S. Agarwal, Tetrazolium reducing microorganisms inside the root of Brassica species, Curr. Sci, vol.56, pp.187-188, 1987.

A. Barka, E. Belarbi, A. Hachet, C. Nowak, J. Audran et al., Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria, FEMS Microbiol. Lett, vol.186, pp.91-95, 2000.

A. Barka, E. Gognies, S. Nowak, J. Audran, J. C. Belarbi et al., Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth, Biol. Control, vol.24, pp.34-42, 2002.

A. Barka, E. Nowak, J. Clément, and C. , Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl. Environ. Microbiol, vol.72, pp.7246-7252, 2006.

S. Ali, J. Duan, T. C. Charles, and B. R. Glick, A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp, J. Theor. Biol, vol.343, pp.193-198, 2014.

M. Andreolli, S. Lampis, G. Zapparoli, E. Angelini, and G. Vallini, Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control, Microbiol. Res, vol.183, pp.42-52, 2016.

S. C. Andrews, A. K. Robinson, and F. Rodríguez-quiñones, Bacterial iron homeostasis, FEMS Microbiol. Rev, vol.27, pp.215-237, 2003.

S. Bensalim, J. Nowak, and S. K. Asiedu, A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato, Am. J. Potato Res, vol.75, pp.145-152, 1998.

S. Bordiec, S. Paquis, H. Lacroix, S. Dhondt, E. Ait-barka et al., Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions, J. Exp. Bot, vol.62, pp.595-603, 2011.

G. L. Challis, A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases, Chembiochem, vol.6, pp.601-611, 2005.

S. Compant, C. Clément, and A. Sessitsch, Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization, Soil Biol. Biochem, vol.42, pp.669-678, 2010.

S. Compant, B. Duffy, J. Nowak, C. Clément, and E. A. Barka, Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects, Appl. Environ. Microbiol, vol.71, pp.4951-4959, 2005.

S. Compant, B. Reiter, A. Sessitsch, J. Nowak, C. Clément et al., Endophytic colonization of Vitis vinifera L. by plant growthpromoting bacterium Burkholderia sp. strain PsJN, Appl. Environ. Microbiol, vol.71, pp.1685-1693, 2005.

S. Compant, H. Kaplan, A. Sessitsch, J. Nowak, E. Ait-barka et al., Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues, FEMS Microbiol. Ecol, vol.63, pp.84-93, 2007.

S. Compant, J. Nowak, T. Coenye, C. Clément, A. Barka et al., Diversity and occurrence of Burkholderia spp. in the natural environment, FEMS Microbiol. Rev, vol.32, pp.607-626, 2008.

P. Cornelis and J. Bodilis, A survey of tonb-dependent receptors in fluorescent Pseudomonads, Environ. Microbiol. Rep, vol.1, pp.256-262, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00433752

M. Couderchet, Benefits and problems of fungicide control of Botrytis cinerea in vineyards of Champagne, Vitis, vol.42, pp.165-172, 2003.

U. Deinlein, A. B. Stephan, T. Horie, W. Luo, G. Xu et al., Plant salt-tolerance mechanisms, Trends Plant Sci, vol.19, pp.371-379, 2014.

N. Deleon-rodriguez, T. L. Lathem, L. M. Rodriguez-r, J. M. Barazesh, B. E. Anderson et al., Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.2575-2580, 2013.

E. Depoorter, M. J. Bull, C. Peeters, T. Coenye, P. Vandamme et al., Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers, Appl. Microbiol. Biotechnol, vol.100, pp.5215-5229, 2016.

R. Donoso, P. Leiva-novoa, A. Zúñiga, T. Timmermann, G. Recabarren-gajardo et al., Biochemical and genetic bases of indole-3-acetic acid (auxin phytohormone) degradation by the plant-growthpromoting rhizobacterium Paraburkholderia phytofirmans PsJN, Appl. Environ. Microbiol, vol.83, pp.1991-2007, 2017.

J. M. Dunwell, A. Purvis, and S. Khuri, Cupins: the most functionally diverse protein superfamily?, Phytochemistry, vol.65, pp.7-17, 2004.

L. Eberl and P. Vandamme, Members of the genus Burkholderia: good and bad guys. F1000Res, vol.5, p.1007, 2016.

Q. Esmaeel, M. Chevalier, G. Chataigné, R. Subashkumar, P. Jacques et al., Nonribosomal peptide synthetase with a unique iterativealternative-optional mechanism catalyzes amonabactin synthesis in Aeromonas, Appl. Microbiol. Biotechnol, vol.100, pp.8453-8463, 2016.

Q. Esmaeel, M. Pupin, N. P. Kieu, G. Chataigné, M. Béchet et al., Burkholderia genome mining for nonribosomal peptide synthetases reveals a great potential for novel siderophores and lipopeptides synthesis, vol.5, pp.512-526, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398944

Q. Esmaeel, M. Pupin, P. Jacques, and V. Leclère, Nonribosomal peptides and polyketides of Burkholderia: new compounds potentially implicated in biocontrol and pharmaceuticals, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01548616

O. Fernandez, A. Theocharis, S. Bordiec, R. Feil, L. Jacquens et al., Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism, Mol. Plant Microbe Interact, vol.25, pp.496-504, 2012.

M. Frommel, J. Nowak, and G. Lazarovits, Treatment of potato tubers with a growth promoting Pseudomonas sp.: plant growth responses and bacterium distribution in the rhizosphere, Plant Soil, vol.150, pp.51-60, 1993.

M. I. Frommel, J. Nowak, and G. Lazarovits, Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent Pseudomonas sp, Plant Physiol, vol.96, pp.928-936, 1991.

M. I. Frommel, J. Nowak, and G. Lazarovits, Plant growth stimulation and biocontrol of Fusarium wilt by co-inoculation of tomato seeds with Serratia plymuthica and Pseudomonas sp, Fitopatologia, vol.26, pp.66-73, 1991.

B. R. Glick, Bacterial ACC deaminase and the alleviation of plant stress, Adv. Appl. Microbiol, vol.56, pp.291-312, 2004.

B. R. Glick, D. M. Penrose, L. , and J. , A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria, J. Theor. Biol, vol.190, pp.63-68, 1998.

B. R. Glick, B. Todorovic, J. Czarny, Z. Cheng, J. Duan et al., Promotion of plant growth by bacterial ACC deaminase, Crit. Rev. Plant Sci, vol.26, pp.227-242, 2007.

M. Griffith and M. W. Yaish, Antifreeze proteins in overwintering plants: a tale of two activities, Trends Plant Sci, vol.9, pp.399-405, 2004.

B. Gupta and B. Huang, Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization, Int. J. Genomics, p.701596, 2014.

Q. Q. Han, X. P. Lü, J. P. Bai, Y. Qiao, P. W. Paré et al., Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover, Front. Plant Sci, vol.5, p.525, 2014.

P. R. Hardoim, L. S. Van-overbeek, G. Berg, A. M. Pirttilä, S. Compant et al., The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol, Mol. Biol. Rev, vol.79, pp.293-320, 2015.

J. L. Hatfield, K. J. Boote, B. Kimball, L. Ziska, R. C. Izaurralde et al., Climate impacts on agriculture: implications for crop production, Agron. J, vol.103, pp.351-370, 2011.

J. Huang, Ultrastructure of bacterial penetration in plants, Annu. Rev. Phytopathol, vol.24, pp.141-157, 1986.

E. K. James, P. Gyaneshwar, N. Mathan, W. L. Barraquio, P. M. Reddy et al., Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67, Biol. Plant Microbe Interact, vol.15, pp.894-906, 2002.

L. J. Johnson, A. Koulman, M. Christensen, G. A. Lane, K. Fraser et al., An extracellular siderophore is required to maintain the mutualistic interaction of Epichloë festucae with Lolium perenne, PLoS Pathog, vol.9, p.1003332, 2013.

J. D. Jones and J. L. Dangl, The plant immune system, Nature, vol.444, pp.323-329, 2006.

S. L. Kandel, P. M. Joubert, and S. L. Doty, Bacterial endophyte colonization and distribution within plants, vol.5, p.77, 2017.

A. Kawasaki, S. Donn, P. R. Ryan, U. Mathesius, R. Devilla et al., Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat, PLoS One, vol.11, p.164533, 2016.

S. Kim, S. Lowman, G. Hou, J. Nowak, B. Flinn et al., Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN, Biotechnol. Biofuels, vol.5, p.37, 2012.

Y. Kim, Malonate metabolism: biochemistry, molecular biology, physiology, and industrial application, J. Biochem. Mol. Biol, vol.35, pp.443-451, 2002.

T. Kost, N. Stopnisek, K. Agnoli, L. Eberl, and L. Weisskopf, Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans, Front. Microbiol, vol.4, p.421, 2014.

G. Lackner, N. Moebius, L. Partida-martinez, and C. Hertweck, Complete genome sequence of Burkholderia rhizoxinica, an endosymbiont of Rhizopus microsporus, J. Bacteriol, vol.193, pp.783-784, 2011.

G. Lazarovits and J. Nowak, Rhizobacteria for improvement of plant growth and establishment, HortScience, vol.32, pp.188-192, 1997.

V. Leclère, S. Beaufort, S. Dessoy, P. Dehottay, J. et al., Development of a biological test to evaluate the bioavailability of iron in culture media, J. Appl. Microbiol, vol.107, pp.1598-1605, 2009.

T. Ledger, S. Rojas, T. Timmermann, I. Pinedo, M. J. Poupin et al., Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana, Front. Microbiol, vol.7, p.1838, 2016.

S. E. Lindow and M. T. Brandl, Microbiology of the phyllosphere, Appl. Environ. Microbiol, vol.69, pp.1875-1883, 2003.

Z. Liu, V. Pillay, and J. Nowak, In vitro culture of watermelon and cantaloupe with and without beneficial bacterium, Acta Hortic, vol.402, pp.58-60, 1995.

I. Loaces, L. Ferrando, and A. F. Scavino, Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice, Microb. Ecol, vol.61, pp.606-618, 2011.

U. Mathesius, S. Mulders, M. Gao, M. Teplitski, G. Caetano-anollés et al., Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.1444-1449, 2003.

M. Miethke and M. A. Marahiel, Siderophore-based iron acquisition and pathogen control. Microbiol, Mol. Biol. Rev, vol.71, pp.413-451, 2007.

L. Miotto-vilanova, C. Jacquard, B. Courteaux, L. Wortham, J. Michel et al., Burkholderia phytofirmans PsJN confers grapevine resistance against Botrytis cinerea via a direct antimicrobial effect combined with a better resource mobilization, Front. Plant Sci, vol.7, p.1236, 2016.

B. Mitter, A. Petric, M. W. Shin, P. S. Chain, L. Hauberg-lotte et al., Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants, Front. Plant Sci, vol.4, p.120, 2013.

B. Mitter, N. Pfaffenbichler, R. Flavell, S. Compant, L. Antonielli et al., A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds, Front. Microbiol, vol.8, p.11, 2017.

M. Nafees, S. Ali, M. Naveed, and M. Rizwan, Efficiency of biogas slurry and Burkholderia phytofirmans PsJN to improve growth, physiology, and antioxidant activity of Brassica napus L. in chromium-contaminated soil, Environ. Sci. Pollut. Res, vol.25, pp.6387-6397, 2018.

M. Naveed, M. B. Hussain, Z. A. Zahir, B. Mitter, and A. Sessitsch, Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN, Plant Growth Regul, vol.73, pp.121-131, 2014.

M. Naveed, B. Mitter, T. G. Reichenauer, K. Wieczorek, and A. Sessitsch, Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17, Environ. Exp. Bot, vol.97, pp.30-39, 2014.

M. Naveed, M. A. Qureshi, Z. A. Zahir, M. B. Hussain, A. Sessitsch et al., L-Tryptophan-dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of maize by Burkholderia phytofirmans PsJN, Ann. Microbiol, vol.65, pp.253-263, 2004.

J. Onofre-lemus, I. Hernández-lucas, L. Girard, and J. Caballero-mellado, ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and Its growth-promoting effect on tomato plants, Appl. Environ. Microbiol, vol.75, pp.6581-6590, 2009.

D. Paul and S. Nair, Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils, J. Basic Microbiol, vol.48, pp.378-384, 2008.

C. M. Pieterse, D. Van-der-does, C. Zamioudis, A. Leon-reyes, and S. C. Van-wees, Hormonal modulation of plant immunity, Annu. Rev. Cell Dev. Biol, vol.28, pp.489-521, 2012.

C. M. Pieterse, C. Zamioudis, R. L. Berendsen, D. M. Weller, S. C. Van-wees et al., Induced systemic resistance by beneficial microbes, Annu. Rev. Phytopathol, vol.52, pp.347-375, 2014.

V. Pillay and J. Nowak, Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a Pseudomonad bacterium, Can. J. Microbiol, vol.43, pp.354-361, 1997.

I. Pinedo, T. Ledger, M. Greve, and M. J. Poupin, Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance, Front. Plant Sci, vol.6, p.466, 2015.

M. J. Poupin, T. Timmermann, A. Vega, A. Zuñiga, and B. González, Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana, PLoS One, vol.8, p.69435, 2013.

G. M. Preston, Plant perceptions of plant growth-promoting Pseudomonas, Philos. Trans. R. Soc. Lond. B, vol.359, pp.907-918, 2004.

A. Ramette, J. J. Lipuma, and J. M. Tiedje, Species abundance and diversity of Burkholderia cepacia complex in the environment, Appl. Environ. Microbiol, vol.71, pp.1193-1201, 2005.

B. Reinhold-hurek, T. Maes, S. Gemmer, M. Van-montagu, and T. Hurek, An endoglucanase is involved in Infection of rice roots by the not-cellulosemetabolizing endophyte Azoarcus sp. strain BH72, Mol. Plant Microbe Interact, vol.19, pp.181-188, 2006.

I. M. Roos and M. Hattingh, Scanning electron microscopy of Pseudomonas syringae pv, morsprunorum on sweet cherry leaves, J. Phytopathol, vol.108, pp.18-25, 1983.

E. Ruelland, M. Vaultier, A. Zachowski, and V. Hurry, Chapter 2 cold signalling and cold acclimation in plants, Adv. Bot. Res, vol.49, pp.35-150, 2009.

A. Sawana, M. Adeolu, and R. S. Gupta, Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species, Front. Genet, vol.5, p.429, 2014.

A. Sessitsch, T. Coenye, A. V. Sturz, P. Vandamme, E. A. Barka et al., Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties, Int. J. Syst. Evol. Microbiol, vol.55, pp.1187-1192, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00019095

S. Shameer and T. N. Prasad, Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses, Plant Growth Regul, vol.84, pp.603-615, 2018.

V. K. Sharma and J. Nowak, Enhancement of verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp. strain PsJN), Can. J. Microbiol, vol.44, pp.528-536, 1998.

R. Sheibani-tezerji, T. Rattei, A. Sessitsch, F. Trognitz, and B. Mitter, Transcriptome profiling of the endophyte Burkholderia phytofirmans PsJN indicates sensing of the plant environment and drought stress, mBio, vol.6, pp.621-636, 2015.

F. Su, S. Villaume, F. Rabenoelina, J. Crouzet, C. Clément et al., Different Arabidopsis thaliana photosynthetic and defense responses to hemibiotrophic pathogen induced by local or distal inoculation of Burkholderia phytofirmans, Photosynth. Res, vol.134, pp.201-214, 2017.

Y. Sun, Z. Cheng, and B. R. Glick, The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN, FEMS Microbiol. Lett, vol.296, pp.131-136, 2009.

S. Taghavi, D. Van-der-lelie, A. Hoffman, Y. Zhang, M. D. Walla et al., Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638, PLoS Genet, vol.6, p.1000943, 2010.

A. Theocharis, S. Bordiec, O. Fernandez, S. Paquis, S. Dhondt-cordelier et al., Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures, Mol. Plant Microbe Interact, vol.25, pp.241-249, 2011.

A. Theocharis, C. Clément, and E. A. Barka, Physiological and molecular changes in plants grown at low temperatures, Planta, vol.235, pp.1091-1105, 2012.

D. Tilman, C. Balzer, J. Hill, and B. L. Befort, Global food demand and the sustainable intensification of agriculture, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.20260-20264, 2011.

T. Timmermann, G. Armijo, R. Donoso, A. Seguel, L. Holuigue et al., Paraburkholderia phytofirmans PsJN protects Arabidopsis thaliana against a virulent strain of Pseudomonas syringae through the activation of induced resistance, Mol. Plant Microbe Interact, vol.30, pp.215-230, 2017.

L. Trdá, O. Fernandez, F. Boutrot, M. C. Héloir, J. Kelloniemi et al., The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria, New Phytol, vol.201, pp.1371-1384, 2013.

L. C. Van-loon, P. A. Bakker, W. H. Van-der-heijdt, D. Wendehenne, and A. Pugin, Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance, Mol. Plant Microbe Interact, vol.21, pp.1609-1621, 2008.

S. Van-puyvelde, L. Cloots, K. Engelen, F. Das, K. Marchal et al., Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response, Microb. Ecol, vol.61, pp.723-728, 2011.

S. S. Vurukonda, S. Vardharajula, M. Shrivastava, and A. Skz, Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria, Microbiol. Res, vol.184, pp.13-24, 2016.

B. Wang, C. Mei, and J. R. Seiler, Early growth promotion and leaf level physiology changes in Burkholderia phytofirmans strain PsJN inoculated switchgrass, Plant Physiol. Biochem, vol.86, pp.16-23, 2015.

A. Weilharter, B. Mitter, M. V. Shin, P. S. Chain, J. Nowak et al., Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN, J. Bacteriol, vol.193, pp.3383-3384, 2011.

J. Yang, J. W. Kloepper, and C. Ryu, Rhizosphere bacteria help plants tolerate abiotic stress, Trends Plant Sci, vol.14, pp.1-4, 2009.

J. Zhang, T. J. Flowers, and S. Wang, Mechanisms of sodium uptake by roots of higher plants, Plant Soil, vol.326, p.45, 2009.

J. Zhang and H. Shi, Physiological and molecular mechanisms of plant salt tolerance, Photosynth. Res, vol.115, pp.1-22, 2013.

S. Zhao, H. Wei, C. Lin, Y. Zeng, M. P. Tucker et al., Burkholderia phytofirmans inoculation-induced changes on the shoot cell anatomy and Iron accumulation reveal novel components of Arabidopsisendophyte interaction that can benefit downstream biomass deconstruction, Front. Plant Sci, vol.7, p.24, 2016.

A. Zúñiga, R. A. Donoso, D. Ruiz, G. A. Ruz, and B. González, Quorumsensing systems in the Plant growth-promoting bacterium Paraburkholderia phytofirmans PsJN exhibit cross-regulation and are Involved in biofilm formation, Mol. Plant Microbe Interact, vol.30, pp.557-565, 2017.

A. Zúñiga, M. J. Poupin, R. Donoso, T. Ledger, N. Guiliani et al., Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN, Biol. Plant Microbe Interact, vol.26, pp.546-553, 2013.