
modes. The pressure is fairly constant in the cavity but it is not 
constant as it has been reported by Longobardi et al. (19). The 
spatial structure of pressure mode inside and outside the cavity 
is proportionally dependent of the temporal frequency w, which 
indicates a direct link between the quantization of frequency and 
pressure oscillations between bath hales (see Fig. 14 (a) and (b) 
for the structure of Mode 1 and 2 at Re = 1600 and Fig. 16 (b) 
for the frequency). Similarly, as w increases a given mode tends 
to have its support farther from the cavity. From the vorticity 
field of Fig. 14 it is possible to observe the antisymmetric pattern 
of vorticity inside the cavity for mode 1 and mode 2 and the 
tendency of the shear layer to become symmetric and reduce its 
thickness as w increases, this is specially remarkable for mode 4. 

Finally in Fig. 15, we depict the imaginary part of the pressure 
of global modes for Re = 1600 and Moo = 0.05 for Mode 2 
and Mode 4. lt is possible to observe the radiation of acoustic 
waves propagating into the far field as spherical waves. Acoustic 
radiation between Mode 2 and Mode 4 differs in wavelength 

Àac and acoustic directivity. Wavelength decreases as w increases 
whereas the acoustic directivity seems to change when the acous­
tic wave is able to penetrate into the cavity as it has been 
previously observed by Longobardi et al. [19). 

For this study we have used four meshes which are shown 
in Table 5. M1 has been used as a reference test case computed 
with sponge layers. Remaining meshes are used with CM method­
ology which allows to greatly reduce the size of the domain 
and the number of points. The size of the domain is denoted 
by [Xmin,Xmwc, Rmwcl, where Xmin is the x-coordinate of the inlet, 
Xmwc is the x-coordinate of the outlet and Rmwc corresponds to the 
outer radius of the domain. Please note that the minimum size 
of the sponge section, denoted by lXmin,Xmwc, Rmwcl in Table 5, is 
the minimum domain size to elfectively damp acoustic waves. 
The outer boundary is located at a distance approximately three 
times the acoustic wavelength of the first bifurcated mode. The 
reduction in computational time from the use of Sponge or Com­
plex mapping can be also perfectly visualized in Table 5 where it 
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(a) Mode 1 at Re= 1600 (b) Mode 2 at Re= 1600
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(c) Mode 3 at Re= 1600 (d) Mode 4 at Re= 1600

Fig. 14. Ir displays the four unstable modes at Re = 1600 and M00 = 0.05. Toe real part or the pressure mode Pn and the imaginary part of the vorticicy !1; are 
shown for each mode at the upper and Jower si des of each figure respectively. 

is displayed the time needed to compute the leading eigenvalue 
with each of the considered meshes. 

Computations with mesh M1 were carried out in serial with 
an Intel i7 2.6 GHz whereas numerical tests for M; for i = 
2, 3, 4 were computed with an Intel i7 2.2 GHz. Computational 
time takes into account the computation of the baseflow and the 
leading eigenvalue at Re = 400 and M00 = 0.05. The gain in 
computational rime between Sponge and CM is around 50 for the 
finest mesh and 125 for the coarsest. This gain in performance 
is due to the fact that the domain size of the mesh is greatly 

reduced, therefore reducing the number of elements required for 
the computation. 

Concerning precision, a comparison between the four consid­
ered meshes is displayed in Fig. 16. ln that figure it is possible to 
observe in (b) linear frequency results are in agreement between 
the two considered methodologies. Whereas for the linear growth 
despite the fact the good fit between both methodologies and the 
four considered meshes there is a slighter disagreement between 
M4 and M1 for the mode with linear frequency around w, � 9 at 
high Re. The difference in the growth rate between M3 and M1 is 
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Tables 

Mesh definition and performances. IXmin, XmCDC, R....,.] denoces the size or the compucacional domain, Xo the location above which the 
CM is applied (in both (r, x) directions) and N, the number or mesh vertices where the boundary conditions are erreccively applied. 
The table also displays the compuced eigenvalue w and the cime required for computation Re= 400 and M00 = 0.05. The required 
cime co perform a computation or ba.senow and Jeading eigenvalue wich a single processor is displayed. 

Mesh Methodology N, [Xm;,, XmCDC, R....,.] Xo Yc w Time (s) 

Sponge 
CM 
CM 
CM 

1211054 
31986 
40942 
14337 

(-120, 120,130] 
(-30,30,30] 
(-80,80,80] 
(-30,30,30] 

lower than 5 %  in the worst case scenario, which corresponds to 
the growth rate of Mode 4. ln this case the relative error is large 
because of the small magnitude of the growth rate. 

6.3. Flow past an airfoil 

Low Reynolds number flow past an airfoil is a flow con­
figuration which has attracted interest from micro-air vehicles 
or bio inspired air vehicles designers. Airfoils in these types of 
configurations are usually configured to operate at high angles 
of attack . Characteristic length and velocity scales are the chord 
length of the airfoil profile and the far field uniform velocity. Flow 
unsteadiness is encountered in the separated shear layer due to 
a Kelvin-Helmholtz instability and in the wake of the airfoil in 
the form of a Von Karman vortex street. ln the past Zhang & 
Samtaney (21] (22] have carried out the study of a NACA 0012 
profile at angle of attack a = 16°. ln the current section we 

10 
40 
10 

0.2 
0.2 
0.15 

4.7574 + 0.0792i 
4.6922 + 0.0666i 
4.7151 +0.0945i 
4.7051 + 0.0747i 

83944 s 
1655 s 
1421 s 
669 s 

reproduce previous results of the NACA 0012 airfoil for a given 
flow configuration. Effectiveness of the CM methodology will be 
shown by a parametric study of the length of the CM layer and 
cross comparison with reference results. 

ln Table 6, it is displayed the leading eigenvalue for several 
meshes M1 - M.t which correspond to different lengths of CM 
layer . CM is activated outside a rectangle whose upper right 
corner is [X0 , Y0] and its lower left corner is [-Xo, -Y0] with CM 
parameters Yc = 0.3 and Le = 5. Rout is the radial extension of 
the numerical domain and LCM � Rout - 10. Acoustic wavelength, 
Àac =:; (d--+1},forMoo = 0.1 atRe = lOO0is aroundÀac � 28, 
where length is non-dimensionless with respect to the chord of 
the airfoil. A length of the CM region, of around � � [5 0, 6 0] is 
sufficient to capture the leading eigenvalue, which has been also 
computed with sponge layers, see M5. Nevertheless, M1 whose 
length of the complex mapping region is LCM � 1' presents 
a relative error of around 1%. This is another example of the 
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Fig. 17. Streamwise velocicy u,., or the mosc unscable mode ac Re00 = 1000, 
M00 = 0.1 and a= 16°. 

Table 6 
EigenvaJue computation for Re = 1000 and M00 = 0.1 wich respect co 
incompressible ONS resulcs or (22). CM corresponds co M, -MG. Ms corresponds 
co a compucacionaJ domain or size R.., and a sponge region accivaced ac [Xo, Yo]. 

Re= 1000 and M00 = 0.1 

Mesh R°"' (Xo, Yo] W; w,. 

M, 20 (10, 10] 0.7110 2.6102 
M2 30 (10, 10] 0.7079 2.5954 
M3 40 (10, 10] 0.7071 2.5862 
M. 70 (10, 10] 0.7048 2.5692 
Ms 30 [5, 5] 0.7079 2.5954 
� 30 (2,2] 0.7067 2.5953 
Ms 100 (10, 10] 0.7036 2.5660 
Ref. (22) 0.716 2.5095 

strength of CM with respect to sponges which require several 
acoustic wavelengths to avoid any reflection. ln Table 6 it is also 
displayed a parametric comparison of [X0, Y0], the size of the 
physical domain, we find that the activation of CM close to the 
body Xo = Y0 = 2 does not affect much the leading eigenvalue, 
the relative error of the growth rate is less than 0.3% and the 
frequency varies less 0.1%. This result is not surprising due to the 
fact that eigenvalue sensitivity tensor has its support close to the 
trailing edge of the body, then in the physical domain even for 
small values of [Xo, Yo] (see Fig. 17). 

7. Conclusion

A novel non-reflecting boundary condition for linear stability 
computations, i.e. modal stability, has been introduced. Complex 
mapping arises as a spectral transformation of the PDE problem to 
easily identify the onset of unsteady modes near the threshold by 
the rotation of the continuous spectrum, see Section 6.2. lt is also 
an artificial boundary treatment that preserves the number of 
degree of freedoms and it is easy to implement in any numerical 
code. ln the present study, we have discussed the elfect of CM in 
the spectrum of PDE problem, see Section 3. As well, a guideline 
for the choice of the direction and length of the complex mapping 
has been introduced in the framework of hydrodynamic and 
acoustic flow instabilities. Complex mapping avoids the increase 
of the number of degrees of freedom imposed by buffer layers or 
Perfectly Matched Layer methods, whereas precision is similar to 
those as it has been shown in the four numerical cases. Opposed 
to sponge regions which require enormous domain sizes at low 
Mach numbers to damp acoustic wave reflections, complex map­
ping has proved to be much more efficient at this regime. ln the 
hole tone configuration at M00 = 0.05 the number of degrees 
of freedom was reduced by at least 50 which demonstrates the 
usefulness of the methodology, see Section 6.2. lt has been also 
shown in the flow past a NACA 0012 airfoil, Section 6.3, or in 

the acoustic circuit of cylindrical pipe, Section 4, the application 
of a complex mapping layer with a length of fraction around a 
fourth or a third of the acoustic wavelength is sulficient for the 
computation of the quantity of interest, i.e. leading eigenvalue, 
within 1% of error. Moreover, the application of complex map­
ping to incompressible flows with large amplifications due to 
convective instabilities allows to mitigate the non local feedback 
effect between downstream and upstream boundaries due to 
the elliptic nature of Navier-Stokes equations, see Section 6.1. 
ln those cases, the complex transformation is able to provide 
sufficient decay to vortical perturbations to alleviate non-local 
interactions with the outer boundary. The current discussion of 
the methodology is mainly focused on the study of fluid me­
chanics instabilities nevertheless, the proposed approach can be 
used to simulate other wave supporting problems. Here we cite 
some other physical phenomena, for instance those described by 
Maxwell's, Helmholtz, elastodynamic or poroelasticity equations. 
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Appendix A. Analytical solution ofche Ginzburg-Landau model 

ln this appendix we derive the analytical solution of the 
Ginzburg-Landau equation: 

ao/1 a2
1/1 

- iwo/1 = -U 8x + K ôx
2 + µ(x)o/1 (34) 

with homogeneous boundary conditions: f(0, t) = 0; f(oo, t) = 
0, and with a local growth rate defined as µ(x) = µ00 + µ1 e-x1i•, 
where J.1,00, µ,1, L * E IR are parameters of the problem. The local 
stability of the Ginzburg-Landau equation depends on the local 
growth rate µ(x) (see Huerre & Rossi [16, Ch. 3) for more details).
The theoretical solution in the physical do main x E [0, oo] 
consists of two kinds of modes: 

• First, a discrete spectrum corresponding to square-integrable
solutions. With our choice for µ(x), the corresponding modes
can be searched in analytical form as

Ux[ Ux lie] 
l/l(x)=e'lK Als(ae-r.)+BY5(ae-r.). (35)

where Js and Ys are Bessel fonctions of first and second

kinds, s = 2L * J � - Hµ,00 + iw) and a = 2L * fij-. The

condition that l/l(x, w) should decay at x � oo leads to B =
0, and application of the homogeneous Dirichlet boundary 
condition at X = 0 leads to the transcendental equation 

1s(a) = 0 (36) 

which admits discrete solutions corresponding to frequen­
cies wn (n = 1, 2, .. ) of the discrete modes. 

• Secondly, the fact that µ(x) asymptotes to a constant value
J.l,oo for large x leads to the existence of an essential spectrum,
corresponding to solutions which are not square-integrable
but oscillating, with asymptotic form ,fF(x) � eitx with e ER. 
lnjecting this form in the equation with µ(x) � µ00 leads to
the following definition of the essential spectrum:

(37) 

Convergence of thefinite diff'erence discretization. ln order to guar­
antee that the centered second order finite dilference discretiza­
tion does not introduce a systematic error a convergence test is 
carried out, see Fig. 18. Eigenvalues corresponding to analytical 
solution are compared with numerical results. The expected sec­
ond order of convergence is recovered whenever the cell size Ll.x 
is sulficiently smalt. 
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Fig. 18. Convergence test or the cencere<I second order finite difference method 
for the GL problem. ,.,,,, denotes the nth eigenvalue where n = 1, 2 and w.. ... J are 
analytical eigenvalues. Solid line (resp. dashed line) corresponds to first (resp. 
second) eigenvalue. Oashed-dotce<I line is use<I to display the asympcotic second 
order or convergence. 

Appendix B. Asympcocic solution for a finice-Jength acouscic 

pipe opening co an infinice domain 

ln this appendix, we derive an asymptotic solution for eigen­
values of the acoustic problem of Section 4 valid for long pipes, 
namely L/D » 1. For this sake, we first consider a forced problem, 
assuming that the pipe is driven at its bottom by a harmonie 
forcing with frequency u� în = e-îwt_ Under this framework, 
the forced response of the' pipe to acoustic forcing can be fully 
characterized by the inlet impedance 

Îm(w) = 
Pin 

(38) 
<1n 

where q' = <1ne-îwt and p' = Pme-îwr_ Moreover, the eigenmodes 
of the autonomous problem for a pipe closed at the bottom can be 
tracked as zeros of the impedance. Following the book of Fletcher 
& Rossing [13), the inlet impedance of the pipe can be expressed 
in terms of the characteristic impedance l0 Po;i00 and the 
ourlet impedance li :

li cot(e:, L) + iZo 
(39) lm= lo . .,

[ili + l0 cot( 4)0 L)] 
ln the asymptotic limit À/D » 1 where À is the asymptotic 
wavelength, the ourlet impedance of an circular in a semi-infinite 
domain has the following expression: 

1 wD 
2 li= lo[-(-) + L1iw/coo] (40) 

2 2c00 

where L1 is the so-called correction length given by L1 = :� � 
0.425D. 

Therefore, substituting Eq. (40) into Eq. (39): 
l( ..!!!Q.. )2 cot( ...!!L(L + L1)) + i 

l· _
z 2 2cao Cao 

m - o [ .!.( ..!!!Q.. )2 + cot( ...!!L(L + L1))]2 2cao Cao 

(41) 

The eigenvalues of the autonomous problem for a pipe closed at 
the bottom can be tracked as potes of the impedance ( or zeros
of the admittance Ym = lî;1 . At leading order (neglecting the
radiation term) these correspond to cotie:, (L + L1)] = 0, hence 

(0) Coo 
w = (2n - l)1r 2(L + L1)
A first-order approximation can be obtained by setting w = w<0l+ 
w< 1J assuming lw(ll l « lw<0ll, and injecting into Yin· This leads to 

(1) - Y;,(w!O)) h" h lly I d w _ - [aYm/awJ .,(Ol w rc eventua ea s to

w< ll = _ i1r2 (2n - l)2c00D2 

32 (L + L1)3 

Appendix C. Acouscic problem 

ln this section we detail the formulation of the free acous­
tic problem with Sommerfeld boundary condition at the outer 
boundary. The linear dependency of Sommerfeld equation (15) 
on w forces to add an extra field </>1 e:, <I>. The subsequent
eigenvalue problem reads 

v2<1> + !!_<1>1 = o 
Coo 

(ù 

<1>1 - -<I> = 0
Coo 

Sommerfeld: a<t> - (i</>1 + <I>) = 0
ars rs 

where rs = J r2 + z2 at I'out 

Appendix D. Effecc of CM on plane-waves 

(42a) 

(42b) 

(42c) 

ln this section we study how CM affects plane waves. Consider 
the situation of a wave whose amplitude is A0 at X = Xo + Le

and the complex parameter Yc > 0 is not sulficiently large to 
sufficiently decay kij u before the end of the domain. Backward­
propagating waves occur, among which k;; possess the largest 
spatial growth rate. ln this simplified analysis we take the hy­
pothesis, kïae » k;H s• which is usually the case in shear flows
because acoustic waves are oscillating and backward propagating 
hydrodynamic modes are dominant, thus k;H s < O. ln the follow­
ing the amplitude of backward propagating wave at X = Xo + Le 

isA�. 

(43) 

From dispersion relations equation (27) and equation (28) we 
obtain that Yc needs to be chosen 

IUoo - Ucl(l -Moo) 
Yc = 

(U00 + Uc) - Me(Uoo - Ue)
ln(�) (l-M00}(U�+Uz}

- 2wLCM (U00 + Uc) - Me(U00 - Ue)
(44) 

where M00 = Uao, Mc = .Y.... We note that the second term
is positive and i� absolute ��lue is controlled by the complex 
mapping length, LcM. We consider the case Mc « 1, which is
equivalent to suppose that the speed of sound is much larger than
the velocity difference in the shear layer c00 » Ue, Then the final
expression is as follows 

Yc > (1 - Moo) t
oo - Uc

;U00 + Uc 
(45) 

Note that in the low Mach limit M00 -+ 0, Eq. (32) is recovered. 
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