G. Ourisson, M. Rohmer, and K. Poralla, Prokaryotic hopanoids and other polyterpenoid sterol surrogates, Annu. Rev. Microbiol, vol.41, pp.301-333, 1987.

B. Mycke, F. Narjes, and W. Michaelis, Bacteriohopanetetrol from chemical degradation of an oil shale kerogen, Nature, vol.326, pp.179-181, 1987.

E. L. Kannenberg, M. Perzl, and T. Härtner, The occurence of hopanoid lipids in Bradyrhizobium bacteria, FEMS Microbiol. Lett, vol.127, pp.255-262, 1995.

J. J. Brocks and A. Pearson, Building the biomarker tree of life, Rev. Mineral. Geochem, vol.59, pp.233-258, 2005.

J. P. Sáenz, E. Sezgin, P. Schwille, and K. Simons, Functional convergence of hopanoids and sterols inmembrane ordering, Proc. Natl Acad. Sci. USA, vol.109, pp.14236-14240, 2012.

P. V. Welander, Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1, J. Bacteriol, vol.191, pp.6145-6156, 2009.

C. R. Raetz and C. Whitfield, Lipopolysaccharide endotoxins, Annu. Rev. Biochem, vol.71, pp.635-700, 2002.

I. Lerouge and J. Vanderleyden, O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions, FEMS Microbiol. Rev, vol.26, pp.17-47, 2002.

G. E. Oldroyd, J. D. Murray, P. S. Poole, and J. A. Downie, The rules of engagement in the legume-rhizobial symbiosis, Annu. Rev. Genet, vol.45, pp.119-144, 2011.

C. Masson-boivin, E. Giraud, X. Perret, and J. Batut, Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?, Trends Microbiol, vol.17, pp.458-466, 2009.

J. Olivares, E. J. Bedmar, and J. Sanjuán, Biological nitrogen fixation in the context of global change, Mol. Plant Microbe Interact, vol.26, pp.486-494, 2013.

C. Franche, K. Lindström, and C. Elmerich, Nitrogen-fixing bacteria associated with leguminous and non-leguminous, Plant Soil, vol.321, pp.35-59, 2009.

R. W. Carlson, L. S. Forsberg, and E. L. Kannenberg, Lipopolysaccharides in Rhizobium-legume symbioses, Subcell Biochem, vol.53, pp.339-386, 2010.

E. L. Kannenberg and R. W. Carlson, Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development, Mol. Microbiol, vol.39, pp.379-391, 2001.

G. P. Ferguson, Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and BrucellaBacA affect lipid-A fattyacids, Proc. Natl Acad. Sci. USA, vol.101, pp.5012-5501, 2004.

D. B. Brown, Y. C. Huang, E. L. Kannenberg, D. J. Sherrier, and R. W. Carlson, An acpXL mutant of Rhizobium leguminosarum bv. phaseoli lacks 27-hydroxyoctacosanoic acid in its lipid A and is developmentally delayed during symbiotic infection of the determinate nodulating host plant Phaseolus vulgaris, J. Bacteriol, vol.193, pp.4766-4778, 2011.

E. Giraud, Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia, Science, vol.316, pp.1307-1312, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00151340

A. Silipo, A unique bicyclic monosaccharide from the Bradyrhizobium lipopolysaccharide and its role in the molecular interaction with plants, Angew. Chem. Int. Ed, vol.50, pp.12610-12612, 2011.

A. Choma and I. Komaniecka, Straight and branched (o-1)-hydroxylated very long chain fatty acids are components of Bradyrhizobium lipid A, Acta Biochim. Pol, vol.58, pp.51-58, 2011.

C. De-castro, A. Molinaro, R. Lanzetta, A. Silipo, and M. Parrilli, Lipopolysaccharide structures from Agrobacterium and Rhizobiaceae species, Carbohydr. Res, vol.343, pp.1924-1933, 2008.

A. Silipo and A. Molinaro, Bacterial Lipopolysaccharides, vol.1, 2011.

I. Komaniecka, A. Choma, B. Lindner, and O. Holst, The structure of a novel neutral lipid A from the lipopolysaccharide of Bradyrhizobium elkanii containing three mannose units in the backbone, Chem. Eur. J, vol.16, pp.2922-2929, 2010.

L. L. Jahnke, H. Stan-lotter, K. Kato, and L. I. Hochstein, Presence of methyl sterol and bacteriohopanepolyol in an outer-membrane preparation from Methylococcus capsulatus bath, J. Gen. Microbiol, vol.138, pp.1759-1766, 1992.

U. J. Jurgens, P. Simonin, and M. Rohmer, Localization and distribution of hopanoids in membrane systems of the cyanobacterium Synechocystis PCC 6714, FEMS Microbiol. Lett, vol.71, pp.285-288, 1992.

P. Simonin, U. J. Jurgens, and M. Rohmer, Bacterial triterpenoids of the hopane series from the prochlorophyte Prochlorothrix hollandica and their intracellular localization, Eur. J. Biochem, vol.241, pp.865-871, 1996.

D. M. Doughty, The RND-family transporter, HpnN, is required for hopanoid localization to the outer membrane of Rhodopseudomonas palustris TIE-1, Proc. Natl Acad. Sci. USA, vol.108, pp.1045-1051, 2011.

G. Siedenburg, D. Jendrossek, and . Squalene-hopene-cyclases, Appl. Environ. Microbiol, vol.77, pp.3905-3915, 2011.

P. V. Welander, Identification and characterization of Rhodopseudomonas palustris TIE-1 hopanoid biosynthesis mutants, Geobiology, vol.10, pp.163-177, 2012.

T. Bosak, R. M. Losick, and A. Pearson, A polycyclic terpenoid that alleviates oxidative stress, Proc. Natl Acad. Sci. USA, vol.105, pp.6725-6729, 2008.

C. L. Schmerk, M. A. Bernards, and M. A. Valvano, Hopanoid production is required for low-pH tolerance, antimicrobial resistance, and motility in Burkholderia cenocepacia, J. Bacteriol, vol.193, pp.6712-6723, 2011.

R. J. Malott, B. R. Steen-kinnaird, T. D. Lee, and D. P. Speert, Identification of hopanoid biosynthesis genes involved in polymyxin resistance in Burkholderia multivorans, Antimicrob. Agents Chemother, vol.56, pp.464-471, 2012.

J. F. Arrighi, Aeschynomene evenia, a model plant for studying the molecular genetics of the Nod-independent rhizobium-legume symbiosis, Mol. Plant Microbe Interact, vol.25, pp.851-861, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00855572

B. Gourion, Bacterial RuBisCO is required for efficient Bradyrhizobium Aeschynomene symbiosis, PLoS ONE, vol.6, p.21900, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02647055

D. E. Reid, B. J. Ferguson, S. Hayashi, Y. H. Lin, and P. Gresshoff, Molecular mechanisms controlling legume autoregulation of nodulation, Ann. Bot, vol.108, pp.789-795, 2011.

S. Pautot, B. J. Frisken, and D. A. Weitz, Engineering asymmetric vesicles, Proc. Natl Acad. Sci. USA, vol.100, pp.10718-10721, 2003.

T. Róg, M. Pasenkiewicz-gierula, I. Vattulainen, and M. Karttunen, Ordering effects of cholesterol and its analogues, Biochim. Biophys. Acta, vol.1788, pp.97-121, 2009.

D. Poger and A. E. Mark, The relative effect of sterols and hopanoids on lipid bilayers: when comparable is not identical, J. Phys. Chem. B, vol.117, pp.16129-16140, 2013.

O. Pierre, Peribacteroid space acidification: a marker of mature bacteroid functioning in Medicago truncatula nodules, Plant Cell Environ, vol.36, pp.2059-2070, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02647654

N. Pauly, Reactive oxygen and nitrogen species and glutathione: key players in the legume-Rhizobium symbiosis, J. Exp. Bot, vol.57, pp.1769-1776, 2006.

I. Guefrachi, 18th Internat. Cong. Nitrogen Fixation PLN05-2, pp.14-18, 2013.

R. J. Malott, B. R. Steen-kinnaird, T. D. Lee, and D. P. Speert, Identification of hopanoid biosynthesis genes involved in polymyxin resistance in Burkholderia multivorans, Antimicrob. Agents Chemother, vol.56, pp.464-471, 2012.

C. L. Schmerk, M. A. Bernards, and M. A. Valvano, Hopanoid production is required for low-pH tolerance, antimicrobial resistance, and motility in Burkholderia cenocepacia, J. Bacteriol, vol.193, pp.6712-6723, 2011.

J. M. Vincent, A Manual for the Practical Study of Root-Nodule Bacteria, 1970.

K. Podle?áková, Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic bradyrhizobia and Aeschynomene legumes, Mol. Plant Microbe Interact, vol.26, pp.1232-1238, 2013.

O. Westphal and K. Jann, Extraction with phenol-water and further applications of the procedure, Methods Carbohydr. Chem, vol.5, pp.83-91, 1965.

K. Leontein and J. Lönngren, Assignment of absolute configuration of sugars by g.l.c. of their acetylated glyco-sides formed from chiral alcohols, Methods Carbohydr. Chem, vol.62, pp.359-362, 1978.

S. Hakomori, A rapid permethylation of glycolipids and polysaccharides catalysed by methylsulfinylcarbanion in dimethylsulfoxide, J. Biochem. (Tokyo), vol.55, pp.205-208, 1964.

E. T. Rietschel, Absolute configuration of 3-hydroxy fatty acids present in lipopolysaccharides from various bacterial groups, Eur. J. Biochem, vol.64, pp.423-428, 1976.

N. L. Que, S. Lin, R. J. Cotter, and C. R. Raetz, Purification and mass spectrometry of six lipid A species from the bacterial endosymbiont Rhizobium etli, J. Biol. Chem, vol.275, pp.28006-28016, 2000.

E. G. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol, vol.37, pp.911-917, 1959.

A. L. Sessions, Identification and quantification of poly functionalized hopanoids by high temperature gas chromatography-mass spectrometry, Org. Geochem, vol.56, pp.120-130, 2013.

U. Piantini, O. W. Sørensen, and R. R. Ernst, Multiple quantum filters for elucidating NMR coupling networks, J. Am. Chem. Soc, vol.104, pp.6800-6801, 1982.

M. Rance, Improved spectral resolution in COSY 1H NMR spectra of proteins via double quantum filtering, Biochem. Biophys. Res. Commun, vol.117, pp.479-485, 1983.
URL : https://hal.archives-ouvertes.fr/hal-00813137

D. J. States, R. A. Haberkorn, and D. J. Ruben, A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants, J. Magn. Reson, vol.48, pp.286-292, 1982.

L. Sturiale, Reflectron MALDI TOF and MALDI TOF/TOF mass spectrometry reveal novel structural details of native lipooligosaccharides, J. Mass Spectrom, vol.46, pp.1135-1142, 2011.

E. Spina, New fragmentation mechanisms in matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry of carbohydrates, Rapid Commun. Mass Spectrom, vol.18, pp.392-398, 2004.

S. Leone, Detailed characterization of the lipid A fraction from the nonpathogen Acinetobacter radioresistens strain S13, J. Lipid Res, vol.48, pp.1045-1051, 2007.

J. Quandt and M. F. Hynes, Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria, Gene, vol.127, pp.15-21, 1993.

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc. Natl Acad. Sci. USA, vol.97, pp.6640-6645, 2000.

H. I. Lee, J. H. Lee, K. H. Park, D. Sangurdekar, and W. S. Chang, Effect of soybean coumestrol on Bradyrhizobium japonicum nodulation ability, biofilm formation, and transcriptional profile, Appl. Environ. Microbiol, vol.78, pp.2896-2903, 2012.

K. Bonaldi, The Nod factor-independent symbiotic signaling pathway: development of Agrobacterium rhizogenes-mediated transformation for the legume Aeschynomene indica, Mol. Plant Microbe Interact, vol.23, pp.1537-1544, 2010.

R. Parales and C. S. Harwood, Construction and use of a new broad-host-range lacZ transcriptional fusion vector, pHRP309, for gram-bacteria, Gene, vol.133, pp.23-30, 1993.

B. Gourion, A. Francez-charlot, and J. A. Vorholt, PhyR is involved in the general stress response of Methylobacterium extorquens AM1, J. Bacteriol, vol.190, pp.1027-1035, 2008.