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This paper presents a crystallographically-based constitutive model of
a single crystal deforming by climb and glide. The proposed constitutive
law is an extension of the rate-sensitivity approach for single crystal
plasticity by dislocation glide. Based on this description at single crystal
level, a homogenization-based polycrystal model for aggregates deforming
in a climb-controlled thermal creep regime is developed. To illustrate
the capabilities of the proposed model, we present calculations of effective
behavior of olivine and texture evolution of aluminum at warm temper-
ature and low strain rate. In both cases, the addition of climb as
a complementary single-crystal deformation mechanism improves the
polycrystal model predictions.
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1. Introduction

At high homologous temperatures and stresses above a certain threshold, materials
exhibit rate-dependent plastic deformation, carried by stress-assisted and thermally
activated dislocation motion. Although, even at lower temperatures, the flow stress
also shows some dependence with strain rate, this dependence becomes stronger
above 0.3–0.4 TM, determining a thermal power-law creep regime with low creep
exponent (high rate sensitivity) [1]. This high-temperature plasticity regime can be
further partitioned, depending on the actual microscopic mechanism that controls
the dynamics of deformation. In metals below 0.5 TM, a thermally and stress-assisted
movement of dislocations over obstacles is responsible for a glide-controlled creep
regime [1–3]. In this case, the shear component of the applied stress acting along
the glide direction on the glide plane is the one that promotes dislocation movement.
The creep exponent corresponding to this regime can be shown to be around 3 [1–3].
At higher temperatures, the interaction of dislocations with local non-equilibrium
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concentrations of point defects permits the dislocations to climb as well as glide.
Thus, there are two main differences between this climb-controlled creep [1,4,5] and
the previous glide-controlled regime. First, climb requires us to account for diffusion
of point defects to or from a climbing dislocation. Secondly, in addition to the role
played by the resolved shear stress, the effect of the diagonal stress components
must also be accounted for. The creep exponent corresponding to the climb regime
turns out to be close to 3 when lattice diffusion is the dominant mechanism [1,4,5]. In
the special case of irradiated materials, the continuous creation of point defects
during irradiation affects the dynamics of climb-controlled creep. When materials
under irradiation are subjected to stresses well below their flow stress, they deform
by irradiation creep at any temperature, with strain rates that are proportional to
the applied stress (linear creep) [6–8]. For materials irradiated at high temperature,
irradiation and thermal creep are coupled mechanisms. This coupling may lead
to a significant increase on the total creep rate, compared to the mere additive
superposition of both creep mechanisms [9].

Despite the relevant role played by dislocation climb in high-temperature
plasticity and irradiation creep, the present work is, to our knowledge, one of the few
attempts (and the most comprehensive) to consider the simultaneous activity of
crystallographic climb and glide, and to utilize the resulting continuum constitutive
description to model the behavior of polycrystalline aggregates deforming in the
climb-controlled creep regime. Previous works that made use of the geometry of
climb at single crystal level to construct a polycrystal model are the formulations
of Rougier et al. [10,11] and Tomé and Christodoulou [12] for the study of the
irradiation-induced creep and growth of Zr alloy polycrystals.

The paper is organized as follows. In Section 2, we present the constitutive
description of a single crystal deforming viscoplastically by climb and glide, taking
into account the slip-system geometry and the character of the dislocations present
in the crystal. The proposed constitutive behavior is an extension of the rate-
sensitivity approach for single crystal plasticity by dislocation glide. In Section 3,
we perform a limit analysis for the cases in which the dislocations in the crystal show
either a pure edge or a pure screw character. In Section 4, we show how a polycrystal
model based on non-linear homogenization can be built from the climb-and-glide
constitutive description for single crystals. In Section 5, we present two examples
of high-temperature plasticity for a geological material (olivine) and a metallic alloy
(aluminum). We show that the addition of climb as complementary deformation
mechanism at single crystal level improves the predictions of our homogenization-
based polycrystal model. In Section 6, we provide some concluding remarks and
envisage future applications of the proposed model.

2. Single crystal deformation by climb and glide

For applied stresses above a certain threshold, plastic deformation occurs largely
by dislocations overcoming obstacles under the influence of stress-assisted thermal
activation. In what follows, we will assume stresses applied to a crystalline material
that are above the threshold (otherwise, the deformation process would be controlled
by pure diffusional flow, without a significant role of the dislocations). The geometry



of the above process can be described most simply in terms of the motion of a single

dislocation of arbitrary orientation [13]. Let us consider the coordinate system

ðx1, x2, x3Þ (Figure 1). The normal to the slip plane is specified by the unit vector n̂

(in what follows, the caret is used to indicate unit vectors) along direction x2.

Dislocation motion produces a displacement b (Burgers vector) of the crystal

containing þn̂ relative to that containing �n̂ in the direction of the unit vector b̂

along x1. This slip coordinate system is completed by the unit vector m̂ ¼ b̂� n̂ along

direction x3, the Taylor axis.
Dislocation motion occurs in the direction of the velocity vector v, which is

normal to the dislocation line and has two components: the glide velocity, vg, which

lies in the slip plane, and the climb velocity, vc, which is parallel (or anti-parallel)

to n̂. Since a screw dislocation has no unique slip plane, the velocity vector of a screw

dislocation can lie in any plane on which the dislocation can glide. The slip plane

of a moving screw dislocation is specified by its unit normal, formed by the vector

product of unit vectors parallel to v and b. Since it must lie entirely in a slip plane,

the velocity vector for a screw dislocation has no climb component.
Another reference frame, the dislocation coordinate system, can be defined based

on t̂, the tangent to the dislocation line, n̂, and �̂, a unit vector parallel to vg. Both the

glide and climb velocity of these components arise in response to the corresponding

component of the Peach–Koehler (P-K) force on the dislocation. The Peach–Koehler

force, a virtual force per unit length acting on the dislocation, is defined as [14,15]

f ¼ ð� � bÞ � t̂ ð1Þ
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Figure 1. Slip coordinate system and corresponding unit vectors ðb̂, n̂, m̂Þ. Unit vectors of the
dislocation coordinate system ðn̂, t̂, ŝÞ. Dislocation line and dislocation velocity are also
shown.



from which we can define a glide component fg ¼ f � �̂, and a climb component
fc ¼ f � n̂. Note that, by this definition, the force on a moving screw dislocation is
purely a glide force, since it always lies in its glide plane. Hence, motion of the screw
dislocation in response to the P-K force is always conservative, i.e. it occurs without
the emission or absorption of point defects.

Replacing Equation (1) into these definitions gives

fg ¼ ð� � bÞ � t̂
� �

� ŝ ¼ ð� � bÞ � ð̂t� ŝÞ ¼ bj j� : ðb̂� n̂Þ ¼ bj j�0 : ðb̂� n̂Þ ð2Þ

fc ¼ ð� � bÞ � t̂
h i

� n̂ ¼ ð� � bÞ � ð̂t� n̂Þ ¼ � bj j� : ðb̂� ŝÞ: ð3Þ

Note that the last equality in Equation (2) follows from the normality between
b̂ and n̂, and states that the glide force depends only on the deviatoric component
of the stress, �0. The climb force, on the other hand, depends on the full Cauchy
stress, �. However, further thermodynamic considerations (see [16,17] for details)
led to a modification of Equation (1), involving the distinction between a mechanical
force produced by an applied stress, originally identified by Peach and Koehler [14]
and a chemical force due to non-equilibrium concentration of vacancies, originally
proposed by Bardeen and Herring [18], such that [16]

f ¼ ð�0 � bÞ � t̂þ �
kBT

� bj j3
log xv=x

o,PT
v

� �� �
b� t̂, ð4Þ

where �|b|3 is the volume change due to the formation of a vacancy and the first
and second terms on the right are the mechanical, or Peach–Koehler, and chemical,
or Bardeen–Herring, components of the force, respectively. In the expression for the
chemical force, xv is the actual concentration of vacancies, xo,PTv is the equilibrium
concentration of vacancies at a hydrostatic pressure P and temperature T, and kB is
Boltzmann’s constant. Therefore, while the expression of the glide component of the
force is still given by

fg ¼ ½ð�
0 � bÞ � t̂� � ŝ ¼ bj j�0 : ðb̂� n̂Þ, ð5Þ

the climb component should be written as

fc ¼ ð�
0 � bÞ � t̂þ �

kBT

� bj j3
log xv=x

o,PT
v

� �� �
b� t̂

� �
� n̂

¼ � bj j�0 : ðb̂� �̂Þ � bj j �
kBT

� bj j3
log xv=x

o,PT
v

� �� �
ðb̂� �̂Þ: ð6Þ

If the vacancy concentration in the crystal is everywhere equal to the equilibrium
concentration for pressure P and temperature T, the chemical force becomes zero
and the pressure dependence of the climb force disappears. This condition is possible
if the sources and sinks for vacancies (dislocations and grain boundaries) are such
that vacancies are produced or annihilated by these sources and sinks to maintain the
required equilibrium concentration. In the remainder of this paper, we will assume
this condition is satisfied and will consider that the climb component is thus given by

fc ¼ ½ð�
0 � bÞ � t̂� � n̂ ¼ � bj j�0 : ðb̂� ŝÞ: ð7Þ



Note that, in the case of the glide component, Equation (5) is equivalent to

Equation (2), while for the climb component, the Cauchy stress appearing in

Equation (3) is replaced in Equation (7) by the deviatoric stress.
The dyadic product in Equation (5) is the classic glide tensor, which can be

decomposed into symmetric and antisymmetric parts. Using explicit index notation

gij ¼ b̂in̂j ¼ mij þ qij ¼
1

2
ðb̂in̂j þ b̂jn̂iÞ þ

1

2
ðb̂in̂j � b̂jn̂iÞ, ð8Þ

where mij is the symmetric Schmid tensor and qij is the corresponding antisymmetric

(plastic rotation) tensor (note that since b̂? n̂, gij and mij are traceless). The product

�0 : ðb̂� n̂Þ ¼ m : �0 appearing in Equation (5) is the resolved shear stress (i.e. the �012
component of the external stress tensor expressed in slip-system coordinates), which,

according to the Schmid law, has to reach a threshold value for slip activation.

Equation (5) thus provides a physical interpretation of the phenomenological

Schmid law, i.e. slip is activated when a critical value of the force acting on

dislocations is reached to overcome the slip resistance and start dislocation motion.

The Schmid law has been modified to account for rate effects and multislip, giving

raise to the widely used rate-sensitivity constitutive equation for single crystal

material points deforming plastically by glide [19], i.e.

_�s ¼ _�o
�s

�so

� 	ng

¼ _�o
ms : �0j j

�so

� 	ng

sgnðms : �0Þ ð9Þ

and

_"gij ¼
XNs

s¼1

ms
ij _�

s ¼ _�o
XNs

s¼1

ms
ij

ms : �0j j

�so

� 	ng

sgnðms : �0Þ, ð10Þ

where _"g is the (traceless) plastic strain rate tensor induced by glide. In the expression

above, the sum runs over all Ns active slip systems; ms and �so are, respectively, the

Schmid tensor and the threshold resolved shear stress associated with glide in system

(s); _� s is the shear rate on slip system (s); _�o is a normalization factor and ng is the

stress exponent (inverse of the rate-sensitivity) associated with glide. Note that,

at sufficiently high stresses, the power-law Equation (9) is in fact an approximation

of the actual rate-equation for dislocation glide limited by discrete obstacles,

i.e. an Arrhenius relationship between the flow shear stress and the shear rate of the

form [1,20]:

_�s ¼ _�o exp �
DF
kT

1�
�s

�so

� 	
 �
, ð11Þ

where DF is the total free energy required to overcome an obstacle without aid of

external stress. The constitutive parameters ng and �so are temperature-, strain-rate-

and microstructure-dependent. The plastic rotation rate of the crystallographic

lattice is given by

_! p
ij ¼

XNs

s¼1

qsij _�
s: ð12Þ



By analogy with the aforementioned constitutive description of a single crystal

deforming plastically by glide, the dyadic product appearing in Equations (6) and (7)

can be defined as a climb tensor [13], i.e.

cij ¼ b̂i�̂j ¼ kij þ rij ¼
1

2
ðb̂i�̂j þ b̂j�̂iÞ þ

1

2
ðb̂i�̂j � b̂j�̂iÞ, ð13Þ

where kij and rij are, respectively, the symmetric and antisymmetric parts of the climb

tensor. According to Equation (7), in the case of equilibrium concentration of

vacancies, the climb tensor resolves the stress into a climb component in a similar way

that the glide tensor does for the glide component. However, there are some important

differences between the two tensors. While gij is formed from two unit vectors based

on the crystallography of the slip process independently of the dislocation line

orientation, cij depends on the orientation (character) of the dislocation. This

dependence can be expressed in terms of a single parameter  , i.e. the angle between
t̂ and b̂. Noting that t̂ ¼ b̂ cos þ �̂ sin and ŝ ¼ n̂� t̂, one can write [13]

cijð Þ ¼ ðb̂ib̂j Þ sin � ðb̂i�̂j Þ cos , ð14Þ

where the dyadic products are only functions of the slip-system crystallography, and

the dependence of the climb tensor with the dislocation orientation is specified by  .
This parameter accounts for the relative edge-screw character of the average

dislocation density, and can be regarded as a measure of the ratio between the

lengths of mobile dislocation lines projected parallel (�screw) and perpendicular (�edge)
to the slip direction in the slip plane, such that tg ¼ �edge=�screw. In addition,

it is evident from Equation (14) that the climb tensor is never traceless for dislocation

distributions having a non-zero edge component, i.e. sin 6¼ 0, while the glide tensor

is always traceless by definition. Hence, the symmetric climb tensor can be further

decomposed into a deviatoric and a hydrostatic component, i.e.

kij ¼ kdij þ khij: ð15Þ

For further analysis, the deviatoric, hydrostatic and antisymmetric components

of the climb tensor expressed in slip-system coordinates are [13]

kdij ¼
1

6

4 sin 0 3 cos 

0 �2 sin 0

3 cos 0 �2 sin

2
64

3
75 ð16Þ

khij ¼
1

3

sin 0 0

0 sin 0

0 0 sin 

2
64

3
75 ð17Þ

rij ¼
1

2

0 0 cos 

0 0 0

� cos 0 0

2
64

3
75: ð18Þ

Carrying on the analogy with the constitutive description of glide, we propose to

treat climb as being activated when the climb force acting on dislocations reaches



a critical value. In the case of equilibrium concentration of vacancies (i.e. climb force
given by Equation (7)), we can then define the scalar climb rate on system (s) as
(c.f. Equation (9)):

_	s ¼ _�o
kd,s : �0
�� ��
�so

� 	nc

sgnðkd,s : �0Þ, ð19Þ

where nc and �so are, respectively, the creep exponent and a scalar threshold stress
associated with climb. Note that the form of Equation (19) accurately represents the
rate-equation associated with climb-controlled power-law creep. However, for higher
stresses, at which the rate-equation becomes exponential (power-law breakdown
regime [1,21]), Equation (19) should be regarded as a phenomenological approxi-
mation to the actual rate-equation, in the same way that Equation (9) for glide is,
under certain conditions, an approximation of rate-equation Equation (11). This
definition leads to the following total strain rate of a single crystal deforming solely
by climb (c.f. Equation (10)):

_"cij ¼
XNs

s¼1

kd,sij
_	s ¼ _�o

XNs

s¼1

kd,sij

kd,s : �0
�� ��
�so

� 	nc

sgnðkd,s : �0Þ ð20Þ

and the following plastic spin associated with climb (c.f. Equation (12)):

_!p
ij ¼ _�o

X
s

rsij
_	s: ð21Þ

Like their glide counterparts (ng and �so), parameters nc and �so depend on
temperature, strain rate and microstructure. The latter dependency, however, is more
complex than in the case of glide, since not only the dynamics and interaction
between dislocations determine the current value of those internal variables, but also
the interaction between point defects and dislocations are also relevant in the
determination of the climb constitutive parameters. Moreover, note that, because
the relative importance of the point defect–dislocation interaction depends on the
character of the mobile dislocations, the climb parameters are likely to be also
dependent on the average character of the dislocation density. However, for the sake
of simplicity, and lacking physical insight into this dependence, in this work we have
assumed that nc and �

s
o do not depend on  .

3. Limit cases

Given the dependence of the constitutive relation for a single crystal deforming by
climb with the average character of the dislocation distribution (through the
parameter  ), it is interesting to analyze the limit cases of pure edge and pure
screw dislocations. In the case of an edge dislocation ( ¼ 
=2), climb produces
strain (shape change) without lattice rotation (Equations (18) and (21)).
Moreover, in slip-system coordinates, the contracted product kd,s : �0 appearing
in Equation (19) turns out to be �011, and

_	s ¼ _�o
j�011j

�so

� 	nc

sgnð�011Þ ðedge dislocationÞ: ð22Þ



Hence, in the case of a pure edge dislocation, �so can be interpreted as a threshold
stretching stress, corresponding to the deviatoric stress component acting along the
direction of the Burgers vector, which provides the driving force for point defects to
migrate towards the core of the dislocation and make it climb.

In the case of a screw dislocation,  ¼ 0 and, in slip-system coordinates, it is

kd,s : �0 ¼ �13 ð23Þ

_	s ¼ _�o
�13j j

�so

� 	nc

sgnð�13Þ ðscrew dislocationÞ, ð24Þ

and, using Equation (24) in Equation (20), the only non-zero component of the climb
rate tensor turns out to be the shear _"c13. Hence, in the case of a pure screw
dislocation, �so should be interpreted as the threshold shear stress for cross-slip on the
plane that is normal to the original slip plane defined by n̂. This motion of a screw
dislocation out of the slip plane on which the slip system is based is simply glide
on a different plane, not climb, which does not need to be assisted by point-defect
motion. If the crystallography of slip does not permit slip of screw dislocations on
planes normal to the original slip plane, the glide force on the screw dislocation must
be resolved onto permissible slip planes containing the original slip direction to
obtain a suitable threshold stress. In the following development, we consider the case
described as a limiting case and do not investigate the detailed crystallography of
glide of screw dislocations on different secondary planes for the examples studied.

4. Polycrystal model

The above climb-and-glide constitutive description at the level of a single-crystal
material point can be used within the context of polycrystal models based on crystal
plasticity to expand their applicability to the thermal creep regime, at high
temperatures and low strain rates. Examples of these polycrystal models include
full-field formulations such as the different flavors of the crystal-plasticity finite
element method (CPFEM) [22–29] or the Fast Fourier Transform (FFT)-based
approach [30–32], and mean-field formulations such as Taylor-type methods [33]
or self-consistent (SC) homogenization methods. In what follows, we present the
extension of the viscoplastic self-consistent (VPSC) formulation [34,35] for the
prediction of the mechanical behavior of polycrystals with constituent grains
deforming by climb-and-glide. The original version of the SC formulation for
aggregates of grains deforming by glide was implemented numerically in the VPSC
code [36]. In recent years, the VPSC code has experienced a variety of improvements
and extensions and it is nowadays extensively used to simulate plastic deformation
of polycrystalline aggregates and to interpret experimental evidence on metallic,
geological and polymeric materials (for a review of current capabilities and material
systems studied with VPSC, see [37]).

The self-consistent (SC) formulation was originally developed for linear elastic
materials [38]. For aggregates deforming in the viscoplastic regime, several self-
consistent approximations were subsequently proposed. All these non-linear variants
are based on the linear SC solution, previous use of ad hoc linearization schemes



to approximate the non-linear mechanical behavior at single-crystal level. Here, we
present the climb-and-glide extension of the first-order affine [39] VPSC formulation.

Adding the contributions of glide (Equation (10)) and climb (Equation (19)), the
constitutive equation of a single crystal (r) deforming by climb and glide is given by

_"ðrÞij ¼ _�o
XNs

s¼1

m
sðrÞ
ij

msðrÞ : �0ðrÞ
�� ��

�sðrÞo

� 	ng

sgnðmsðrÞ : �0ðrÞÞ

"

þ
XNs

s¼1

k
d,sðrÞ
ij

kd,sðrÞ : �0ðrÞ
�� ��

�sðrÞo

� 	nc

sgnðkd,sðrÞ : �0ðrÞÞ

#
, ð25Þ

where the climb and glide tensors and threshold stresses are assumed to be constant
in the domain of single crystal (r), and the strain rate and stress are average tensors
in the (r) domain. The linearized (affine) moduli of single crystal (r) follow from
writing Equation (25) in a pseudo-linear form:

_"ðrÞ ¼M
ðrÞ
aff : �ðrÞ þ _"oðrÞaff , ð26Þ

where

M
ðrÞ
aff ¼ _�o ng

XNs

s¼1

msðrÞ �msðrÞ

�sðrÞo

msðrÞ : �0ðrÞ
�� ��

�sðrÞo

� 	ng�1
"

þ nc
XNs

s¼1

kd,sðrÞ � kd,sðrÞ

�sðrÞo

kd,sðrÞ : �0ðrÞ
�� ��

�sðrÞo

� 	nc�1
#

ð27Þ

_"oðrÞaff ¼ _�o ð1� ngÞ
XNs

s¼1

m
sðrÞ
ij

msðrÞ : �0ðrÞ
�� ��

�sðrÞo

� 	ng

sgnðmsðrÞ : �0ðrÞÞ

"

þ ð1� ncÞ
XNs

s¼1

k
d,sðrÞ
ij

kd,sðrÞ : �0ðrÞ
�� ��

�sðrÞo

� 	nc

sgnðkd,sðrÞ : �0ðrÞÞ

#
: ð28Þ

From these equations, a SC formulation can be built in the standard way
(for details, see [37]). We have implemented this extended viscoplastic self-consistent
formulation in the VPSC code, incorporating climb as an additional mechanism
at single crystal level. Note that the affine linearization is very suitable for the above
extension, since it does not require a single stress exponent, as other formulations
do (e.g. tangent or secant linearizations [37]). Thus, the affine model can be used for
different climb and glide exponents.

5. Examples

5.1. Creep of olivine

Olivine is the mineral that comprises the majority of the Earth’s upper mantle.
The mantle is known to exhibit seismic (elastic) anisotropy, commonly attributed to
lattice preferred orientation (LPO, i.e. crystallographic texture) of its constituent
minerals. The development of LPO is due to plastic deformation of these minerals



associated with large-scale convective flow. Olivine crystals exhibit orthorhombic

symmetry and have a few systems available for glide-controlled creep (only three

of them are linearly independent, short of the five independent glide systems needed

to accommodate an arbitrary deformation imposed to the crystal). This reduced

number of linearly independent glide systems leads to a very high viscoplastic

anisotropy at the grain scale in olivine. Hence, until now, either a very crude

homogenization scheme such as the equilibrium-based Sachs model [40,41], or the

presence of an artificial hard glide mode [42–44] that provides the additional degrees

of freedom, had to be assumed to perform crystal plasticity-based calculations on

polycrystalline aggregates of this material. Although by assuming a sufficiently hard

artificial glide mode, its relative activity in VPSC simulations can be reduced to small

values, the predicted effective response is strongly dependent on the threshold stress

of such hard mode (e.g. in the affine VPSC case, the effective stress of a random

olivine polycrystal scales with M0.75, where the contrast parameter M is the ratio

between the critical stresses of the artificial hard mode and the soft systems. In

full-field calculations, the exponent of M turns out to be 0.5 [37]). This undesirable

dependence of the effective stress with the strength of the artificial hard mode

prevents geophysicists from a reliable use of such a model in multiscale simulations

of mantle’s convection [45].
The incorporation of dislocation climb as an additional deformation mechanism

(dislocation climb is likely to be active in mantle’s olivine, deforming in natural

conditions at low strain rates and high homologous temperatures, in the power-law

climb-controlled creep regime [46]) addresses the above limitation. Figure 2 shows

the effective stress predicted by the VPSC formulation (with and without climb

at single crystal level) for an olivine polycrystal with random texture, as a function
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Figure 2. Effective stress of isotropic olivine versus contrast parameter at single crystal level
predicted with the VPSC model assuming glide only and climb-and-glide as single crystal
plastic deformation mechanisms.



of the contrast parameter M, assuming the slip modes and constitutive parameters

reported in Table 1. The slip modes and their correspondent threshold stresses

for glide considered here are those used in [43], and based on experimental results

[47–49]. As for the threshold stresses for climb, we have assumed them to be equal

to their glide counterparts, and the edge and screw dislocation densities were

assumed to be equal. Evidently, the incorporation of climb provides additional

degrees of freedom to the available single crystal deformation mechanisms, such that

the effective stress saturates at sufficiently high values of the contrast parameter.

Figure 3 shows the relative activities (defined as the average strain-rates, calculated

over the entire polycrystal, accommodated by each mechanism and each slip mode,

divided by the total strain-rate) that were obtained in our climb-and-glide

calculations versus the glide-only predictions (the relative activities of glide of all

the soft systems were added together and shown under the ‘glide’ label, the relative
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Figure 3. (a) Case of climb-and-glide in olivine. Relative activities of glide in the four slip
modes observed in olivine, climb in the four observed slip modes, and climb-and-glide in the
artificial mode. (b) Case of glide only. Relative activities of glide in the four observed slip
modes and the fictitious mode.

Table 1. Slip modes and corresponding climb-and-glide con-
stitutive parameters for olivine single crystals.

Slip mode �o,g ng �o,c nc �o

(010)[100] 1. 3 1. 3 
=4
(001)[100] 1. 3 1. 3 
=4
(010)[001] 2. 3 2. 3 
=4
(100)[001] 3. 3 3. 3 
=4
f111g 1�10

 �
M 3 M 3 
=4



activities of climb of the same set of systems were added together under ‘climb’, and
the glide and climb activities of the hard mode were added together under the
‘artificial mode’ label). Evidently, the availability of the climb mechanism drastically
reduces the need for activation of the artificial mode when the contrast is large.

5.2. Low strain-rate compression textures of Al at warm temperature

Stout et al. [50] reported compression textures of a 5182 Al alloy deformed up to
60% strain, at different temperatures (from room temperature to 550�C) and strain
rates (1 and 10�3 s�1). Cylindrical samples were cut with their axes along the rolling
and normal directions of a plate with a typical (001)h100i recrystallization texture.
Therefore, the compression samples had an initial texture with the (001) crystal
orientations predominantly oriented along the compression axis, up to an intensity
of about 4 mrd (multiple of random distribution). The Stout et al. [50] results
showed that, depending on the temperature and the strain rate of the test, the final
textures were characterized by either a retained (001) cube texture, or a h110i fiber
(i.e. a typical compression texture in fcc materials), or a mixed texture with both the
(001) and (110) components present. Another important result reported in [50]
is that the samples tested at 400�C and below showed no evidence of dynamic
recrystallization during the compression test or static recrystallization during
quenching. Samples tested at room temperature and 200�C at both strain rates
showed typical (110) compression textures. At 400�C and a strain rate of 10�3 s�1,
both the (001) and the (110) components are present, with similar intensity in the
measured inverse pole figures, while at 400�C and 1 s�1, the (001) cube component is
greatly diminished. To explain the presence of the (001) cube component in absence
of recrystallization, Stout et al. [50] invoked the activity of non-octahedral ð110Þ 1�10

 �
slip (together with the standard ð111Þ 1�10

 �
octahedral slip mode), reported to occur in

experiments done on Al single crystal and polycrystals at such temperature [51], and
whose activity is known to stabilize the cube component [52]. On the other hand, to
explain the differences between the 400�C textures at different strain rates, Stout
et al. [50] had to make a very strong assumption, namely that there is a very sharp
decrease in rate sensitivity as strain rate increases.

However, the retained (001) cube component at warm temperature and low strain
rate can be satisfactorily explained in terms of the likely activity of climb under those
conditions, as follows. Figure 4 shows different VPSC simulations of texture
evolution of Al 5182 after 60% uniaxial compression. Lines correspond to
increments of 0.5 mrd and dots indicate regions below 0.5 mrd. The initial (001)
texture, with a maximum intensity of 4+ mrd is shown in Figure 4a. The second
row shows the influence of the rate-sensitivity exponent when glide only on slip mode
(111)h110i is assumed. Evidently, as pointed out in [50], an increase in rate sensitivity
contributes to the retention of the cube component. However, even when a
reasonably low creep exponent is used (i.e. n¼ 3), the standard (110) compression
texture component is more than twice as intense as the retained (001) cube
component. (Note that, according to Frost and Ashby’s deformation-mechanism
map for Al [1], the combination of homologous temperature, strain rate and applied
stress clearly implies that both 400�C tests lie within the climb-controlled creep



Figure 4. VPSC simulations of texture evolution of Al 5182 after 60% uniaxial compression.
Lines correspond to increments of 0.5 mrd. Dots are regions below 0.5 mrd. First row: (a)
initial (001) texture. Second row: (111)h110i glide: (b) n¼ 10; (c) n¼ 3. Third row: climb and
glide in (111)h110i, n¼ 3, equal edge and screw dislocation densities ( ¼ 
=4): (d) �so ¼ �

s
o;

(e) �so ¼ 2� �so. Fourth row: (f ) climb and glide in (111)h110i, n¼ 3, predominant screw
dislocation density ( ¼ 0:01); (g) (112)h110i glide, n¼ 3.



regime, characterized by an exponent not larger than 4.) The third row shows
the VPSC calculations considering climb and glide activity at grain level, making the
most reasonable assumption for the edge/screw ratio, i.e.  ¼ 
=4, which amounts
to consider equal total lengths of mobile edge and screw dislocation lines in each
slip system. Note that this assumption is compatible with the similar mobility that
both types of dislocations have in fcc crystals (e.g. [53]). In particular, the simulated
texture shown in Figure 4d is the one that most resembles the experimental texture
reported at 400�C and 10�3 s�1. In this case, both threshold stresses for climb and
glide were assumed to be equal (�so ¼ �

s
o), which resulted in similar contributions

from them both. Evidently, the significant fraction of plastic strain accommodated
by climb of edge dislocations (which, as discussed above, does not involve lattice
rotations) was responsible for a significant retention of the initial (001) cube
component. Otherwise, favoring glide over climb by assuming the threshold stress for
climb to be twice the glide stress (�so ¼ 2� �so) determines that around 90% of the
strain is accommodated by glide, which in turn predicts a texture (Figure 4e) not far
from the glide-only case (Figure 4c). Finally, the fourth row illustrates the
importance of using a sound value for the average character of the dislocation
density. If a predominant screw dislocation character is assumed (e.g.  ¼ 0:01),
which amounts to consider a ratio 9:1 between the screw and the edge dislocation
densities (a value more compatible with a bcc, rather than a fcc material, due to the
much lower mobility of screw dislocation segments in bcc structures [53]), the
resulting texture (Figure 4f) is clearly a standard compression texture, with the (110)
fiber intensity even higher than the glide-only case. The depletion of the cube
component is due to a significant reduction in the edge dislocation climb that tends
to stabilize the (001) component. On the other hand, the intensification of the (110)
component can be understood regarding the additional simulation shown in
Figure 4g, in which glide-only was assumed, but on slip mode (112)h110i, instead
of the standard (111)h110i slip. Note that this non-octahedral glide corresponds
precisely to glide on planes that are perpendicular to the original (111) slip planes.
This simulation corresponds to the slip of screw dislocations onto a slip plane
orthogonal to the original slip plane, as described in Section 3.

6. Concluding remarks

We propose here a crystallographically based continuum constitutive description
of the viscoplastic deformation of single crystals by climb and glide, extending
the well known rate-sensitivity approach for crystal plasticity by glide. The model
introduces three important constitutive parameters, i.e. the average edge/screw ratio
(tg  ), the creep exponent associated with climb (nc) and a threshold stress for climb
activation (�so). All of them are likely to be temperature-, strain-rate- and
microstructure-dependent. Concerning the average character of the dislocations,
this quantity is difficult to determine experimentally, since it involves measurements
on dislocations moving during the deformation process. However, 3-D dislocation
dynamics (DD) models [53–56] may provide useful estimates of the magnitude of this
parameter and how it evolves with deformation. Concerning the creep exponent,
a value of 3 is widely accepted for thermal creep [5], when this process takes place



exclusively by climb. However, when creep is controlled by climb but most of the
dislocation motion is by glide, the macroscopic creep exponent tends to be higher [1].
The reason for this could be related to the complicated coupling between climb and
glide (e.g. when a gliding dislocation stops at an obstacle, a small amount of climb
may allow it to overcome the obstacle and continue gliding, providing a significant
amount of strain until it reaches the next obstacle, and so on). The proposed model
may need the addition of elaborated hardening laws, involving the mutual influence
of the glide and climb strains on the evolution of the glide and climb threshold
stresses, to capture the above complexity. Finally, the determination of the threshold
stress for climb can be either done by inverse analysis, i.e. using available
experimental results to adjust the value (or values) of �so that best fits the data,
or using lower length-scale models to obtain the stress needed to move dislocations
by climb in the presence of certain local concentration of point defects. This can be
done semi-analytically by means of rate theory (e.g. [57]) or, as recently reported by
Mordehai et al. [58] (and originally proposed by Raabe [59]), introducing dislocation
motion assisted by bulk diffusion in DD models solving the diffusion equation
locally for each dislocation segment, or introducing the point defects explicitly in
DD codes and solving the elastic interactions between each point defect and the
dislocation segments [60].

The two examples provided in the paper show improved predictions of effective
behavior and texture development in polycrystalline aggregates deforming in a
climb-controlled thermal creep regime. On the other hand, irradiation creep can be
treated similarly, although a proper consideration of the chemical component of
the climb force is needed to account for the continuous addition of point defects to
the material. This determines that the instantaneous point defect concentration will
not be in equilibrium during the deformation process, thus affecting the kinetics
of dislocation climb and making it necessary to consider the effect of the hydrostatic
pressure on the single crystal constitutive behavior. Obviously, such description of
climb under irradiation will depend on all the same microstructural variables and
applied deformation conditions as in the case of thermal creep, and, additionally,
on the type and dose of irradiation, as well as on the particular damaged
microstructure developed in the studied material during irradiation [61].
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