J. Abrossimoff, A. Pitti, and P. Gaussier, Visual learning for reaching and body-schema with gain-field networks, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01976669

, Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), 2018.

A. Garrett, Biology of parkinson's disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder, Dialogues in clinical neuroscience, vol.6, issue.3, p.259, 2004.

A. John-m-allman, . Hakeem, M. Joseph, E. Erwin, P. Nimchinsky et al., The anterior cingulate cortex: the evolution of an interface between emotion and cognition, Annals of the New York Academy of Sciences, vol.935, issue.1, pp.107-117, 2001.

A. Baddeley, Working memory, Science, vol.255, issue.5044, pp.556-559, 1992.

D. Badre, Opening the gate to working memory, Proceedings of the National Academy of Sciences, vol.109, issue.49, 2012.

A. Bhandari and D. Badre, Learning and transfer of working memory gating policies, Cognition, vol.172, pp.89-100, 2018.

M. Botvinick, T. S. Braver, D. M. Barch, C. S. Carter, and J. D. Cohen, Conflict monitoring and cognitive control, Psychological Review, vol.108, pp.624-652, 2001.

G. Bush, P. Luu, and M. I. Posner, Cognitive and emotional influences in anterior cingulate cortex, Trends in cognitive sciences, vol.4, issue.6, pp.215-222, 2000.

H. Christopher, D. Chatham, and . Badre, Multiple gates on working memory. Current opinion in behavioral sciences, vol.1, pp.23-31, 2015.

R. Cools, A. Roger, B. J. Barker, T. W. Sahakian, and . Robbins, Mechanisms of cognitive set flexibility in parkinson's disease, Brain, vol.124, issue.12, pp.2503-2512, 2001.

M. Dipoppa, M. Szwed, and B. S. Gutkin, Controlling working memory operations by selective gating: the roles of oscillations and synchrony, Advances in cognitive psychology, vol.12, issue.4, p.209, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01516787

A. Droniou, S. Ivaldi, and O. Sigaud, Learning a repertoire of actions with deep neural networks, 4th International Conference on Development and Learning and on Epigenetic Robotics, pp.229-234, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01065741

K. Dardenne, N. Eshel, J. Luka, A. Lenartowicz, E. Leigh et al., Role of prefrontal cortex and the midbrain dopamine system in working memory updating. Proceedings of the National Academy of, Sciences, vol.109, issue.49, pp.19900-19909, 2012.

. Nf-forbes, . Carrick, S. M. Mcintosh, and . Lawrie, Working memory in schizophrenia: a meta-analysis, Psychological medicine, vol.39, issue.6, pp.889-905, 2009.

A. Gazzaley, J. Rissman, and M. Desposito, Functional connectivity during working memory maintenance, Cognitive, Affective, & Behavioral Neuroscience, vol.4, issue.4, pp.580-599, 2004.

. Patricia-s-goldman-rakic, The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia, Biological psychiatry, vol.46, issue.5, pp.650-661, 1999.

A. David, E. Grant, and . Berg, A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a weigl-type card-sorting problem, Journal of experimental psychology, vol.38, issue.4, p.404, 1948.

. Jy-guo, D. John, C. Ragland, and . Carter, Memory and cognition in schizophrenia, Molecular psychiatry, vol.24, issue.5, pp.633-642, 2019.

E. Michael, C. E. Hasselmo, and . Stern, A network model of behavioural performance in a rule learning task, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.373, p.20170275, 1744.

D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory, 1949.

J. Michael, M. R. Higley, and . Picciotto, Neuromodulation by acetylcholine: examples from schizophrenia and depression, Current opinion in neurobiology, vol.29, pp.88-95, 2014.

R. Memisevic, Learning to represent spatial transformations with factored higher-order boltzmann machines, Neural Computation, vol.22, pp.1473-1493, 2010.

L. Montesano, M. Lopes, A. Bernardino, and J. Santos-victor, Learning object affordances: from sensory-motor coordination to imitation, IEEE Transactions on Robotics, vol.24, issue.1, pp.15-26, 2008.

Y. Munakata, A. Seth, . Herd, H. Christopher, B. E. Chatham et al., A unified framework for inhibitory control, Trends in cognitive sciences, vol.15, issue.10, pp.453-459, 2011.

A. Pitti, R. Braud, S. Mahé, M. Quoy, and P. Gaussier, Neural model for learning-to-learn of novel task sets in the motor domain, Frontiers in psychology, vol.4, p.771, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00870280

C. Ranganath, X. Michael, C. Cohen, M. Dam, and . Esposito, Inferior temporal, prefrontal, and hippocampal contributions to visual working memory maintenance and associative memory retrieval, Journal of Neuroscience, vol.24, issue.16, pp.3917-3925, 2004.

P. Nicolas, . Rougier, C. David, . Noelle, S. Todd et al., Prefrontal cortex and flexible cognitive control: Rules without symbols, Proceedings of the National Academy of Sciences, vol.102, issue.20, pp.7338-7343, 2005.

W. Schultz, P. Dayan, and P. Montague, A neural substrate of prediction and reward, Science, vol.275, issue.5306, pp.1593-1599, 1997.

J. Tanji and E. Hoshi, Behavioral planning in the prefrontal cortex, Current opinion in neurobiology, vol.11, issue.2, pp.164-170, 2001.

T. Ullman, A. Stuhlmüller, N. Goodman, and J. B. Tenenbaum, Learning physics from dynamical scenes, Proceedings of the 36th Annual Conference of the Cognitive Science society, pp.1640-1645, 2014.

P. Theodore, . Zanto, T. Michael, A. Rubens, A. Thangavel et al., Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory, Nature neuroscience, vol.14, issue.5, p.656, 2011.