S. Pandey, T. Kawai, and S. Akira, Microbial Sensing by Toll-Like Receptors and Intracellular Nucleic Acid Sensors, Cold Spring Harb Perspect Biol, vol.7, p.16246, 2015.

B. Wu, A. Peisley, D. Tetrault, Z. Li, E. H. Egelman et al., Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I, Mol Cell, vol.55, pp.511-523, 2014.

F. Hou, L. Sun, H. Zheng, B. Skaug, Q. Jiang et al., MAVS Forms Functional Prion-like Aggregates to Activate and Propagate Antiviral Innate Immune Response, Cell, vol.146, pp.448-461, 2011.

E. Dixit, S. Boulant, Y. Zhang, A. Lee, C. Odendall et al., Peroxisomes are signaling platforms for antiviral innate immunity, Cell, vol.141, pp.668-681, 2010.

S. M. Horner, H. M. Liu, H. S. Park, J. Briley, and M. Gale, Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus, Proc Natl Acad Sci, vol.108, pp.14590-14595, 2011.

C. Odendall, E. Dixit, F. Stavru, H. Bierne, K. M. Franz et al., Diverse intracellular pathogens activate type III interferon expression from peroxisomes, Nat Immunol, vol.15, pp.717-726, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204372

C. Castanier, D. Garcin, A. Vazquez, and D. Arnoult, Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway, EMBO Rep, vol.11, pp.133-138, 2010.

K. Onoguchi, K. Onomoto, S. Takamatsu, M. Jogi, A. Takemura et al., Virus-Infection or 5 0 ppp-RNA Activates Antiviral Signal through Redistribution of IPS-1 Mediated by MFN1, PLoS Pathog, vol.6, p.1001012, 2010.

K. Yasukawa, H. Oshiumi, M. Takeda, N. Ishihara, Y. Yanagi et al., Mitofusin 2 inhibits mitochondrial antiviral signaling, Sci Signal, vol.2, p.47, 2009.

T. Koshiba, K. Yasukawa, Y. Yanagi, and S. Kawabata, Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling, Sci Signal, vol.4, p.7, 2011.

A. C. Bulua, A. Simon, R. Maddipati, M. Pelletier, H. Park et al., Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS), J Exp Med, vol.208, pp.519-533, 2011.

E. Naik and V. M. Dixit, Mitochondrial reactive oxygen species drive proinflammatory cytokine production, J Exp Med, vol.208, pp.417-420, 2011.

M. C. Tal, M. Sasai, H. K. Lee, B. Yordy, G. S. Shadel et al., Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling, Proc Natl Acad Sci, vol.106, pp.2770-2775, 2009.

Y. Zhao, X. Sun, X. Nie, L. Sun, T. Tang et al., COX5B Regulates MAVS-mediated Antiviral Signaling through Interaction with ATG5 and Repressing ROS Production, PLoS Pathog, vol.8, p.1003086, 2012.

L. A. Sena and N. S. Chandel, Physiological Roles of Mitochondrial Reactive Oxygen Species, Mol Cell, vol.48, pp.158-167, 2012.

W. Dröge, Free Radicals in the Physiological Control of Cell Function, Physiol Rev, vol.82, pp.47-95, 2001.

C. R. Reczek and N. S. Chandel, ROS-dependent signal transduction, Curr Opin Cell Biol, vol.33, pp.8-13, 2015.

A. Matsuzawa, K. Saegusa, T. Noguchi, C. Sadamitsu, H. Nishitoh et al., ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity, Nat Immunol, vol.6, pp.587-592, 2005.

R. Gonzalez-dosal, K. A. Horan, S. H. Rahbek, H. Ichijo, Z. J. Chen et al., HSV Infection Induces Production of ROS, which Potentiate Signaling from Pattern Recognition Receptors: Role for S-glutathionylation of TRAF3 and 6, PLoS Pathog, vol.7, p.1002250, 2011.

A. Reis and C. M. Spickett, Chemistry of phospholipid oxidation, Biochim Biophys Acta, vol.1818, pp.2374-2387, 2012.

M. Wallgren, L. Beranova, Q. D. Pham, K. Linh, M. Lidman et al., Impact of oxidized phospholipids on the structural and dynamic organization of phospholipid membranes: a combined DSC and solid state NMR study, Faraday Discuss, vol.161, pp.499-513, 2013.

S. Mall, R. Broadbridge, R. P. Sharma, J. M. East, and A. G. Lee, Self-association of model transmembrane alphahelices is modulated by lipid structure, Biochemistry (Mosc), vol.40, pp.12379-12386, 2001.

V. Anbazhagan and D. Schneider, The membrane environment modulates self-association of the human GpA TM domain-implications for membrane protein folding and transmembrane signaling, Biochim Biophys Acta, vol.1798, pp.1899-1907, 2010.

R. Volmer and R. D. Ploeg-k-van-der, Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains, Proc Natl Acad Sci, vol.110, pp.4628-4633, 2013.

M. Baril, M. Racine, F. Penin, D. Lamarre, and . Mavs, Dimer Is a Crucial Signaling Component of Innate Immunity and the Target of Hepatitis C Virus NS3/4A Protease, J Virol, vol.83, pp.1299-1311, 2009.

E. D. Tang, C. Wang, and . Mavs, Self-Association Mediates Antiviral Innate Immune Signaling, J Virol, vol.83, pp.3420-3428, 2009.

P. D. Lu, C. Jousse, S. J. Marciniak, Y. Zhang, I. Novoa et al., Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2, EMBO J, vol.23, pp.169-179, 2004.

A. Bertolotti, Y. Zhang, L. M. Hendershot, H. P. Harding, and R. D. , Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response, Nat Cell Biol, vol.2, pp.326-332, 2000.

R. Volmer, B. Mazel-sanchez, C. Volmer, S. M. Soubies, and J. Guérin, Nucleolar localization of influenza A NS1: striking differences between mammalian and avian cells, Virol J, vol.7, p.63, 2010.

N. Li, K. Ragheb, G. Lawler, J. Sturgis, B. Rajwa et al., Mitochondrial Complex I Inhibitor Rotenone Induces Apoptosis through Enhancing Mitochondrial Reactive Oxygen Species Production, J Biol Chem, vol.278, pp.8516-8525, 2003.

T. Nakaya, M. Sato, N. Hata, M. Asagiri, H. Suemori et al., Gene Induction Pathways Mediated by Distinct IRFs during Viral Infection, Biochem Biophys Res Commun, vol.283, pp.1150-1156, 2001.

H. P. Harding, Y. Zhang, and R. D. , Protein translation and folding are coupled by an endoplasmic-reticulumresident kinase, Nature, vol.397, pp.271-274, 1999.

Q. Chen, E. J. Vazquez, S. Moghaddas, C. L. Hoppel, and E. J. Lesnefsky, Production of Reactive Oxygen Species by Mitochondria CENTRAL ROLE OF COMPLEX III, J Biol Chem, vol.278, pp.36027-36031, 2003.

M. Dey, C. Cao, F. Sicheri, and T. E. Dever, Conserved Intermolecular Salt Bridge Required for Activation of Protein Kinases PKR, GCN2, and PERK, J Biol Chem, vol.282, pp.6653-6660, 2007.

L. Deng, I. Shoji, W. Ogawa, S. Kaneda, T. Soga et al., Hepatitis C virus infection promotes hepatic gluconeogenesis through an NS5A-mediated, FoxO1-dependent pathway, J Virol, vol.85, pp.8556-8568, 2011.

P. Mukherjee, T. A. Woods, R. A. Moore, and K. E. Peterson, Activation of the innate signaling molecule MAVS by bunyavirus infection upregulates the adaptor protein SARM1, leading to neuronal death, Immunity, vol.38, pp.705-716, 2013.

T. Ichinohe, T. Yamazaki, T. Koshiba, and Y. Yanagi, Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection, Proc Natl Acad Sci U S A, vol.110, pp.17963-17968, 2013.

J. A. Buege and S. D. Aust, Microsomal lipid peroxidation, Methods Enzymol, vol.52, pp.302-310, 1978.

S. Liu, J. Chen, X. Cai, J. Wu, X. Chen et al., MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades, eLife, vol.2, p.785, 2013.

T. Promlek, Y. Ishiwata-kimata, M. Shido, M. Sakuramoto, K. Kohno et al., Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways, Mol Biol Cell, vol.22, pp.3520-3532, 2011.

R. Volmer and R. D. , Lipid-dependent regulation of the unfolded protein response, Curr Opin Cell Biol, vol.33, pp.67-73, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02637534

E. Li, W. C. Wimley, and K. Hristova, Transmembrane Helix Dimerization: Beyond the Search for Sequence Motifs, Biochim Biophys Acta, vol.1818, pp.183-193, 2012.

G. Daum and J. E. Vance, Import of lipids into mitochondria, Prog Lipid Res, vol.36, issue.97, pp.6-10, 1997.

C. Osman, D. R. Voelker, and T. Langer, Making heads or tails of phospholipids in mitochondria, J Cell Biol, vol.192, pp.7-16, 2011.

S. E. Horvath and G. Daum, Lipids of mitochondria, Prog Lipid Res, vol.52, pp.590-614, 2013.

N. Gebert, A. S. Joshi, S. Kutik, T. Becker, M. Mckenzie et al., Mitochondrial Cardiolipin Involved in Outer-Membrane Protein Biogenesis: Implications for Barth Syndrome, Curr Biol, vol.19, pp.2133-2139, 2009.

Y. Y. Tyurina, A. M. Polimova, E. Maciel, V. A. Tyurin, V. I. Kapralova et al., LC/MS analysis of cardiolipins in substantia nigra and plasma of rotenone-treated rats: Implication for mitochondrial dysfunction in Parkinson's disease, Free Radic Res, vol.49, pp.681-691, 2015.

C. T. Chu, J. J. Dagda, R. K. Jiang, J. F. Tyurina, Y. Y. Kapralov et al., Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells, Nat Cell Biol, vol.15, pp.1197-1205, 2013.

E. Gottlieb, S. M. Armour, M. H. Harris, and C. B. Thompson, Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis, Cell Death Differ, vol.10, pp.709-717, 2003.