A. P. Mackenzie, T. Scaffidi, C. W. Hicks, and Y. Maeno, Even odder after twenty-three years: the superconducting order parameter puzzle of Sr 2 RuO 4 . npj, Quant. Mater, vol.2, p.40, 2017.

C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, Non-abelian anyons and topological quantum computation, Rev. Mod. Phys, vol.80, p.1083, 2008.

A. Steppke, Strong peak in T c of T c under uniaxial pressure, Science, vol.355, p.9398, 2017.

A. Pustogow, Pronounced drop of OO knight shift in superconducting state of O, Nature, vol.574, pp.72-75, 2019.

Y. Maeno, Superconductivity in a layered perovskite without copper, Nature, vol.372, p.532, 1994.

A. Mackenzie, Extremely strong dependence of superconductivity on disorder in Sr 2 RuO 4, Phys. Rev. Lett, vol.80, p.161, 1998.

Y. Maeno, Enhancement of superconductivity of Sr 2 RuO 4 to 3 k by embedded metallic microdomains, Phys. Rev. Lett, vol.81, p.3765, 1998.

S. Kittaka, T. Nakamura, H. Yaguchi, S. Yonezawa, and Y. Maeno, Spatial development of superconductivity in the Sr 2 RuO 4 -Ru eutectic system, J. Phys. Soc. Jpn, vol.78, p.64703, 2009.

Y. Ying, Suppression of proximity effect and the enhancement of p-wave superconductivity in the Sr 2 RuO 4 -Ru system, Phys. Rev. Lett, vol.103, p.247004, 2009.

C. W. Hicks, Strong increase of tc of Sr 2 RuO 4 under both tensile and compressive strain, Science, vol.344, pp.283-285, 2014.

Y. Imai and M. Sigrist, Topological aspect and the pairing symmetries on spin-triplet chiral p-wave superconductor under strain, Phys. B, vol.536, pp.72-74, 2018.

Y. Liu, F. Zhang, T. M. Rice, and Q. Wang, Theory of the evolution of superconductivity in Sr 2 RuO 4 under anisotropic strain, npj Quantum Mater, vol.2, p.12, 2017.

M. E. Barber, A. S. Gibbs, Y. Maeno, A. P. Mackenzie, and C. W. Hicks, Resistivity in the vicinity of a van hove singularity: Sr 2 RuO 4 under uniaxial pressure, Phys. Rev. Lett, vol.120, p.76602, 2018.

J. Mravlje, Coherence-incoherence crossover and the massrenormalization puzzles in Sr 2 RuO 4, Phys. Rev. Lett, vol.106, p.96401, 2011.

C. Veenstra, Spin-orbital entanglement and the breakdown of singlets and triplets in Sr 2 RuO 4 revealed by spin-and angle-resolved photoemission spectroscopy, Phys. Rev. Lett, vol.112, p.127002, 2014.

S. Acharya, M. S. Laad, D. Dey, T. Maitra, and A. Taraphder, First-principles correlated approach to the normal state of strontium ruthenate, Scientific Rep, vol.7, p.43033, 2017.

L. Boehnke, P. Werner, and F. Lechermann, Letter Multi-orbital nature of the spin fluctuations in Sr 2 RuO 4, Europhys. Lett, vol.122, p.57001, 2018.

G. Baskaran, Why is Sr 2 RuO 4 not a high tc superconductor? electron correlation, hund's coupling and p-wave instability, Phys. B, vol.223, pp.490-495, 1996.

S. Acharya, D. Dey, T. Maitra, and A. Taraphder, Quantum criticality associated with dimensional crossover in the iso-electronic series Ca 2Àx Sr 2 RuO 4, J. Phys. Commun, vol.2, p.75004, 2018.

S. Acharya, Metal-insulator transition in copper oxides induced by apex displacements, Phys. Rev. X, vol.8, p.21038, 2018.

L. Sponza, Self-energies in itinerant magnets: a focus on fe and ni, Phys. Rev. B, vol.95, p.41112, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01883554

J. M. Tomczak, M. Van-schilfgaarde, and G. Kotliar, Many-body effects in iron pnictides and chalcogenides: nonlocal versus dynamic origin of effective masses, Phys. Rev. Lett, vol.109, p.237010, 2012.

D. Pashov, Questaal: a package of electronic structure methods based on the linear muffin-tin orbital technique, Comput. Phys. Commun, p.107065, 2019.

P. Steffens, Spin fluctuations in Sr 2 RuO 4 from polarized neutron scattering: Implications for superconductivity, Phys. Rev. Lett, vol.122, p.47004, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02364821

A. Tamai, High-resolution photoemission on Sr 2 RuO 4 reveals correlation-enhanced effective spin-orbit coupling and dominantly local selfenergies, Phys. Rev. X, vol.9, p.21048, 2019.

C. Bergemann, A. Mackenzie, S. Julian, D. Forsythe, and E. Ohmichi, Quasitwo-dimensional fermi liquid properties of the unconventional superconductor Sr 2 RuO 4, Adv. Phys, vol.52, pp.639-725, 2003.

S. Liu, Fermi surface sheet-dependent band splitting in Sr 2 RuO 4 revealed by high-resolution angle-resolved photoemission spectroscopy, Phys. Rev. B, vol.86, p.165112, 2012.

M. Braden, Inelastic neutron scattering study of magnetic excitations in Sr 2 RuO 4, Phys. Rev. B, vol.66, p.64522, 2002.

M. Braden, Incommensurate magnetic ordering in Sr 2 Ru 1Àx Ti x O 4, Phys. Rev. Lett, vol.88, p.197002, 2002.

K. Ishida, Ru nmr probe of spin susceptibility in the superconducting state of Sr 2 RuO 4, Phys. Rev. B, vol.63, p.60507, 2001.

H. Park, K. Haule, and G. Kotliar, Magnetic excitation spectra in BaFe2As2: a twoparticle approach within a combination of the density functional theory and the dynamical mean-field theory method, Phys Rev Lett, vol.107, p.137007, 2011.

K. Iida, Inelastic neutron scattering study of the magnetic fluctuations in Sr 2 RuO 4, Phys. Rev. B, vol.84, p.60402, 2011.

S. Raghu, A. Kapitulnik, and S. Kivelson, Hidden quasi-one-dimensional superconductivity in Sr 2 RuO 4, Phys. Rev. Lett, vol.105, p.136401, 2010.

H. Park, The Study of Two-particle Response Functions in Strongly Correlated Electron Systems within the Dynamical Mean Field Theory, 2011.

K. Ishida, Spin-triplet superconductivity in Sr 2 RuO 4 identified by 17 O knight shift, Nature, vol.396, p.658, 1998.

J. Xia, Y. Maeno, P. T. Beyersdorf, M. Fejer, and A. Kapitulnik, High resolution polar kerr effect measurements of Sr 2 RuO 4 : evidence for broken time-reversal symmetry in the superconducting state, Phys. Rev. Lett, vol.97, p.167002, 2006.

G. M. Luke, Time-reversal symmetry-breaking superconductivity in Sr 2 RuO 4, Nature, vol.394, p.558, 1998.

E. Hassinger, Vertical line nodes in the superconducting gap structure of Sr 2 RuO 4, Phys. Rev. X, vol.7, p.11032, 2017.

S. Kittaka, Searching for gap zeros in Sr 2 RuO 4 via field-angle-dependent specific-heat measurement, J. Phys. Soc. Jpn, vol.87, p.93703, 2018.

Z. Yin, K. Haule, and G. Kotliar, Spin dynamics and orbital-antiphase pairing symmetry in iron-based superconductors, Nat. Phys, vol.10, p.845, 2014.

T. Scaffidi, J. C. Romers, and S. H. Simon, Pairing symmetry and dominant band in sr 2 ruo 4, Phys. Rev. B, vol.89, p.220510, 2014.

L. Komendová and A. M. Black-schaffer, Odd-frequency superconductivity in sr 2 ruo 4 measured by kerr rotation, Phys. Rev. Lett, vol.119, p.87001, 2017.

L. Zhang, W. Huang, F. Yang, and H. Yao, Superconducting pairing in Sr 2 RuO 4 from weak to intermediate coupling, Phys. Rev. B, vol.97, p.60510, 2018.

I. Eremin, D. Manske, S. Ovchinnikov, and J. Annett, Unconventional superconductivity and magnetism in Sr 2 RuO 4 and related materials, Ann. Phys, vol.13, pp.149-174, 2004.

G. Litak, J. Annett, B. Györffy, and K. Wysoki?ski, Horizontal line nodes in superconducting Sr 2 RuO 4, Phys. Stat. Sol. B, vol.241, pp.983-989, 2004.

P. Contreras, M. Walker, and K. Samokhin, Determining the superconducting gap structure in Sr 2 RuO 4 from sound attenuation studies below Sr 2 RuO 4, Phys. Rev. B, vol.70, p.184528, 2004.

K. Ishida, Anisotropic superconducting gap in the spin-triplet superconductor sr 2 ruo 4 : evidence from a ru-nqr study, Phys. Rev. Lett, vol.84, pp.5387-5390, 2000.

M. Zhitomirsky and T. Rice, Interband proximity effect and nodes of superconducting gap in Sr 2 RuO 4, Phys. Rev. Lett, vol.87, p.57001, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00007660

P. Contreras, M. Walker, and K. Samokhin, Determining the superconducting gap structure in Sr 2 RuO 4 from sound attenuation studies below Sr 2 RuO 4, Phys. Rev. B, vol.70, p.184528, 2004.

O. Gingras, R. Nourafkan, A. S. Tremblay, and M. Côté, Superconducting symmetries of Sr 2 RuO 4 from first-principles electronic structure, Phys. Rev. Lett, vol.123, p.217005, 2019.

K. Haule and G. Kotliar, Strongly correlated superconductivity: a plaquette dynamical mean field theory study, Phys. Rev. B, vol.76, p.104509, 2007.

X. Deng, K. Haule, and G. Kotliar, Transport properties of metallic ruthenates: A DFT+DMFT investigation, Phys. Rev. Lett, vol.116, p.256401, 2016.