S. Ardissone, H. Kobayashi, K. Kambara, C. Rummel, K. D. Noel et al., Role of BacA in lipopolysaccharide synthesis, peptide transport, and nodulation by Rhizobium sp. strain NGR234, J. Bacteriol, vol.193, pp.2218-2228, 2011.

A. Becker, N. Fraysse, and L. Sharypova, Recent advances in studies on structure and symbiosis-related function of rhizobial K-antigens and lipopolysaccharides, Mol. Plant Microbe Interact, vol.18, pp.899-905, 2005.

U. R. Bhat, L. S. Forsberg, and R. W. Carlson, Structure of lipid A component of Rhizobium leguminosarum bv. phaseoli lipopolysaccharide. Unique nonphosphorylated lipid A containing 2-amino-2-deoxygluconate, galacturonate, and glucosamine, J. Biol. Chem, vol.269, pp.14402-14410, 1994.

U. R. Bhat, H. Mayer, A. Yokota, R. I. Hollingsworth, and R. W. Carlson, Occurrence of lipid A variants with 27-hydroxyoctacosanoic acid in lipopolysaccharides from members of the family Rhizobiaceae, J. Bacteriol, vol.173, pp.2155-2159, 1991.

K. Bonaldi, D. Gargani, Y. Prin, J. Fardoux, D. Gully et al., Nodulation of Aeschynomene afraspera and A. indica by photosynthetic Bradyrhizobium Sp. strain ORS285: the nod-dependent versus the nodindependent symbiotic interaction, Mol. Plant Microbe Interact, vol.24, pp.1359-1371, 2011.

K. Bonaldi, B. Gourion, J. Fardoux, L. Hannibal, F. Cartieaux et al., Large-scale transposon mutagenesis of photosynthetic Bradyrhizobium sp. strain ORS278 reveals new genetic loci putatively important for nod-independent symbiosis with Aeschynomene indica, Mol. Plant Microbe Interact, vol.23, pp.760-770, 2010.

D. V. Bourassa, E. L. Kannenberg, D. J. Sherrier, R. J. Buhr, and R. W. Carlson, The lipopolysaccharide Lipid A long-chain fatty acid is important for Rhizobium leguminosarum growth and stress adaptation in free-living and nodule environments, Mol. Plant Microbe Interact, vol.30, pp.161-175, 2017.

M. Bourcy, L. Brocard, C. I. Pislariu, V. Cosson, P. Mergaert et al., Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions, New Phytol, vol.197, pp.1250-1261, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02403239

D. B. Brown, Y. C. Huang, E. L. Kannenberg, D. J. Sherrier, and R. W. Carlson, An acpXL mutant of Rhizobium leguminosarum bv. phaseoli lacks 27-hydroxyoctacosanoic acid in its lipid A and is developmentally delayed during symbiotic infection of the determinate nodulating host plant Phaseolus vulgaris, J. Bacteriol, vol.193, pp.4766-4778, 2011.

A. Choma and I. Komaniecka, Straight and branched (omega-1)-hydroxylated very long chain fatty acids are components of Bradyrhizobium lipid A, Acta Biochim. Pol, vol.58, pp.51-58, 2011.

P. Czernic, D. Gully, F. Cartieaux, L. Moulin, I. Guefrachi et al., Convergent evolution of endosymbiont differentiation in dalbergioid and inverted repeat-lacking clade legumes mediated by nodule-specific cysteine-rich peptides, Plant Physiol, vol.169, pp.1254-1265, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01430710

N. Delmotte, S. Mondy, B. Alunni, J. Fardoux, C. Chaintreuil et al., A proteomic approach of Bradyrhizobium/Aeschynomene root and stem symbioses reveals the importance of the fixA locus for symbiosis, Int. J. Mol. Sci, vol.15, pp.3660-3670, 2014.

A. El-hamidi, A. Tirsoaga, A. Novikov, A. Hussein, and M. Caroff, Microextraction of bacterial lipid A: easy and rapid method for mass spectrometric characterization, J. Lipid Res, vol.46, pp.1773-1778, 2005.

G. P. Ferguson, A. Datta, R. W. Carlson, G. C. Walker, A. Fukuda et al., Aminoacylation of the N-terminal cysteine is essential for Loldependent release of lipoproteins from membranes but does not depend on lipoprotein sorting signals, Mol. Microbiol, vol.56, pp.43512-43518, 2002.

K. E. Gibson, H. Kobayashi, and G. C. Walker, Molecular determinants of a symbiotic chronic infection, Annu. Rev. Genet, vol.42, pp.413-441, 2008.

E. Giraud, J. Lavergne, and A. Vermeglio, Characterization of bacteriophytochromes from photosynthetic bacteria: histidine kinase signaling triggered by light and redox sensing, Methods Enzymol, vol.471, pp.135-159, 2010.

E. Giraud, L. Moulin, D. Vallenet, V. Barbe, E. Cytryn et al., Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia, Science, vol.316, pp.1307-1312, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00151340

B. Gourion, F. Berrabah, P. Ratet, and G. Stacey, Rhizobium-legume symbioses: the crucial role of plant immunity, Trends Plant Sci, vol.20, pp.186-194, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02410345

E. Grohmann, G. Muth, and M. Espinosa, Conjugative plasmid transfer in gram-positive bacteria, Mol. Biol. Rev, vol.67, pp.277-301, 2003.

D. Gully, D. Gargani, K. Bonaldi, C. Grangeteau, C. Chaintreuil et al., A peptidoglycan-remodeling enzyme is critical for bacteroid differentiation in Bradyrhizobium spp. during legume symbiosis, Mol. Plant Microbe Interact, vol.29, pp.447-457, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01442270

S. D. Gupta, K. Gan, M. B. Schmid, and H. C. Wu, Characterization of a temperature-sensitive mutant of Salmonella typhimurium defective in apolipoprotein N-acyltransferase, J. Biol. Chem, vol.268, pp.16551-16556, 1993.

A. F. Haag, M. F. Arnold, K. K. Myka, B. Kerscher, S. Dall'angelo et al., Molecular insights into bacteroid development during Rhizobiumlegume symbiosis, FEMS Microbiol. Rev, vol.37, pp.364-383, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00856980

A. F. Haag, S. Wehmeier, S. Beck, V. L. Marlow, V. Fletcher et al., The Sinorhizobium meliloti LpxXL and AcpXL proteins play important roles in bacteroid development within alfalfa, J. Bacteriol, vol.191, pp.4681-4686, 2009.

R. I. Hollingsworth and R. W. Carlson, 27-Hydroxyoctacosanoic acid is a major structural fatty acyl component of the lipopolysaccharide of Rhizobium trifolii Anu-843, J. Biol. Chem, vol.264, pp.9300-9303, 1989.

E. L. Kannenberg and R. W. Carlson, Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development, Mol. Microbiol, vol.39, pp.379-391, 2001.

E. L. Kannenberg, M. Perzl, P. Muller, T. Hartner, and K. Poralla, Hopanoid lipids in Bradyrhizobium and other plant-associated bacteria and cloning of the Bradyrhizobium japonicum squalene-hopene cyclase gene, Plant Soil, vol.186, pp.107-112, 1996.

I. Komaniecka, A. Choma, A. Mazur, K. A. Duda, B. Lindner et al., Occurrence of an unusual hopanoid-containing lipid A among lipopolysaccharides from Bradyrhizobium species, J. Biol. Chem, vol.289, pp.35644-35655, 2014.

G. Kulkarni, N. Busset, A. Molinaro, D. Gargani, C. Chaintreuil et al., Specific hopanoid classes differentially affect free-living and symbiotic states of Bradyrhizobium diazoefficiens, vol.6, pp.1251-1266, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01594981

S. Leone, L. Sturiale, E. Pessione, R. Mazzoli, C. Giunta et al., Detailed characterization of the lipid A fraction from the nonpathogen Acinetobacter radioresistens strain S13, J. Lipid Res, vol.48, pp.1045-1051, 2007.

I. Lerouge and J. Vanderleyden, O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions, FEMS Microbiol. Rev, vol.26, pp.17-47, 2002.

K. R. Mikuláss, K. Nagy, B. Bogos, Z. Szegletes, E. Kovács et al., Antimicrobial nodule specific cysteine rich peptides disturb the integrity of bacterial outer and inner membranes and cause loss of membrane potential, Ann. Clin. Microbiol. Antimicrob, vol.15, p.43, 2016.

J. Montiel, J. A. Downie, A. Farkas, P. Bihari, R. Herczeg et al., Morphotype of bacteroids in different legumes correlates with the number and type of symbiotic NCR peptides, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.5041-5046, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02390036

T. Nagata and I. Takebe, Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts, Planta, vol.92, pp.301-308, 1970.

S. Narita and H. Tokuda, Overexpression of LolCDE allows deletion of the Escherichia coli gene encoding apolipoprotein N-acyltransferase, J. Bacteriol, vol.193, pp.4832-4840, 2011.

S. Okazaki, P. Tittabutr, A. Teulet, J. Thouin, J. Fardoux et al., Rhizobium-legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS, ISME J, vol.10, pp.64-74, 2016.

G. Ourisson, M. Rohmer, and K. Poralla, Prokaryotic hopanoids and other polyterpenoid sterol surrogates, Annu. Rev. Microbiol, vol.41, pp.301-333, 1987.

R. E. Parales and C. S. Harwood, Construction and use of a new broadhost-range lacZ transcriptional fusion vector, pHRP309, for gram-bacteria, Gene, vol.133, pp.23-30, 1993.

M. A. Parker, The spread of Bradyrhizobium lineages across host legume clades: from Abarema to Zygia, Microb. Ecol, vol.69, pp.630-640, 2015.

K. B. Pechter, L. Gallagher, H. Pyles, C. S. Manoil, and C. S. Harwood, The essential genome of the metabolically versatile alphaproteobacterium Rhodopseudomonas palustris, J. Bacteriol, vol.28, pp.867-876, 2015.

K. Podle?áková, J. Fardoux, D. Patrel, K. Bonaldi, O. Novák et al., Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interactions between photosynthetic Bradyrhizobia and Aeschynomene legumes, Mol. Plant Microbe Interact, vol.26, pp.1232-1238, 2013.

A. Puppo, K. Groten, F. Bastian, R. Carzaniga, M. Soussi et al., Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process, New Phytol, vol.165, pp.683-701, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01943161

C. R. Raetz, C. M. Reynolds, M. S. Trent, and R. E. Bishop, Lipid A modification systems in gram-negative bacteria, Annu. Rev. Biochem, vol.76, pp.295-329, 2007.

C. R. Raetz and C. Whitfield, Lipopolysaccharide endotoxins, Annu. Rev. Biochem, vol.71, pp.635-700, 2002.

S. Ranf, N. Gisch, M. Schäffer, T. Illig, L. Westphal et al., A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana, Nat. Immunol, vol.16, pp.426-433, 2015.

C. Robichon, D. Vidal-ingigliardi, and A. P. Pugsley, Depletion of apolipoprotein N-acyltransferase causes mislocalization of outer membrane lipoproteins in Escherichia coli, J. Biol. Chem, vol.280, pp.974-983, 2005.

J. P. Saenz, E. Sezgin, P. Schwille, and K. Simons, Functional convergence of hopanoids and sterols in membrane ordering, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.14236-14240, 2012.

A. Silipo, G. Vitiello, D. Gully, L. Sturiale, C. Chaintreuil et al., Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes, Nat. Commun, vol.5, p.5106, 2014.

E. Spina, L. Sturiale, D. Romeo, G. Impallomeni, D. Garozzo et al., New fragmentation mechanisms in matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry of carbohydrates, Rapid Commun. Mass Spectrom, vol.18, pp.392-398, 2000.

J. I. Sprent, J. Ardley, J. , and E. K. , Biogeography of nodulated legumes and their nitrogen-fixing symbionts, New Phytol, vol.215, pp.40-56, 2017.

L. Sturiale, A. Palmigiano, A. Silipo, Y. A. Knirel, A. P. Anisimov et al., Reflectron MALDI TOF and MALDI TOF/TOF mass spectrometry reveal novel structural details of native lipooligosaccharides, J. Mass Spectrom, vol.46, pp.1135-1142, 2011.

R. P. Tiwari, W. G. Reeve, M. J. Dilworth, and A. R. Glenn, An essential role for actA in acid tolerance of Rhizobium meliloti, Microbiology, vol.142, pp.601-610, 1996.

J. W. Tsai, A. , and M. R. , Proteolysis of the McpA chemoreceptor does not require the Caulobacter major chemotaxis operon, J. Bacteriol, vol.182, pp.504-507, 2000.

W. Van-de-velde, G. Zehirov, A. Szatmari, M. Debreczeny, H. Ishihara et al., Plant peptides govern terminal differentiation of bacteria in symbiosis, Science, vol.327, pp.1122-1126, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00856104

Q. Wang, S. Yang, J. Liu, K. Terecskei, E. Ábrahám et al., Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.6854-6859, 2017.

P. V. Welander, R. C. Hunter, L. Zhang, A. L. Sessions, R. E. Summons et al., Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1, J. Bacteriol, vol.191, pp.6145-6156, 2009.

U. Zähringer, Y. A. Knirel, B. Lindner, J. H. Helbig, A. Sonesson et al., The lipopolysaccharide of Legionella pneumophila serogroup 1 (strain Philadelphia 1): chemical structure and biological significance, Prog. Clin. Biol. Res, vol.392, pp.113-139, 1995.