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Abstract

Since the conjecture of Richards (2008), the work by Cairns et al. (2016) and sub-
sequent developments by Boumezoued (2016), Boumezoued et al. (2018) and Boume-
zoued et al. (2019), it has been acknowledged that observations from censuses have led
to major problems of reliability in estimates of general population mortality rates as
implemented in practice. These issues led to mis-interpretation of some key mortality
characteristics in the past decades, including “false cohort effects”. To overcome these
issues, the exposure estimates for a given country can be corrected by using monthly
fertility records. However, in the absence of birth-by-month data, the recent devel-
opments are not applicable. Therefore, this paper explores new solutions regarding
the construction of mortality tables in this context, based on machine learning tech-
niques. As a main result, it is demonstrated that the new exposure models proposed in
this paper allow to provide correction with high quality and to improve the fitting of
stochastic mortality models without cohort component, as it is the case for the existing
correction method based on monthly fertility data.
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1 Introduction

Studies that are concerned with mortality modelling usually make the assumption that the
underlying data (e.g. deaths and exposures) are accurate. However, as shown by the recent
February 2018 update of the Human Mortality Database (HMD, 2018), the database which
contains original life tables for almost 40 countries or areas, proposing high quality mortality
rate estimates remains a challenging topic. Awareness of some data anomalies emerged
following Richards’ conjecture (Richards, 2008), which had suggested that some cohort effects
in England might be due to the sensitivity to fertility shocks of the method of calculating
mortality rates. This conjecture was confirmed by Cairns et al. (2016) who proposed a
method for correcting mortality data for England & Wales based on quarterly birth rate
data. The Convexity Adjustment Ratio introduced in their work has then been adapted
by Boumezoued (2016) who focused on HMD data and showed that these anomalies are
universal. To build corrected mortality tables, a link with the Human Fertility Database
(HFD, 2018), the HMD counterpart for fertility, has been made to correct such anomalies
in a systematic way. Boumezoued et al. (2018) then introduced an inference strategy from
a deterministic population dynamics model in order to compute mortality rates based on
information extracted from censuses. Their work confirmed from a mathematical perspective
the efficiency of using additional monthly fertility data for appropriately computing annual
mortality tables. Moreover, a general inference theory in a stochastic setting has been
proposed in Boumezoued et al. (2019).

Finally, the latest version of the HMD Methods Protocol (Wilmoth et al., 2019) introduces
a change to the way mortality rates are constructed in the database. Birth-by-month data
that have been collected are now used to more accurately estimate population exposures.

However, these methods are not applicable to countries for which birth-by-month data
are not available, so that until now, most studies dedicated to stochastic mortality modelling
including a cohort component had focused on reproducing what is known now to be data
anomalies and false cohort effects.The purpose of this paper is therefore to propose a model
to produce corrected mortality tables for countries for which birth-by-month data are not
available, by learning the features of the correction process where it has already been applied.

In the literature on mortality modelling, machine learning approaches have recently
emerged. The work of Deprez et al. (2017) has shown that machine learning algorithms are
useful for assessing the quality of fit of mortality estimates provided by standard stochastic
mortality models. The authors applied a gradient boosting model to analyze how modelling
should be improved based on an individual’s characteristics, such as age or birth cohort.
This regression approach (non-parametric) then makes it possible to detect the weaknesses
of different stochastic mortality models. Hainaut (2018) used neural networks to find the
latent mortality factors of a Lee-Carter model and predict them according to a random walk
with drift. Richman and Wüthrich (2019) extended the Lee-Carter model to multiple popu-
lations using deep neural networks. Ludkovski et al. (2018) used Gaussian processes to build
a one-population model on mortality data from the United States, Japan, and England &
Wales, their main objective being to obtain short-term mortality projections. The work of
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Levantesi and Pizzorusso (2019) examined the ability of machine learning to improve the
accuracy of some standard stochastic mortality models, both in estimating and predicting
mortality rates. The authors used tree-based machine learning techniques to calibrate a
parameter (the machine learning estimator) to be applied to mortality rates adjusted by the
standard mortality model. Following this line of research, Levantesi and Nigri (2019) pro-
posed an approach for the machine learning estimator forecasting, based on the combination
of a random forest algorithm and two-dimensional P-splines. They used mortality data of a
set of developed countries and showed how machine learning algorithms can bring effective
benefits to the study of mortality, both in the fitting and forecast phases.

In the present paper, focus is rather on past mortality data correction. For such purpose,
a refined feature engineering is developed by studying the observables available in the Lexis
diagram. Based on the new features, a neural network approach is implemented as well
as a baseline linear regression. To the best of our knowledge, the only attempt to provide
automatic correction has been proposed by Cairns et al. (2016). One of their contributions
was to develop a Bayesian model to quantify the magnitudes of the errors on the exposures,
relying on original death counts and exposures estimates for England & Wales. The approach
we propose will rather benefit from the recent correction methods developed and especially
the HMD version 6 update to learn the correction process from a variety of countries, which
is a core feature of our work. As far as we know, no other predictive study focused on
correcting population exposures estimates without monthly fertility data.

The remainder of this paper is organised as follows. Section 2 specifies the correction
problem and the observables in the Lexis diagram. Section 3 presents the correction method
of exposure estimates. Section 4 exposes results of the method and Section 5 applies the
method to correct mortality data for West Germany, Ukraine, Belarus and Poland, for which
birth-by-month data is lacking for part of the cohorts and which therefore remain currently
uncorrected for both demographic and actuarial studies. Finally, Section 6 concludes with a
discussion and avenues for future research.

2 The correction of mortality estimates

2.1 The correction problem

A cohort effect appears when a generation has very different longevity characteristics from
adjacent generations, for instance when different distributions of disease arise from a changing
or new environmental cause affecting age groups differently. In epidemiology, a cohort effect
is also conceptualised as a period effect that is differentially experienced through age-specific
exposure or susceptibility to that event or cause. In other words, a cohort effect could
arise when a population-level environmental cause is unequally distributed in the population
(Keyes et al., 2010).

On the contrary, sudden variations in births can produce anomalous cohort effects. In
fact, the mortality rate µ(a, t) at age a and at year t is estimated in the so-called period
mortality table by comparing the number of deaths D(a, t) occurring in the year t, with the
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corresponding exposure to risk E(a, t). Exposure to risk represents the quantity of individ-
uals at risk of death, i.e. the total time lived by the population in the period considered.
The mortality rate estimator is therefore given by:

µ̂(a, t) =
D(a, t)

E(a, t)
. (1)

Let us define the improvement rates by:

r(a, t) =
µ(a, t+ 1)− µ(a, t)

µ(a, t)
, (2)

which are often used to observe particular patterns. Then, if the mortality improvement rates
matrix is represented for West Germany (see Figure 15), as extracted from the latest Human
Mortality Database (HMD) update, cohort effects can be observed for specific generations
(born around 1915, 1920 and 1940).
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Figure 1: Mortality improvement rates — West Germany raw data

As age-specific exposure to risk in the period mortality table is approximated by the
average between the population at the beginning and end of the year, under the assumption
of uniform distribution of births, birth fluctuations at these times make the approximation
inaccurate. Such issues were noticed in the HMD as early as 2007 by Wilmoth et al. (2007).
Based on monthly fertility data, it is possible to improve the approximation made to the
level of exposure to risk, and thus correct the death rate estimates, see again Boumezoued
(2016) and Wilmoth et al. (2019). This process eliminates the anomalous cohort effects and
produces more precise mortality tables, which we call “corrected mortality tables”.

However, birth-by-month data is not available for many countries for which the HFD
monthly fertility records are provided starting at years greater than 1918 (see Figure 2). It
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thus limits the set of cohorts for the correction method to be applicable. Hence the need to
find a new correction method to correct mortality tables for a larger set of countries.
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Figure 2: Birth-by-month data availability in the HMD/HFD

2.2 Observables in the Lexis diagram

Let us consider the Lexis diagram (Lexis, 1875), see Figure 3, consisting of a Cartesian
coordinates system (t, a), where t denotes the year at which an individual is observed and
a denotes the age of the individual. Let us also denote by g(a, t) the population density at
(a, t).
Following estimates can then be observed in the Lexis diagram:

• The population at (exact) time t, with (integer) age a at its last birthday: P (a, t) =∫ a+1

a
g(x, t) dx,

• The number of individuals who attained (exact) age a during the year [t, t + 1):

N(a, t) =
∫ t+1

t
g(a, s) ds,

• The annual birth counts B(t) =
∫ t+1

t
g(0, s) ds.

Also, death counts are provided on the upper (TU) and lower (TL) triangles of the Lexis
diagram:

DU(a, t) =

∫∫
TU (a,t)

µ(x, s)g(x, s) dx ds and DL(a, t) =

∫∫
TL(a,t)

µ(x, s)g(x, s) dx ds, (3)
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where:

TU(a, t) = {(x, s) | x ∈ [a, a+ 1) and s ∈ [t, t− a+ x)},
TL(a, t) = {(x, s) | x ∈ [a, a+ 1) and s ∈ [t− a+ x, t+ 1)}.

Thus, the death counts for 1× 1 Lexis squares is given by D(a, t) = DU(a, t) +DL(a, t).
Data for Males from the HMD version 5 (see https://v5.mortality.org) and the most

recent version 6 of the HMD (see https://www.mortality.org) are considered. Our choice
for the HMD version 6 as the reference corrected tables is driven by the fact that those
are publicly available in their final form, so that results of our paper can be reproduced.
Note that alternative (and more general) formulas for the death rate estimator have been
proposed by Boumezoued et al. (2018); this choice would lead to different correction results
compared to those presented in our paper.

Let k be the country variable, µ(5) and µ(6) the period mortality rates from the version 5
and the version 6 of the HMD respectively, defined by:

µ(v)(a, t, k) =
D(v)(a, t, k)

E(v)(a, t, k)
, v ∈ {5, 6},

with E(v)(a, t, k) and D(v)(a, t, k) denoting respectively the exposure to risk and the number
of deaths relatively to the version v ∈ {5, 6} of the HMD for the country k. Let us denote
by I(a, t, k) the so-called correction indicator of mortality data, defined as follows:

I(a, t, k) :=
µ(5)(a, t, k)

µ(6)(a, t, k)
. (4)

As we have: D(5)(a, t, k) = D(6)(a, t, k) for a fixed country k, the following equality is
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satisfied:

I =
µ(5)(a, t, k)

µ(6)(a, t, k)
=
E(6)(a, t, k)

E(5)(a, t, k)
. (5)

The HMD Methods Protocol corresponding to the HMD version 6 (Wilmoth et al., 2019)
uses birth-by-month data when it is available in order to more accurately estimate population
exposures. Therefore, it is assumed in the remainder of the paper that if I 6= 1 for a fixed
3-tuple (a, t, k), the quantity µ(5)(a, t, k) corresponds to a raw mortality rate which has
not been corrected by using birth-by-month data, whereas µ(6)(a, t, k) corresponds to the
corrected mortality rate.

Boumezoued (2016) suggested that the ratio between corrected and crude estimates in
the period table is the same for each age within a given cohort; this assumption has been
relaxed in Boumezoued et al. (2018) where the correction approach has been reworked and
made age-dependent. Here the value of the variable I is analysed for ages 18-70, cohorts
1915, 1919, 1940 and 1941 and following countries: Spain, Italy, France, Austria, Denmark,
Sweden, Finland, and Norway. These results are depicted in Figures 4 to 7. At first sight,
the figures illustrate that the variable I is roughly stable over ages within a given cohort. A
global stability is observed for most countries, although this general remark does not hold for
cohorts 1940 and 1941, which shows some variations of I for Spain and Italy. The analysis
of I in terms of formulas and age variability is discussed in Appendix C. Overall, one can
remark the significant discrepancies between the raw and corrected mortality rates.
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3 The correction method to improve mortality expo-

sure estimates

3.1 Neural networks and Representation Learning

Machine learning is programming computers to optimise a performance criterion using ex-
ample data or past experience. A model is defined up to some parameters, and learning
is the execution of a computer program to optimise the parameters of the model using the
training data or past experience. The model may be predictive to make predictions in the
future, or descriptive to gain knowledge from data, or both.

Neural networks refer to a system whose design is originally schematically inspired by
the functioning of neurons in the human brain (McCulloch and Pitts, 1943; Wiener, 1948).
Its architecture includes neurons, synaptic connections that connect neurons to each other,
and learning algorithms. A neural network is composed of three types of layers, respectively
called input layers, hidden layers and output layers, each of which includes one or more
neurons. Each unit of a network obtains “weighted” information through the synaptic links
of the other connected units and returns an output using an activation function transforming
the weighted sum of the input signals.

Neural networks aim to approximate non-linear functions defined on finite-dimensional
space, relying on composition of layers of simple functions. The relevance of neural networks
comes from the universal approximation theorem and the Kolmogorov-Arnold representation
theorem (Arnold, 2009; Kolmogorov, 1956; Cybenko, 1989; Hornik, 1991).

In this paper, a feedforward neural network is considered, also called multi-layered per-
ceptron (Alpaydin, 2014). Note that this choice is driven by the complexity/non-linearity
of the prediction problem. Other machine learning techniques could have been considered;
however, we prefer to focus on this approach in this work due to its flexibility and recent
popularity in the field of mortality prediction. Moreover, we benchmark this approach to a
standard linear regression, which will benefit from some feature engineering, as described in
the next sections.

3.2 Splitting the dataset into train set and test set

Our dataset D consists of Nobs observations:

D = {(xi, Ii) | Ii 6= 1 and i ∈ [[1, Nobs]]}, (6)

where x denotes the input variables vector of dimension D and the correction indicator of
mortality I is the scalar output or target. Note that the number of observations can be large
(correction indicator for several countries, ages and years).

The column vector inputs for all Nobs observations are aggregated in the D×Nobs design
matrix X, and the targets are collected in the vector I, so it can be written D = (X, I). In
the regression setting, the targets are real values. We are interested in making inferences
about the relationship between inputs and targets, i.e. the conditional distribution of the
targets given the inputs (but we are not interested in modelling the input distribution itself).
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In a realistic correction scenario where we would like to correct the mortality data of a
country k for which fertility data is unavailable, we would use a set of countries for which
such fertility data is available as the train set. We would then train our model on this set
and compute the predictions of the correction indicator for the country k.

Following this observation, instead of separating the dataset D randomly between a train
set Dtrain and a test set Dtest in order to determine the performance of our model, we thus
decide to use each country as a test set. More precisely, let us denote by K the number of
considered countries in the correction method. The dataset D is divided in K subsamples,
each subsample corresponding to the available data of a fixed country. One of the subsamples
is then selected as the test set Dtest and the union of the K− 1 other subsamples is the train
set Dtrain. The process is then repeated by selecting another subsample among the K − 1
subsamples which have not been used. Thus, the process is repeated K times such that each
country is used exactly once as a test set Dtest.

The case where the information on years, ages and cohorts available is similar for any
country is considered, leading to restrict information to the intersection of all individual
countries data. The common available data for all countries is therefore made of a collection
of death counts and population estimates for years between tmin and tmax, ages in the range
amin to amax and cohorts between cmin and cmax.

Finally, our model is trained and tested K times on the K train sets and test sets. The
average of the K mean squared errors (MSEs) of the target variable I (correction indicator)
is then calculated to estimate the prediction error of the model. The MSE is a measure
frequently used for assessing the accuracy of prediction obtained by a model. It measures
the differences or residuals between actual and predicted values, respectively Îi and Ii. The
formula for computing MSE is as follows:

MSE =
1

Ntest

Ntest∑
i=1

(Îi − Ii)2, (7)

where Ntest is the number of data points in the considered test set, given by:

Ntest = (tmax − tmin + 1)(amax − amin + 1)

−

(
1{cmin≥tmin−amax+1}

cmin−tmin+amax∑
j=1

j + 1{cmax≤tmax−amin−1}

tmax−amin−cmax∑
j=1

j

)
.
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3.3 Input variables and feature engineering

In machine learning, feature engineering is an informal although fundamental process which
consists in creating new variables defined from existing variables in the dataset, in order to
improve the predictive capacity of a considered model.

Let us again denote by k the country variable and c the cohort variable, where c = t− a.
In the following, for simplicity of notation, it is assumed that k is fixed. We consider the
following discrete second-order derivative of the mortality rate with respect to year, denoted
by:

Φ(a, t) =
µ(a, t+ 2)

µ(a, t+ 1)
− µ(a, t+ 1)

µ(a, t)
, (8)

Φ(a, t) is thus the discrete first-order derivative of the mortality improvement rates r(a, t)
with respect to the year, defined by Equation (2). Similarly, we also consider the discrete
second-order derivative of the mortality rate with respect to age, given by:

Ψ(a, t) =
µ(a+ 2, t)

µ(a+ 1, t)
− µ(a+ 1, t)

µ(a, t)
. (9)

As the Convexity Adjustment Ratio of Cairns et al. (2016), the quantities Φ(a, t) and Ψ(a, t)
can be interpreted as convexity matrices of the mortality rate µ(a, t). These variables are
of interest to detect potential anomalies in the raw mortality tables; however, the set of
all convexity matrices is too large to ensure good predictions of the correction indicator I,
especially due to sampling risk. In this context, the idea is to compute an average of these
variables for each fixed cohort. In the following, an operator F is defined to formalise this
approach.

The following operator F is defined by:

F : V (a, t) 7→ FV (c) =
1

Nc

∑
t−a=c

V (a, t), with Nc = | {V (a, t) | t− a = c} |, (10)

where V designates a variable depending on age a and year t, and |E| denotes the number
of elements of a given set E . We have for instance that FΨ(c) = 1

Nc

∑
t−a=c Ψ(a, t) with

Nc = | {Ψ(a, t) | t − a = c} |. In this case, Nc is the number of observed quantities Ψ(a, t)
which we have from the data for the fixed cohort c. As shown in Figure 8, FΨ(c) corresponds
thus to the arithmetic mean of the discrete second-order derivatives of the quantity µ(a, t)
with respect to age a for the fixed cohort c = t− a. As mortality rates data is available for
several countries, the previous new created variables are also dependent on country k.

Final chosen input variables. Several input variables were tested in the baseline
and neural network models, which include first and second-order derivatives of the annual
birth counts B(·) and the population estimates P (·), the age a, as well as FΦk(k, c), and
FΨk(k, c), where additional dependence to country k is highlighted in the notation. Finally,
the variables FΦk(k, c) and FΨk(k, c) are kept for the baseline linear regression model and
the age variable a is added for the neural network model. Therefore, the input vector is
x = (x1, x2, x3) = (FΦk(k, c),FΨk(k, c), a).
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Figure 8: In this toy example, data points represent the values taken by the variable V for
ages 40-59 and years 1970-2000. Black points represent the values corresponding to the 1933
cohort that are averaged to compute FV (1933). In this case, N1933 = 20, which is the total
number of black points.

3.4 The neural network model

As the input variables do not have the same orders of magnitude, the Mean and Standard
deviation transformation is used to normalise them. Let ξ be a continuous input variable.
The transformation for the variable ξ of the example i, denoted by ξi, is written as : T : ξi 7→ ξ̆i =

ξi − ξ̄
σ(ξ)

T −1 : ξ̆i 7→ ξi = σ(ξ) · ξ̆i + ξ̄

(11)

with 
ξ̄ =

1

Ntrain

Ntrain∑
i=1

ξi

σ(ξ) =

√√√√ 1

Ntrain − 1

Ntrain∑
i=1

(ξi − ξ̄)2

(12)

where Ntrain is the number of data points in the train set.
Initial values of weights and biases of the neural network need to be defined in order to

avoid problems relative to learning speed and generalisation capacity. In the following, the
uniform Glorot initialisation (Glorot and Bengio, 2010) is used.
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The architecture of a feedforward neural network with 3 hidden layers is chosen, including
respectively 64, 32 and 16 neurons. A ReLU activation function is chosen for the 3 hidden
layers, and a linear function as the output activation function. In order to avoid overfitting
and get a better capacity of generalisation of the neural network (Hinton et al., 2012), a
dropout layer is added between each hidden layer. It randomly omits each neuron with
a probability p, which is a hyperparameter set to the value of 15%. Note that avoiding
overfitting is of particular importance for mortality rates prediction (or here, ratios of raw
and corrected mortality rates) since the observations are subject to sampling risk: due to
the random realization of deaths, the death rate is not observable and we only deal with
mortality rates estimators.

...
...

...

x1

x2

x3

L1 L2 L3

I

Input
layer

1st hidden
layer

2nd hidden
layer

3rd hidden
layer

Output
layer

Figure 9: Architecture of the neural network. For clarity, only some neurons of the hidden
layers have been shown; dropout layers are not shown.

A number of 30 epochs is chosen and it is assumed that the best model is the model
which minimises the validation error. A random sample of 10% of the train set is used as a
validation set. In other words, the neural network is calibrated on 90% of the training data,
and its performance is assessed on a validation set, which corresponds to 10% of the train
set.

In order to calibrate the model, the R package Keras is used (Chollet and Allaire, 2018),
with Adam (Kingma and Ba, 2014) as the optimiser, and the mean squared error (MSE) as
the cost function to minimise.
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3.5 The baseline linear regression model

In order to benchmark the performance of the neural network approach, we rely on a simple
linear regression which benefits from the feature engineering previously detailed, defined for
each country k and cohort c:

Î(k, c) = α1FΦk(k, c) + α2FΨk(k, c) + α3, (13)

where α = (α1, α2, α2) is the parameter vector.
Note that the linear regression provides a correction which only depends on the cohort

variable c and country k, unlike the neural network approach for which the age a is an
additional input variable.

4 Results

Our dataset includes the following European countries for which corrected tables are available
within the last HMD update: Spain, Italy, France, Austria, Denmark, Sweden, Finland and
Norway. The data considered is made of the time period 1935-2016, cohorts 1915-1950, and
ages 18-70.

It is worth pointing out that the predictions of a trained neural network are differing for
each iteration. This is a consequence of (1) the optimisation algorithm which initialises the
weights of the neural network to random values, (2) the random selection of batches during
training to compute the gradients used in the back-propagation algorithm, and (3) dropout
regularisation which is applied at random to some neurons of the neural network. As such,
the test set MSEs of a neural network vary between training runs. Thus, in what follows,
each neural network is fitted 10 times and the average MSE is considered to indicate the
performance for each country test set.

The results are shown in Table 1, where it can be seen that the neural network performs
best in terms of average MSE on 6 out of 8 country test sets. However, the results shown
in Table 1 are the averages of 10 runs of a random training process. As discussed before,
training a neural network once instead of 10 times may produce different results, as shown
by the boxplot in Figure 10.

In order to compare the global performance of the neural network and the linear re-
gression, the average of the Mean-Square Errors (MSE) corresponding to each test set is
computed. We get an average prediction MSE error of 9, 95.10−5 for the linear regression
and 7, 69.10−5 for the neural network. More specifically, the neural network method im-
proved the prediction MSE error by 22.7% on average, compared to the linear regression
method.

A graphical comparison of the predictions by the baseline model and the neural network
model is available in Appendix A.
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Country test set Baseline model Neural network

Country HMD code MSE Average MSE Median MSE

Spain ESP 6, 34 · 10−5 7, 45 · 10−5 7, 45 · 10−5

Italy ITA 7, 42 · 10−5 6, 55 · 10−5 6, 59 · 10−5

France FRATNP 1, 44 · 10−4 8, 56 · 10−5 8, 54 · 10−5

Austria AUT 1, 11 · 10−4 1, 21 · 10−4 1, 20 · 10−4

Sweden SWE 6, 14 · 10−5 4, 52 · 10−5 4, 52 · 10−5

Finland FIN 1, 15 · 10−4 8, 48 · 10−5 8, 41 · 10−5

Denmark DNK 1, 28 · 10−4 7, 66 · 10−5 7, 56 · 10−5

Norway NOR 9, 81 · 10−5 6, 19 · 10−5 6, 09 · 10−5

Table 1: Country test set MSEs of the baseline linear regression and the neural network
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1.0e−04
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AUT DNK ESP FIN FRATNP ITA NOR SWE
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V
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Figure 10: Boxplot of the MSE results on the country test sets. The neural network is
trained for 10 runs
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5 An application of the correction method

5.1 The corrected matrix of mortality improvement rates

The following will present an example of an application of our correction method to countries
for which birth-by-month data is unavailable. West Germany, Ukraine, Belarus and Poland
data for Males is used from the HMD version 5 for the time period 1970-2000 inclusive and
ages 40-59 inclusive. Our correction method is then applied to predict the correction indi-
cators ILR and INN, respectively using the baseline linear regression and the neural network
approach (see Figures 11 to 14). The mortality rates after correction µLR and µNN are then
deduced, following Equation (4). Thus, the mortality improvement rates matrix r(a, t) (see
e.g. Figure 15 for West Germany) can be compared with the corrected ones denoted rLR(a, t)
and rNN(a, t) for the linear regression and the neural network respectively (see Figures 16
and 17), defined by:

rLR(a, t) =
µLR(a, t+ 1)− µLR(a, t)

µLR(a, t)
and rNN(a, t) =

µNN(a, t+ 1)− µNN(a, t)

µNN(a, t)
. (14)

The correction method seems to be very efficient concerning the isolated false cohort
effects, as the anomalous diagonals around 1915 and 1920, and well as those around 1940
disappear. It turns out that the historical volatility of mortality improvement rates is greatly
reduced when using retreated mortality data given by the correction method, see also Boume-
zoued (2016). Moreover, from the matrix of mortality improvement rates, one can see that
the period and age features are preserved, even cleaned in the corrected version. This qual-
itative feature of the correction process is appealing, since it allows to recover the main
characteristics of mortality without distortion in areas were anomalous diagonals are not
present.
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Figure 12: Predicted correction indicator
—Ukraine
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Figure 14: Predicted correction indicator
— Poland
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Figure 15: Mortality improvement rates — West Germany raw data
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Figure 16: Mortality improvement rates
— West Germany corrected data by the
linear regression method
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Figure 17: Mortality improvement rates
— West Germany corrected data by the
neural network method
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Figure 18: Mortality improvement rates — Ukraine raw data

40

45

50

55

60

1970 1980 1990 2000
Year

A
ge

−0.2 0.0 0.2
value

Figure 19: Mortality improvement rates
— Ukraine corrected data by the linear
regression method
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Figure 20: Mortality improvement rates
— Ukraine corrected data by the neural
network method
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Figure 21: Mortality improvement rates — Belarus raw data

40

45

50

55

60

1970 1980 1990 2000
Year

A
ge

−0.50 −0.25 0.00 0.25 0.50
value

Figure 22: Mortality improvement rates
— Belarus corrected data by the linear
regression method
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Figure 23: Mortality improvement rates
— Belarus corrected data by the neural
network method
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Figure 24: Mortality improvement rates — Poland raw data
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Figure 25: Mortality improvement rates
— Poland corrected data by the linear re-
gression method
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Figure 26: Mortality improvement rates
— Poland corrected data by the neural
network method
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5.2 Impact of the correction method on stochastic mortality mod-
els

The correction of the mortality data in general, and the removal of false cohort effects in
particular, has already been discussed in the context of stochastic mortality modelling by
Cairns et al. (2016), Boumezoued (2016) and Boumezoued et al. (2019). As in Boumezoued
et al. (2019) relying on monthly birth counts, the aim of this subsection is to show how
previous findings are preserved with the proposed correction inference method without birth-
by-month data. Focus is first on the classical Lee-Carter model (Lee and Carter, 1992), also

referred to as M1 model. This model decomposes mortality as a static age-structure β
(1)
a , a

general level driven by a stochastic process in time κ
(2)
t and an age-specific sensitivity β

(2)
a

to this general level as follows:

log µ(a, t) = β(1)
a + β(2)

a · κ
(2)
t . (15)

Renshaw and Haberman (2006) proposed to include a cohort effect as follows:

log µ(a, t) = β(1)
a + β(2)

a · κ
(2)
t + β(3)

a · γ
(3)
t−a, (16)

with γc the additional cohort-related factor which allows to adjust mortality rates for a cohort
which originates from year c = t− a. This model, known as M2 model, is a generalisation of
the M1 model. As the M2 model is known to be difficult to calibrate, it is chosen to consider
the Age-Period-Cohort model, also known as M3 model (Currie, 2006), which is a special
case of the M2 model, where the age, period and cohort components influence mortality
independently in the following form:

log µ(a, t) = β(1)
a + κ

(2)
t + γ

(3)
t−a. (17)

As an alternative, Plat (2009) proposed a model that combines the CBD model from
Cairns et al. (2006), known as M5, with some features of the Lee-Carter model to produce
a model that is suitable for full age ranges and captures the cohort effect. Here, as only a
specific age band is of interest, a simplified version of this model is considered, and is given
by:

log µ(a, t) = β(1)
a + κ

(2)
t + κ

(3)
t (x− x̄) + γ

(4)
t−a, (18)

where x̄ denotes the mean age over the range of ages used in the calibration.
The experiment is carried out using the StMoMo R package (Villegas et al., 2015), and the

standard log-Poisson calibration (Brouhns et al., 2002). The age range for model inference is
40-59 inclusive and the time period is 1970-2000 inclusive. Note that since M3 and simplified
Plat models include cohort parameters and in agreement with the usual practice (see e.g.
Cairns et al. (2009) and Haberman and Renshaw (2011)), all cohorts that have fewer than
three observations are excluded.

When evaluating the goodness-of-fit of different models, it is generally anticipated that
models with more parameters provide a better fit to the data. To rule out the possibility
that the better fit observed in a model is the result of over-parametrisation and compare the
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relative performance of several models, it has become common in the mortality literature to
use information criteria which modify the maximum likelihood criterion by penalizing models
with more parameters (Cairns et al., 2009; Villegas et al., 2015). Two of these criteria are
the Akaike Information Criteria (AIC) and the Bayesian Information Criteria (BIC), with
a lower value of AIC and BIC being preferable. They are defined as AIC = 2ν − 2 log L
and BIC = ν logℵ − 2 log L , where ν designates the effective number of parameters in the
model, L is the model likelihood, and ℵ is the number of observations in the data.

Tables 2 to 5 below show the quantities −2 log L , AIC and BIC for M1, M3 and simpli-
fied Plat models fitted on raw HMD data and retreated mortality data for West Germany,
Belarus, Ukraine and Poland.

It is shown that the retreated mortality estimates allow the M1 model to better capture
mortality dynamics embedded in the corrected tables. However, there is no change in sta-
tistical inference criteria for M3 and simplified Plat models. This seems to be explained by
the fact that these models have a cohort component which captures the irregularities of the
original mortality tables, leading to unchanged residuals between the raw and the retreated
mortality tables. The log-likelihood, AIC and BIC stability for M3 and Plat models also
show that our correction method does not disturb the mortality rates table, except for the
cohort component.
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Figure 28: Simplified Plat model γ
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Figure 29: M3 model γ
(3)
c parameter —

Belarus raw and retreated mortality data
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Figure 30: Simplified Plat model γ
(4)
c

parameter — Belarus raw and retreated
mortality data
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Figure 31: M3 model γ
(3)
c parameter —

Ukraine raw and retreated mortality data
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Figure 32: Simplified Plat model γ
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rameter — Ukraine raw and retreated
mortality data
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Figure 33: M3 model γ
(3)
c parameter —

Poland raw and retreated mortality data
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Figure 34: Simplified Plat model γ
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c pa-

rameter — Poland raw and retreated mor-
tality data

More specifically, five conclusions appear in the light of the results obtained:

1. For the all three models, the log-likelihoods on retreated mortality data are close
between the linear regression and the neural network.

2. The M1 model is significantly improved when calibrated with retreated mortality data.
Thus, the correction method has the same effect as the latest correction method based
on monthly fertility data, see the discussion in Boumezoued et al. (2018). Moreover, the
log-likelihood is unchanged for stochastic mortality models with a cohort component
(M3 and simplified Plat models), which is also in line with the findings in the cited
paper.

3. The gamma parameters of M3 and simplified Plat models are much more regular when
these models are fitted with retreated mortality data. It can be pointed out that
the ranking between models in terms of goodness-of-fit can even be reversed when
retreated mortality data is used in the calibration. In the example of Ukraine data,
Table 4 shows that the M1 model becomes better than the M3 model when fitted with
retreated mortality data. Thus, from a statistical point of view, it can be more relevant
to integrate in the model an age-specific sensitivity parameter than a cohort-related
parameter.

4. The impact of calibration with retreated mortality data on future mortality projections
has already been discussed by Cairns et al. (2016) and Boumezoued et al. (2018) and
this is not the object of the paper. It is expected to get similar results with this new
correction method which changes the dynamics of gamma parameters for mortality
models with a cohort component. Let us recall that the volatility of forecasted with
standard mortality models is now close to the historical volatility of corrected mortality
data (Boumezoued, 2016). This is an important phenomenon as it shows that classical
mortality models are able to replicate longevity and mortality risks.
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5. To go further, note that even for a model which has a particularly high goodness-of-fit
with raw data like the simplified Plat model, no change is observed in terms of log-
likelihood when using retreated mortality data, whereas the dynamics of the cohort
parameter gamma is greatly changed. On the contrary, the M1 model in unstable in
terms of log-likelihood but its parameters β

(1)
a , β

(2)
a and κ

(2)
t are stable (see Appendix

B). The M3 model and the simplified Plat model are stable in terms of log-likelihood
but their gamma cohort-related parameters are unstable (see Figures 27 to 34).
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−2 logL BIC criterion AIC criterion

Mortality models Raw LR NN Raw LR NN Raw LR NN

M1 8252 7556 7585 8695 8000 8029 8390 7694 7723
M3 6515 6515 6514 7104 7104 7104 6699 6699 6698
Simplified Plat 6378 6378 6378 7153 7153 7153 6620 6620 6620

Table 2: Calibration on West Germany data

−2 logL BIC criterion AIC criterion

Mortality models Raw LR NN Raw LR NN Raw LR NN

M1 6324 6128 6113 6768 6571 6557 6462 6266 6251
M3 5767 5767 5767 6357 6357 6357 5951 5951 5951
Simplified Plat 5583 5583 5583 6358 6358 6358 5825 5825 5825

Table 3: Calibration on Belarus data

−2 logL BIC criterion AIC criterion

Mortality models Raw LR NN Raw LR NN Raw LR NN

M1 10182 8532 8634 10625 8975 9078 10320 8670 8772
M3 8547 8547 8548 9137 9137 9138 8731 8731 8732
Simplified Plat 6940 6940 6941 7716 7716 7717 7182 7182 7183

Table 4: Calibration on Ukraine data

−2 logL BIC criterion AIC criterion

Mortality models Raw LR NN Raw LR NN Raw LR NN

M1 7297 7115 7147 7741 7559 7591 7435 7253 7285
M3 6752 6752 6752 7341 7341 7341 6936 6936 6936
Simplified Plat 6567 6567 6567 7343 7343 7343 6809 6809 6809

Table 5: Calibration on Poland data
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6 Conclusion and avenues for future research

This paper has proposed to develop a correction method of mortality estimates in the absence
of birth-by-month data, based on either a linear regression model or a neural network.

The method has been backtested on countries for which birth-by-month data is available
and the performance of the method has been determined by computing average prediction
MSE errors, the observed correction indicator being obtained by comparing the Human
Mortality Database version 5 and version 6 updates. The baseline linear regression shows
good results in terms of average prediction MSE error and the results are improved by the
neural network approach which includes age as an additional covariate.

The method has then been applied to West Germany, Ukraine, Belarus and Poland,
countries for which birth-by-month data is not available for most cohorts of interest. The
correction method appeared to be very efficient concerning the isolated false cohort effects,
as the anomalous diagonals around 1915 and 1920, and well as those around 1940 disappear.
Moreover, the other period and age mortality characteristics are preserved, as it is the case
for the correction methods using monthly birth counts.

The impact of the correction method has also been studied on three stochastic mortality
models: M1, M3 and a simplified version of the Plat model. For the all three models, the
log-likelihoods on retreated mortality data are close between the linear regression and the
neural network. The M1 model is significantly improved when calibrated with retreated
mortality data, whereas the log-likelihood is unchanged for stochastic mortality models with
a cohort component. Thus, the correction method has the same effect as the latest correction
method based on monthly fertility data.

The gamma parameters of the M3 and simplified Plat models are much more regular
when these models are fitted with retreated mortality data. It can be pointed out that the
ranking between models in terms of goodness-of-fit can even be reversed in some cases when
retreated mortality data is used in the calibration. A case has been exhibited where, from
a statistical point of view, it is more relevant to integrate in the stochastic mortality model
an age-specific sensitivity parameter than a cohort-related parameter. This is explained by
the fact that the previous false cohort effects artificially favour mortality models with cohort
parameters.

Finally, one should note that the correction method may be improved by adding other
countries with available birth-by-month data in the training set. Moreover, a more com-
prehensive search over the architecture of the neural network (more layers, different hyper-
parameters tuning), may produce results that are more optimal than those presented here.
Other improvements to the model are the inclusion of additional input variables and the
consideration of Females data. These aspects can be integrated in the present framework
without additional modelling complexity, and are as such left for further developments.
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Appendix A Predicted correction indicators for each

country test set
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Figure 35: Austria: Predicted correction indicator (averaged by age within each cohort)
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Figure 36: France: Predicted correction indicator (averaged by age within each cohort)
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Figure 37: Italy: Predicted correction indicator (averaged by age within each cohort)
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Figure 38: Spain: Predicted correction indicator (averaged by age within each cohort)
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Figure 39: Denmark: Predicted correction indicator (averaged by age within each cohort)
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Figure 40: Norway: Predicted correction indicator (averaged by age within each cohort)
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Figure 41: Finland: Predicted correction indicator (averaged by age within each cohort)

0.98

1.00

1.02

1.04

1920 1930 1940 1950
Cohort

In
di

ca
to

r

Legend

Linear regression

Neural network

Observed values

Figure 42: Sweden: Predicted correction indicator (averaged by age within each cohort)
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Appendix B Parameters of the M1 model calibrated

on raw and corrected mortality data

B.1 Calibration on West Germany mortality data
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Figure 43: M1 model β
(1)
a parameter —

West Germany raw and retreated mortal-
ity data

0.048

0.049

0.050

0.051

0.052

0.053

40 45 50 55
age

β a(2
)

Legend Linear Regression Neural network Raw

Figure 44: M1 model β
(2)
a parameter —

West Germany raw and retreated mortal-
ity data
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Figure 45: M1 model κ
(2)
t parameter — West

Germany raw and retreated mortality data
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B.2 Calibration on Belarus mortality data
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Figure 46: M1 model β
(1)
a parameter —

Belarus raw and retreated mortality data
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Figure 47: M1 model β
(2)
a parameter —

Belarus raw and retreated mortality data
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Figure 48: M1 model κ
(2)
t parameter — Belarus

raw and retreated mortality data
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B.3 Calibration on Ukraine mortality data
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Figure 49: M1 model β
(1)
a parameter —

Ukraine raw and retreated mortality data
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Figure 50: M1 model β
(2)
a parameter —

Ukraine raw and retreated mortality data
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Figure 51: M1 model κ
(2)
t parameter — Ukraine

raw and retreated mortality data
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B.4 Calibration on Poland mortality data
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Figure 52: M1 model β
(1)
a parameter —

Poland raw and retreated mortality data
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Figure 53: M1 model β
(2)
a parameter —

Poland raw and retreated mortality data
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Figure 54: M1 model κ
(2)
t parameter — Poland

raw and retreated mortality data
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Appendix C Discussion: Details of HMD version 6 cor-

rected estimates

In the HMD mortality data correction with fertility data (Wilmoth et al., 2007, 2019), the
exposures to risk are estimated as follows :{

E(5)(a, t) = 1
2
(P (a, t+ 1) + P (a, t)) + 1

6
(DL(a, t)−DU(a, t))

E(6)(a, t) = (P (a, t+ 1) + P (a, t))(1−mt−a) + DL(a,t)−DU (a,t)
2(1−mt−a)

((1−mt−a)
2 − σ2

t−a)
,

(19)
with {

mt−a = E(B(t− a))

σ2
t−a = V(B(t− a))

(20)

where B(t− a) designates the random variable in [0, 1] which represents the distribution
of birthdays within annual cohort t − a for a fixed country and a fixed gender. Thus, the
following relationship is satisfied:

I(a, t) =
(P (a, t+ 1) + P (a, t))(1−mt−a) + DL(a,t)−DU (a,t)

2(1−mt−a)
((1−mt−a)

2 − σ2
t−a)

1
2
(P (a, t+ 1) + P (a, t)) + 1

6
(DL(a, t)−DU(a, t))

. (21)

By denoting 
Pα(a, t) = P (a, t+ 1) + P (a, t)

Dα(a, t) = DL(a, t)−DU(a, t)

β2
t−a =

1

2
((1−mt−a)

2 − σ2
t−a)

(22)

we get

I(a, t) =
Pα(a, t)(1−mt−a) + Dα(a,t)

(1−mt−a)
β2
t−a

E(5)(a, t)
, (23)

i.e.

I(a, t) = A(a, t)(1−mt−a) +B(a, t)
β2
t−a

1−mt−a
, (24)

with 
A(a, t) =

Pα(a, t)
1
2
Pα(a, t) + 1

6
Dα(a, t)

=
Pα(a, t)

E(5)(a, t)

B(a, t) =
Dα(a, t)

1
2
Pα(a, t) + 1

6
Dα(a, t)

=
Dα(a, t)

E(5)(a, t)

(25)

In this formula, the variables mt−a and β2
t−a only depend on the cohort t − a, but the

variables Pα(a, t) and Dα(a, t) depends on a and t. This is why there is an age variability of
the target variable I (see Figures 4 to 7).
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