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Full-Field vs. Homogenization Methods
to Predict Microstructure–Property Relations
for Polycrystalline Materials

R.A. Lebensohn, P. Ponte Castañeda, R. Brenner, and O. Castelnau

Abstract In this chapter, we review two recently proposed methodologies, based on
crystal plasticity, for the prediction of microstructure–property relations in polycrys-
talline aggregates. The first, known as the second-order viscoplastic self-consistent
(SC) method, is a mean-field theory, while the second, known as the fast Fourier
transform (FFT)-based formulation, is a full-field method. The main equations
and assumptions underlying both formulations are presented, using a unified no-
tation and pointing out their similarities and differences. Concerning mean-field
SC homogenization theories for the prediction of mechanical behavior of nonlin-
ear viscoplastic polycrystals, we carry out detailed comparisons of the different
linearization assumptions that can be found in the literature. Then, after validat-
ing the FFT-based full-field formulation by comparison with available analytical
results, the effective behavior of model material systems predicted by means of dif-
ferent SC approaches are compared with ensemble averages of full-field solutions.
These comparisons show that the predictions obtained by means of the second-
order SC approach – which incorporates statistical information at grain level beyond
first-order, through the second moments of the local field fluctuations inside the con-
stituent grains – are in better agreement with the FFT-based full-field solutions. This
is especially true in the cases of highly heterogeneous materials due to strong nonlin-
earity or single-crystal anisotropy. The second-order SC approach is next applied to
the prediction of texture evolution of polycrystalline ice deformed in compression,
a case that illustrates the flexibility of this formulation to handle problems involving
materials with highly anisotropic local properties. Finally, a full three-dimensional
implementation, the FFT-based formulation, is applied to study subgrain texture
evolution in copper deformed in tension, with direct input and validation from
orientation images. Measurements and simulations agree in that grains with ini-
tial orientation near <110> tend to develop higher misorientations. This behavior
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can be explained in terms of attraction toward the two stable orientations and grain
interaction. Only models like the FFT-based formulation that account explicitly for
interaction between individual grains are able to capture these effects.

Keywords Antiplane deformation � Crystal plasticity � Fast Fourier trans-
form � Field fluctuations � Green function method � Mean-field vs. full-field
models � Micromechanics � Misorientation � Orientation imaging microscopy
formulation � Polycrystal � Second-order homogenization � Texture � Viscoplastic
self-consistent

1 Introduction

An accurate prediction of the mechanical behavior of polycrystalline aggregates
undergoing plastic deformation based on the directional properties and evolving
substructure of their constituent single-crystal grains is an indispensable tool to
establish the relationship between microstructure and properties of this large and
ubiquitous class of materials. On one hand, advances in the theories that link mi-
crostructures and properties of nonlinear heterogeneous materials have enabled the
development of new concepts and algorithms for the prediction of the effective
plastic response of statistically defined classes of polycrystalline aggregates using
crystal plasticity-based mean-field approaches. On the other hand, novel and very
efficient full-field approaches also based on crystal plasticity have been proposed
and applied to the prediction of the actual micromechanical fields that develop inside
the grains of polycrystals with particular microstructures. In this chapter, we will
review two of the most recent crystal plasticity-based mean-field [i.e., the second-
order (SO) viscoplastic self-consistent (VPSC) theory] and full-field [i.e., the fast
Fourier transform (FFT)-based formulation] models, establishing the connections
existing between the two formulations, and showing applications of both approaches
to the prediction of microstructure–property relations of polycrystalline aggregates.

Concerning mean-field approximations, the computation of effective mechan-
ical response and texture evolution of polycrystalline materials using homoge-
nization approaches has a long tradition (Sachs 1928; Taylor 1938). At present,
self-consistent approximations are extensively used to deal with this problem. The
1-site viscoplastic (VP) self-consistent (SC) theory of polycrystal deformation can
be traced back to the seminal work of Molinari et al. (1987). Later, Lebensohn
and Tomé (1993) implemented this formulation numerically to fully account for
polycrystal anisotropy, developing the first version of the VPSC code. In the last
decade, this code has experienced several improvements and extensions (Tomé
and Lebensohn 2008), and it is nowadays extensively used to simulate plastic de-
formation of polycrystalline aggregates and to interpret experimental evidence on
metallic, geological, and polymeric materials (see Lebensohn et al. 2007 for a com-
prehensive list of material systems studied with the VPSC theory and code).



The self-consistent approximation, one of the most commonly used homoge-
nization methods to estimate the mechanical response behavior of polycrystals, was
originally proposed by Hershey (1954) for linear elastic materials. For nonlinear
aggregates (as those formed by grains deforming in the viscoplastic regime), the
several self-consistent approximations that were proposed subsequently differ in
the procedure used to linearize the nonlinear local mechanical behavior, but even-
tually all of them end up making use of the original linear self-consistent theory.
Among the nonlinear SC formulations, we can mention: the secant (SEC) (Hill
1965; Hutchinson 1976), the tangent (TG) (Molinari et al. 1987; Lebensohn and
Tomé 1993), and the affine (AFF) (Ponte Castañeda 1996; Masson et al. 2000) ap-
proximations. All these are first-order SC approximations since they are based on
linearization schemes that, at grain level, make use of information on field averages
only, disregarding higher-order statistical information inside the grains. However,
the above assumption may be questionable specially when strong directionality
and/or large variations in local properties are to be expected. Such is the case for low
rate-sensitivity materials, aggregates made of highly anisotropic grains, and multi-
phase polycrystals. In all those cases, strong deformation gradients are likely to de-
velop inside grains because of the contrast in properties between neighboring grains.

To overcome the above limitations, Ponte Castañeda and coauthors have devel-
oped over the last two decades more accurate nonlinear homogenization methods,
using linearization schemes at grain level that also incorporate information on the
second moments of the field fluctuations in the grains. These more elaborate SC
formulations are based on the use of so-called linear comparison methods, which
express the effective potential of the nonlinear VP polycrystal in terms of that
of a linearly viscous aggregate with properties that are determined from suitably
designed variational principles. Ponte Castañeda’s first variational method was orig-
inally proposed for nonlinear composites (Ponte Castañeda 1991) and then extended
to VP polycrystals (deBotton and Ponte Castañeda 1995). It makes use of the SC
approximation for linearly viscous polycrystals to obtain bounds and estimates for
nonlinear VP polycrystals. The most recent second-order method, proposed for non-
linear composites (Ponte Castañeda 2002), and later extended to VP polycrystals
(Liu and Ponte Castañeda 2004), uses the SC approximation for a more general class
of linearly viscous polycrystals, having a non-vanishing strain-rate at zero stress, to
generate even more accurate SC estimates for VP polycrystals. The implementation
of a fully anisotropic second-order approach inside the VPSC code has been a nec-
essary step toward improving its predictive capability for polycrystalline materials
that exhibit high contrast in local properties. Unavoidably, this improved capability
comes at the expense of more complex and numerically demanding algorithms.

In what concerns full-field approaches, in the last 20 years, crystal plasticity-
based finite element (FE) implementations have been extensively applied to obtain
solutions for the plastic deformation of polycrystalline materials with intracrys-
talline resolution (Becker 1991; Mika and Dawson 1998; Delaire et al. 2001; Barbe
et al. 2001; Raabe et al. 2001; Bhattacharyya et al. 2001; Delannay et al. 2003,
2006; Cheong and Busso 2004; Diard et al. 2005; Musienko et al. 2007). However,
the large number of degrees of freedom required by such FE calculations limits the
size of the microstructures that can be investigated by these methods. Conceived as a



very efficient alternative to FE methods, a formulation inspired by image-processing
techniques and based on the FFT algorithm, originally proposed by Moulinec and
Suquet (1994), for the prediction of the micromechanical behavior of plastically
deforming heterogeneous materials. The latter includes both composites (Moulinec
and Suquet 1998; Michel et al. 2000; Idiart et al. 2006), in which the source of
heterogeneity is related to the spatial distribution of phases with different mechani-
cal properties, and polycrystals (Lebensohn 2001; Lebensohn et al. 2004a, b, 2005,
2008), in which the heterogeneity is related to the spatial distribution of crystals
with directional mechanical properties.

The plan of this chapter is as follows. In Sect. 2, we describe the implementation
of the second-order formulation inside the VPSC code (Lebensohn et al. 2007), and
present the FFT-based formulation, specialized to the case of viscoplastic polycrys-
tals (Lebensohn et al. 2008). In Sect. 3, we first show a validation of the FFT-based
approach by comparison with an exact analytical result and then discuss the differ-
ences between the first- and second-order VPSC formulations by comparing their
predictions with corresponding FFT-based full-field solutions. We do so for crys-
tals with different symmetries, as a function of anisotropy, number of independent
slip systems, and degree of nonlinearity. In this comparison, the second-order es-
timates show the best overall agreement with the full-field solutions. The different
SC approaches are then applied to the prediction of texture evolution in a strongly
heterogeneous system (i.e., polycrystalline ice deforming in uniaxial compression)
(Lebensohn et al. 2007). This comparison shows that the second-order formulation
yields results in better agreement with experimental evidence than the first-order
approximations, predicting a substantial and persistent accommodation of defor-
mation by basal slip, even when the basal poles become strongly aligned with
the compression direction. Section 3 also shows an application of the FFT-based
formulation to the prediction of subgrain texture and microstructure evolution in
polycrystalline copper deformed under tension, with direct input from orientation
imaging microscopy (OIM) images (Lebensohn et al. 2008). Average orientations
and misorientations predicted after 11% tensile strain are directly compared with
OIM measurements. Experiments and simulations agree in that grains with initial
orientation near <110> tend to develop higher misorientations. This behavior can
be explained in terms of attraction toward the two stable orientations and grain in-
teraction. Only models that account explicitly for interaction between individual
grains, like the FFT-based formulation, are able to capture these effects.

2 Models

2.1 Viscoplastic Self-Consistent Formalism

In this section, the incompressible viscoplastic self-consistent formulation
(Lebensohn et al. 1998) is first presented using the affine linearization scheme
(Ponte Castañeda 1996; Masson et al. 2000), and the second-order linearization
procedure (Ponte Castañeda 2002; Liu and Ponte Castañeda 2004) is described next.



The self-consistent formulation consists in representing a polycrystal by means
of weighted, ellipsoidal, statistically representative (SR) grains. Each of these SR
grains represents the average behavior of all the grains with a particular crystallo-
graphic orientation and morphology, but different environments. These SR grains
should be regarded as representing the behavior of mechanical phases, i.e., all the
single crystals with a given orientation .r/ belong to mechanical phase .r/ and are
represented by SR grain .r/. (Note the difference between “mechanical phases,”
which differ from each other only in terms of crystallographic orientation and/or
morphology, and actual “phases” differing from each other in crystallographic struc-
ture and/or composition). In what follows, “SR grain .r/” and “mechanical phase
.r/” will be used interchangeably. The weights represent volume fractions. The
latter are chosen to reproduce the initial texture of the material. In turn, each repre-
sentative grain will be treated as an ellipsoidal viscoplastic inclusion embedded in
an effective viscoplastic medium. Both inclusion and medium have fully anisotropic
properties. Deformation is carried by crystal plasticity mechanisms: slip and twin-
ning systems activated by a resolved shear stress.

2.1.1 Local Constitutive Behavior and Homogenization

Let us consider a macroscopic velocity-gradient Vi;j applied to an polycrystalline
aggregate, which can be decomposed into an average symmetric strain-rate PEij D
1
2

�
Vi;j C Vj;i

�
and an average antisymmetric rotation-rate P�ij D 1

2

�
Vi;j � Vj;i

�
.

Let us assume that the plastic component of the deformation is much larger than the
elastic part and therefore the flow is incompressible. The viscoplastic constitutive
behavior at each material point x (in what follows, Cartesian and Fourier vectors are
indicated in boldface, second and fourth-rank tensors, either in components or not,
are not) is described by means of the following nonlinear, rate-sensitive equation:

P" .x/ D
NkX

kD1

mk .x/ P�k .x/ D P�o

NkX

kD1

mk .x/

ˇ̌
mk .x/ W � 0 .x/

ˇ̌

�ko .x/

!n
�sgn

�
mk .x/ W � 0 .x/

�
;

(1)

where the symbol “:” indicates double contraction of indices, and the sum runs over
all Nk slip and twinning systems. �k

o and mk.x/ D 1
2

�
nk
�
x
� ˝ bk.x/ C bk.x/ ˝

nk.x/
�

are the threshold resolved shear stress and the symmetric Schmid tensor as-
sociated with slip or twinning system .k/ (with nk and bk being the normal and
Burgers vector direction of such slip or twinning system), P" and � 0 are the devi-
atoric strain-rate and stress tensors, P�k is the local shear-rate on slip or twinning
system .k/; P�o is a normalization factor, and n is the rate-sensitivity exponent. Note
that although (1) can be used to deal with crystal deforming by slip and twinning,
in the examples that follows (in the context of both homogenization and full-field
approaches), we will only consider crystal deformation by slip. In this way, we
avoid the additional complication of having to deal with twinning reorientation.



Also note that the constitutive behavior described in (1) does not consider other
high temperature crystal deformation mechanisms, such as climb, grain-boundary
sliding, or recrystallization, and that elastic effects are neglected.

For later use, the plastic rotation-rate associated with a material point x contribut-
ing to the crystallographic lattice rotation is given by:

P!p
ij .x/ D

X

k

˛k
ij .x/ P�k .x/; (2)

where ˛s .x/ D 1
2
.ns .x/˝ bs .x/ � bs .x/˝ ns .x// is the antisymmetric Schmid

tensor.
Let us assume that the following linear relation [i.e., an approximation of the

actual nonlinear relation (1)] holds between the strain-rate and stress in the SR
grain .r/:

P" .x/ D M .r/ W � 0 .x/C P"o .r/; (3)

where M .r/ and P"o.r/ are, respectively, the viscoplastic compliance and the back-
extrapolated term of SR grain .r/. Depending on the linearization assumption,M .r/

and P"o.r/ can be chosen differently (some possible choices are discussed below).
Taking a volumetric average, we obtain:

P".r/ D M .r/ W � 0.r/ C P"o .r/; (4)

where P".r/ and � 0.r/ are average magnitudes in the volume of SR grain .r/. Let us
homogenize the behavior of a linear heterogeneous medium whose local behavior
is described in (3) assuming an analogous linear relation at the effective medium
(macroscopic) level:

PE D NM W †0 C PEo; (5)

where PE and †0 are the overall (macroscopic) deviatoric strain-rate and stress
tensors and NM and PEo are, respectively, the viscoplastic compliance and back-
extrapolated term of an a priori unknown homogeneous equivalent medium (HEM).
The usual procedure to obtain the homogenized response of a linear polycrystal
is the linear self-consistent method. The problem underlying the self-consistent
method is that of an inhomogeneous domain .r/ of moduli M .r/ and P"o.r/, em-
bedded in an infinite medium of moduli NM and PEo. Invoking the concept of the
equivalent inclusion (Mura 1987), the local constitutive behavior in domain .r/ can
be rewritten as:

P" .x/ D NM W � 0 .x/C PEo C P"� .x/ ; (6)

where P"� .x/ is an eigen-strain-rate field, which follows from replacing the inhomo-
geneity by an equivalent inclusion. Rearranging and subtracting (5) from (6) gives:

Q� 0 .x/ D NL W
� QP" .x/� P"� .x/

�
: (7)



The symbol “�” denotes local deviations from macroscopic values of the
corresponding magnitudes, and NL D NM�1. Combining (7) with the equilibrium
condition gives:

�ij;j .x/ D Q�ij;j .x/ D Q� 0
ij;j .x/C Q�m

;i .x/ ; (8)

where �ij and �m are the Cauchy stress tensor and the mean stress, respectively.
Using the relation QP"ij .x/ D 1

2

� Q�i;j .x/C Q�j;i .x/
�

between the strain-rate and
velocity-gradient deviations, and adding the incompressibility condition associated
with plastic deformation, we obtain:

ˇ̌
ˇ
ˇ
ˇ

NLijkl Q�k;lj .x/C Q�m
;i .x/C 'ij;j .x/ D 0

Q�k;k .x/ D 0
; (9)

where

'ij .x/ D � NLijkl P"�
kl .x/ (10)

is a heterogeneity or polarization field, and its divergence: fi .x/ D 'ij;j .x/ is a
fictitious volumetric force field. System (9) consists of four differential equations
with four unknowns: three are the components of velocity deviation vector Q�i .x/,
and one is the mean stress deviation Q�m .x/. A system of N linear differential equa-
tions with N unknown functions and a polarization term can be solved using the
Green function method. Let us call Gkm .x/ and Hm .x/ the Green functions asso-
ciated with Q�i .x/ and Q�m .x/, respectively, which solve the auxiliary problem of a
unitary volumetric force, with a single non-vanishingm-component:

ˇ
ˇ
ˇ
ˇ
ˇ

NLijkl Gkm;lj .x � x0/CHm;i .x � x0/C ıim ı .x � x0/ D 0;

Gkm;k .x � x0/ D 0:
(11)

Once the solution of (11) is obtained, the solution for the velocity field is given by
the convolution integral:

Q�k .x/ D
Z

R3
Gki

�
x � x0�fi

�
x0� dx0: (12)

System (11) can be solved using the Fourier transform method. Expressing the
Green functions in terms of their inverse Fourier transforms, the differential sys-
tem (11) can be transformed into an algebraic system:

ˇ̌
ˇ
ˇ
ˇ
˛j ˛l

NLijkl k
2 OGkm .Ÿ/C ˛i ik OHm .Ÿ/ D ıim;

˛k k
2 OGkm .Ÿ/ D 0;

(13)

where k and ’ are the modulus and the unit vector associated with a point of
Fourier space Ÿ D k’, respectively. CallingA0

ik .’/ D˛j ˛l
NLijkl, system (13) can be



expressed as a matrix product A � B D C, w h e r e A, B, a n d C are the

matrices given by:

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

k2 OG11 k2 OG12 k2 OG13

k2 OG21 k2 OG22 k2 OG23

k2 OG31 k2 OG32 k2 OG33

ik OH1 ik OH2 ik OH3

D B

A .’/ D
A0

11 A0
12 A0

13 ˛1

A0
21 A0

22 A0
23 ˛2

A0
31 A0

32 A0
33 ˛3

˛1 ˛2 ˛3 0

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

1 0 0

0 1 0

0 0 1

0 0 0

D C

: (14)

Using the explicit form of matrix C, we can write:

B D A�1 � C D

2

66
4

A�1
11 A�1

12 A�1
13

A�1
21 A�1

22 A�1
23

A�1
31 A�1

32 A�1
33

A�1
41 A�1

42 A�1
43

3

77
5 : (15)

Finally, comparing (14) and (15):

k2 OGij .Ÿ/ D A�1
ij .’/ .i; j D 1; 3/: (16)

Since the components of A are real functions of ’, so are those of k2 OGij .Ÿ/. This
property leads to real integrals in the derivation that follows.

Knowing the Green tensor expression in Fourier space, we can write the solu-
tion of our eigen-strain-rate problem using the convolution integral. Taking partial
derivatives to (12), we obtain:

Q�k;l .x/ D
Z

R3
Gki;l

�
x � x0�fi

�
x0� dx0: (17)

Replacing the expression of the fictitious volumetric force field in (17), recalling
that @Gij .x � x0/ =@x D �@Gij .x � x0/ =@x0, integrating by parts, and using the di-
vergence theorem (Mura 1987), we obtain:

Q�k;l .x/ D
Z

R3
Gki;jl

�
x � x0�'ij

�
x0� dx0: (18)

The integral equation (18) provides an exact implicit solution to the problem.
Furthermore, it is known from Eshelby’s elastic inclusion formalism that if the
eigen-strain is uniform over an ellipsoidal domain where the stiffness tensor is uni-
form, then the stress and the strain are constant over the domain of the inclusion
.r/. The latter suggests to use an a priori unknown constant polarization within the



volume � of the ellipsoidal inclusion. This allows us to average the local field (18)
over the domain� and obtain an average strain-rate inside the inclusion of the form:

Q�.r/

k;l
D
�

� 1

�

Z

�

Z

�

Gki;jl

�
x � x0� dx dx0

�
NLijmn P"�.r/

mn ; (19)

where Q�.r/

k;l
and P"�.r/

mn have to be interpreted as average quantities inside the inclusion.
Expressing the Green tensor in terms of the inverse Fourier transform and taking
derivatives, we obtain:

Q�.r/

k;l
D
�

1

8�3�

Z

�

Z

�

Z

R3

˛j˛l

�
k2 OGki .Ÿ/

�
exp

��iŸ�x � x0�	 dŸdxdx0
�

NLijmn P"�.r/
mn

D Tklij NLijmn P"�.r/
mn : (20)

Writing dŸ in spherical coordinates: dŸ D k2 sin � dk d� d' and using relation
(16), the Green interaction tensor Tklij can be expressed as:

Tklij D 1

8�3�

Z 2�

0

Z �

0

˛j ˛l A
�1
ki .’/ƒ .’/ sin � d� d'; (21)

where

ƒ.’/ D
Z 1

0

�Z

�

Z

�

exp
��iŸ �x � x0�	dx dx0

�
k2dk: (22)

Integrating (22) inside an ellipsoidal grain of radii .a; b; c/ (Berveiller et al. 1987)
and replacing in (21) gives:

Tklij D abc

4�

Z 2�

0

Z �

0

˛j ˛l A
�1
ki
.’/

Œ	 .’/
3
sin � d� d'; (23)

where 	 .’/ D �
.a˛1/

2 C .b˛2/
2 C .c˛3/

2
	1=2

. The symmetric and antisymmetric
Eshelby tensors (functions of NL and the shape of the ellipsoidal inclusion, represent-
ing the morphology of the SR grains) are defined as:

Sijkl D 1

4

�
Tijmn C Tjimn C Tijnm C Tjinm

� NLmnkl; (24)

…ijkl D 1

4

�
Tijmn � Tjimn C Tijnm � Tjinm

� NLmnkl: (25)

Taking symmetric and antisymmetric components to (20) and using (24) and (25),
we obtain the average strain-rate and rotation-rate deviations of the ellipsoidal do-
main:

QP".r/ D S W P"�.r/; (26)

QP!.r/ D … W P"�.r/ D … W S�1 W QP".r/; (27)



where QP".r/ D PE � P".r/ and QP!.r/ D P�� P!.r/ are deviations of the average strain-rate
and rotation-rate inside the inclusion, with respect to the corresponding overall
magnitudes, and P"�.r/ is the average eigen-strain-rate in the inclusion.

2.1.2 Interaction and Localization Equations

Taking volume averages over the domain of the inclusion on both sides of (7) gives:

Q� 0.r/ D NL W
�QP".r/ � P"�.r/

�
: (28)

Replacing the eigen-strain-rate given by (26) into (28), we obtain the interaction
equation:

QP".r/ D � QM W Q� 0.r/; (29)

where the interaction tensor is given by:

QM D .I � S/�1 W S W NM: (30)

Replacing the constitutive relations of the inclusion and the effective medium in
the interaction equation and after some manipulation, one can write the following
localization equation:

� 0.r/ D B.r/ W †0 C b.r/; (31)

where the localization tensors are defined as:

B.r/ D
�
M .r/ C QM

��1 W � NM C QM �
; (32)

b.r/ D
�
M .r/ C QM

��1 W
� PEo � P"o.r/

�
: (33)

2.1.3 Self-Consistent Equations

The derivation presented in the previous sections solves the problem of an equivalent
inclusion embedded in an effective medium. In this section, we use the previous
result to construct a polycrystal model, consisting in regarding each SR grain .r/ as
an inclusion embedded in an effective medium that represents the polycrystal. The
properties of such medium are not known a priori but have to be found through an
iterative procedure. Replacing the stress localization equation (31) in the average
local constitutive equation (4), we obtain:

".r/ D M .r/ W B.r/ W †CM .r/ W b.r/ C "o.r/: (34)



Taking volumetric average to (34), enforcing the condition that the average of the
strain-rates over the aggregate has to coincide with the macroscopic quantities, i.e.:

PE D
D
P".r/
E
; (35)

where the brackets “h i” denote average over the SR grains, weighted by the as-
sociated volume fraction, and using the macroscopic constitutive relation (5), we
obtain the following self-consistent equations for the HEM’s compliance and back-
extrapolated term:

NM D
D
M .r/ W B.r/

E
; (36a)

PEo D
D
M .r/ W b.r/ C P"o.r/

E
: (36b)

These self-consistent equations are derived imposing the average of the local strain-
rates to coincide with the applied macroscopic strain-rate (35). If all the SR grains
are represented by ellipsoids that have the same shape and orientation, it can be
shown that the same equations are obtained from the condition that the average
of the local stresses coincides with the macroscopic stress. If the SR grains have
different morphologies, they have associated different Eshelby tensors, and the in-
teraction tensors cannot be factored from the averages. In such case, the following
generalized self-consistent expressions should be used (Walpole 1969):

NM D
D
M .r/ W B.r/

E
W
D
B.r/

E�1

; (37a)

PEo D
D
M .r/ W b.r/ C P"o.r/

E
�
D
M .r/ W B.r/

E
W
D
B.r/

E�1 W
D
b.r/

E

:
(37b)

2.1.4 Linearization Assumptions

As stated earlier, different choices are possible for the linearized behavior at grain
level, and the results of the homogenization scheme depend on this choice. In what
follows, we present several first-order linearization schemes, defined in terms of the
stress first-order moment (average) inside SR grain .r/.

The secant approximation (Hill 1965; Hutchinson 1976) consists in assuming the
following linearized moduli:

M .r/
sec D P�o

X

k

mk .r/ ˝mk .r/

�
k .r/
o

mk .r/ W � 0.r/

�
k .r/
o

!n�1

; (38)

P"o.r/
sec D 0; (39)



where the index .r/ in mk.r/ and �k.r/
o indicates uniform (average) values of these

magnitudes, corresponding to a given orientation and hardening state associated
with SR grain .r/.

Under the affine approximation (Ponte Castañeda 1996; Masson et al. 2000), the
moduli are given by:

M
.r/
aff D n P�o

X

k

mk.r/ ˝mk.r/

�
k.r/
o

mk.r/ W � 0.r/

�
k.r/
o

!n�1

; (40)

P"o.r/
aff D .1 � n/ P�o

X

k

mk.r/ W � 0.r/

�
k.r/
o

!n

� sgn
�
mk.r/ W � 0.r/

�
: (41)

In the case of the tangent approximation (Molinari et al. 1987; Lebensohn and Tomé
1993), the moduli are, formally, the same as in the affine case: M .r/

tg D M
.r/
aff and

P"o.r/
tg D P"o.r/

aff . However, instead of using these moduli, and to avoid the iterative ad-
justment of the macroscopic back-extrapolated term, Molinari et al. (1987) used the
secant SC compliance (38) to adjust NM (to be denoted NMsec), in combination with
the tangent–secant relation: NMtg D n NMsec (Hutchinson 1976). Then, the expression
of the interaction tensor is given by:

QM D .I � S/�1 W S W NMtg D n .I � S/�1 W S W NMsec: (42)

Qualitatively, the interaction equation (29) indicates that the larger the interaction
tensor, the smaller the deviation of grain stresses with respect to the average stress
should be. As a consequence, for n ! 1, the tangent approximation tends to a uni-
form stress state [Sachs (1928) or lower-bound approximation]. This rate-insensitive
limit of the tangent formulation is an artifact created using the above tangent–secant
relation of the nonlinear polycrystal in the self-consistent solution of the linear com-
parison polycrystal. On the other hand, the secant interaction has been proven to tend
to a uniform strain-rate state [Taylor (1938) or upper-bound approximation] in the
rate-insensitive limit.

2.1.5 Second-Order Formulation

The more sophisticated second-order approximation to linearize the behavior of
the mechanical phases is based on the calculation of average fluctuations of the
stress distribution inside the linearized SR grains. The methodology to obtain these
fluctuations were derived by Bobeth and Diener (1987), Kreher (1990), and Parton
and Buryachenko (1990), and reads as follows. The effective stress potential NUT of
a linearly viscous polycrystal described by (5) may be written in the form (Laws
1973; Willis 1981):

NUT D 1

2
NM WW �†0 ˝†0�C PEo W †0 C 1

2
NG; (43)



where NG is the power under zero applied stress. Let us rewrite the self-consistent
expression for NM and PEo (36) as:

NM D
D
M .r/ W B.r/

E
D
X

r

c.r/M .r/ W B.r/; (44)

PEo D
D
M .r/ W b.r/ C P"o.r/

E
D
X

r

c.r/
�
M .r/ W b.r/ C P"o.r/

�
D
X

r

c.r/ P"o.r/ WB.r/;

(45)

where c.r/ is the volume fraction associated with SR grain .r/. The corresponding
expression for NG is:

NG D
X

r

c.r/ P"o .r/ W b.r/: (46)

The average second-order moment of the stress field over a SR grain .r/ of this
polycrystal is a fourth-rank tensor given by:

˝
� 0 ˝ � 0˛.r/ D 2

c.r/

@ NUT

@M .r/
: (47)

Replacing (44–46) in (47), we obtain:

˝
� 0 ˝ � 0˛.r/ D 1

c.r/

@ NM
@M .r/

WW �†0 ˝†0�C 1

c.r/

@ PEo

@M .r/
W †0 C 1

c.r/

@ NG
@M .r/

: (48)

Using matrix notation for symmetric deviatoric tensors (Lequeu et al. 1987), the
first derivative in the right term can be obtained solving the following equation:

�ijkl
@ NMkl

@M
.r/
u�

D �
.r;u�/
ij ; (49)

where i,j,k,l and u; � D 1; 5. The expressions for �ijkl and �.r;u�/
ij are given in the

Appendix. Expression (49) is a linear system of 25 equations with 25 unknowns
(i.e., the components of @ NMkl=@M

.r/
u� ). In turn, the other two derivatives appearing

in (48) can be calculated as:

@Eo
i

@M
.r/
u�

D �ikl

@ NMkl

@M
.r/
u�

C �
.r;u�/
i ; (50)

@ NG
@M

.r/
u�

D 'ij
@ NMij

@M
.r/
u�

C #i

@Eo
i

@M
.r/
u�

C 
.r;u�/; (51)

where �ikl, 'ij, #i , �
.r;u�/
i and 
.r;u�/ are given in Appendix.



Once the average second moments of the stress are obtained, the corresponding
second moments of the strain-rate can be calculated as:

hP"˝ P"i.r/ D
�
M .r/ ˝M .r/

�
WW ˝� 0 ˝ � 0˛.r/CP".r/˝P"o.r/CP"o.r/˝P".r/�P"o.r/˝P"o.r/:

(52)
The average second moments can be used, for instance, to generate the average
second moment of the equivalent stress and strain-rate in mechanical phase .r/ as:

NN� .r/
eq D

�
3

2
I WW ˝� 0 ˝ � 0˛.r/

�1=2

; (53)

NNP".r/
eq D

�
2

3
I WW h P"˝ P"i.r/

�1=2

; (54)

where I is the fourth-order identity tensor. The standard deviations of the equivalent
magnitudes over the whole polycrystal are defined as:

SD
�
�eq
� D

q NN†2
eq �†2

eq; (55)

SD
� P"eq

� D
r

NNPE2
eq � PE2

eq; (56)

where

NN†2
eq D


�
NN� .r/

eq

�2
�

D
X

r

c.r/
�

NN� .r/
eq

�2

; (57)

NNPE2
eq D


�NNP".r/
eq

�2
�

D
X

r

c.r/
�NNP".r/

eq

�2

: (58)

Once the average second-order moments of the stress field over each SR grain .r/
are obtained, the implementation of the second-order procedure follows the work of
Liu and Ponte Castañeda (2004). The covariance tensor of stress fluctuations in the
SR grains of the linear comparison polycrystal is given by:

C
.r/
� 0

D ˝
� 0 ˝ � 0˛.r/ � � 0.r/ ˝ � 0.r/: (59)

The average and the average fluctuation of resolved shear stress on slip system .k/

of SR grain .r/ are given by:

N�k.r/ D mk.r/ W � 0.r/; (60)

O�k.r/ D N�k.r/ ˙
�
mk.r/ W C .r/

� 0
W mk.r/

�1=2

; (61)



where the positive (negative) branch should be selected if N�k.r/ is positive (negative).
The slip potential associated with slip system .k/ of the nonlinear polycrystal is
defined as:

�k .�/ D �k
o

nC 1

� j� j
�k

o

�nC1

: (62)

Two scalar magnitudes associated with each slip system .k/ of each SR grain .r/
are defined by:

˛k.r/ D �0k.r/
� O�k.r/

� � �0k.r/
� N�k.r/

�

O�k.r/ � N�k.r/
; (63)

ek.r/ D �0k.r/
�

N�k.r/
�

� ˛k.r/ N�k.r/; (64)

where �0k .�/ D d�k=d� .�/. The linearized local behavior associated with SR
grain .r/ is then given by:

P".r/ D M
.r/
SO W � 0.r/ C P"o .r/

SO (65)

with

M
.r/
SO D

X

k

˛k.r/
�
mk.r/ ˝mk.r/

�
; (66)

P"o .r/
SO D

X

k

ek.r/mk.r/: (67)

Once the linear comparison polycrystal is defined by (66–67), different second-
order estimates of the effective behavior of the nonlinear aggregate can be obtained.
Approximating the potential of the nonlinear polycrystal in terms of the potential
of the linear comparison polycrystal and a suitable measure of the error, Liu and
Ponte Castañeda (2004) generated the following expression (corresponding to the
so-called energy version of the second-order theory) for the effective potential of
the nonlinear polycrystal:

NU �†0� D
X

r

c.r/
X

k

n
�k.r/

�
O�k.r/

�
C �0k.r/

�
N�k.r/

� �
N�k.r/ � O�k.r/

�o
(68)

from where the effective response of the homogenized polycrystal can be ob-
tained as PE D @ NU .†0/

ı
@†0. The alternate constitutive equation version of the

second-order theory simply consists in making use of the effective stress–strain–
rate relations for the linear comparison polycrystal, in which case, e.g., the effective
strain is obtained as:

PE D
X

r

c.r/
X

k

mk.r/�0k.r/
�

N�k.r/
�
: (69)



Both versions of the SO theory give slightly different results, depending on
nonlinearity and local anisotropic contrast. Such gap is relatively small compared
with the larger differences obtained with the different SC approaches. The “consti-
tutive equation” version is in principle less rigorous since it does not derive from a
potential function, but has the advantage that can be obtained by simply following
the affine algorithm described in the previous sections, using the linearized moduli
defined in (66–67). Therefore, it is the adequate choice to be implemented in the
VPSC code.

2.1.6 Numerical Implementation

To illustrate the use of the self-consistent formulation, we describe here the steps re-
quired to predict the local and overall viscoplastic response of a polycrystal. Starting
for convenience with an initial Taylor guess, i.e., P".r/ D PE for all grains, we solve
the following nonlinear equation to get � 0.r/:

PE D P�o

X

k

mk.r/ mk.r/ W � 0.r/

�
k.r/
o

!n

� sgn
�
mk.r/ W � 0.r/

�
; (70)

and we use an appropriate first-order linearization scheme to obtain initial values
of M .r/ and P"o.r/, for each SR grain .r/. Next, initial guesses for the macroscopic
moduli NM and PEo are obtained (usually as simple averages of the local moduli).
With them and the applied strain-rate, the initial guess for the macroscopic stress
†0 can be obtained (5), while the Eshelby tensors S and … can be calculated using
the macroscopic moduli and the ellipsoidal shape of the SR grains, by means of
the procedure described in Sect. 2.1.1. Subsequently, the interaction tensor QM (30),
and the localization tensors B.r/ and b.r/ (32 and 33), can be calculated as well.
With these tensors, new estimates of NM and PEo are obtained by solving iteratively
the self-consistent equations (36) (for a unique grain shape) or (37) (for a distri-
bution of grain shapes). After achieving convergence on the macroscopic moduli
(and, consequently, also on the macroscopic stress and the interaction and localiza-
tion tensors), a new estimation of the average grain stresses can be obtained, using
the localization relation (31). If the recalculated average grain stresses are different
(within certain tolerance) from the input values, a new iteration should be started,
until convergence is reached. If the chosen linearization scheme is the second-order
formulation, an additional loop on the linearized moduli is needed, using the im-
proved estimates of the second-order moments of the stress in the grains, obtained
by means of the methodology described in Sect. 2.1.5 and the Appendix. This ad-
ditional loop roughly increases the calculation time by one order of magnitude with
respect to first-order linearizations. When the iterative procedure is completed, the
average shear-rates on the slip system .k/ in each grain .r/ are calculated as:

P�k.r/ D P�o
mk.r/ W � 0.r/

�
k.r/
o

!n

� sgn
�
mk.r/ W � 0.r/

�
: (71)



These average shear-rates are in turn used to calculate the lattice rotation-rates as-
sociated with each SR grain:

P!.r/
ij D P�ij C QP!.r/

ij � P!p.r/
ij ; (72)

with [c.f. (2)]:

P!p.r/
ij D

X

k

˛
k.r/
ij P�k.r/; (73)

where ˛k.r/
ij is the uniform antisymmetric Schmid tensor of system .k/ in SR

grain .r/.
It is worth noting that in the case of first-order approximations, although the

second-order moments are not needed to readjust iteratively the linearized behavior
of the SR grains, the average field fluctuations associated with the converged values
of the effective moduli can be obtained as well, after convergence is reached.

The above numerical scheme can be used to predict texture development, by ap-
plying viscoplastic deformation to the polycrystal in incremental steps. The latter is
done by assuming constant rates during a time interval �t (such that PE �t corre-
sponds to a macroscopic strain increment of the order of a few percents) and using:
(1) the strain-rates and rotation-rates (times�t) to update the shape and orientation
of the SR grains, and (2) the shear-rates (times �t) to update the critical stress of
the deformation systems due to strain hardening, after each deformation increment.
Using extended Voce law (Tomé et al. 1984), the evolution of the threshold stress
with accumulated shear strain in each grain is given by:

��k.r/ D �k
oo C

�
�k

1 C �k
1 �

.r/
� �
1 � exp

�
��.r/

ˇ
ˇ
ˇ�k

o =�
k
1

ˇ
ˇ
ˇ
��
; (74)

where �.r/ is the total accumulated shear in the grain; �k
oo; �

k
1 ; �

k
o , and �k

1 are the
initial threshold stress, initial hardening rate, asymptotic hardening rate, and back-
extrapolated threshold stress, respectively. In addition, we allow for the possibility
of “self” and “latent” hardening by defining coupling coefficients hkk0

, which em-
pirically account for the obstacles that new dislocations (or twins) associated with
system k0 represent for the propagation of dislocations (or twins) on system k. The
increase in the threshold stress is calculated as:

��k.r/
o D d��k.r/

d�.r/

X

k0

hkk0 P�k0.r/�t: (75)

Note that the above explicit update schemes rely on the fact that the orientation and
hardening variables evolve slowly within the adopted time interval. Otherwise, �t
should be chosen smaller.



2.2 FFT-Based Formalism

The FFT-based full-field formulation for viscoplastic polycrystals is conceived for
periodic unit cells, provides an “exact” solution (within the limitations imposed by
the unavoidable discretization of the problem and the iterative character of the nu-
merical algorithm, see below) of the governing equations, and has better numerical
performance than a finite element calculation for the same purpose and resolution
(at least when comparing sequential implementations of both methods). It was orig-
inally developed (Moulinec and Suquet 1994, 1998; Michel et al. 2000) as a fast
algorithm to compute the elastic and elastoplastic effective and local response of
composites, and later adapted (Lebensohn 2001; Lebensohn et al. 2004b, 2008)
to deal with the viscoplastic deformation of three-dimensional (3D) power–law
polycrystals. It shares some common characteristics with the phase field method,
although it is limited to what in phase field jargon is known as long-range interac-
tions (Chen 2004), since no heterogeneous chemical energy term is involved in the
mechanical response and/or microstructure evolution of a single-phase polycrystal.
Recently, a similar kind of phase field analysis was proposed (Wang et al. 2002) to
obtain the local fields in elastically heterogeneous polycrystals. The FFT-based ap-
proach, however, is not restricted to linear behaviors. Problems involving nonlinear
materials (e.g., viscoplastic polycrystals) are treated similarly to a linear problem,
using the concept of linear reference material.

Briefly, the viscoplastic FFT-based formulation consists in iteratively adjusting a
compatible strain-rate field, related to an equilibrated stress field through a consti-
tutive potential, such that the average of local work-rates is minimized. The method
is based on the fact that the local mechanical response of a heterogeneous medium
can be calculated as a convolution integral between Green functions associated with
appropriate fields of a linear reference homogeneous medium and the actual het-
erogeneity field. For periodic media, use can be made of the Fourier transform to
reduce convolution integrals in real space to simple products in Fourier space. Thus,
the FFT algorithm can be used to transform the heterogeneity field into Fourier
space and, in turn, to get the mechanical fields by transforming that product back
to real space. However, the actual heterogeneity field depends precisely on the a
priori unknown mechanical fields. Therefore, an iterative scheme has to be imple-
mented to obtain, upon convergence, a compatible strain-rate field and a stress field
in equilibrium.

2.2.1 Periodic Unit Cell: Green Function Method

A periodic unit cell representing the polycrystal is discretized into N1 � N2 � N3

Fourier points. This discretization determines a regular grid in the Cartesian space˚
xd
�

and a corresponding grid in Fourier space
˚
Ÿd�. Velocities and tractions along

the boundary of the unit cell are left undetermined. A velocity-gradient Vi;j (which
can be decomposed into a symmetric strain-rate and a antisymmetric rotation-rate:
Vi;j D PEij C P�ij) is imposed to the unit cell. The local strain-rate field is a function



of the local velocity field, i.e., P"ij .�k .x//, and can be split into its average and a
fluctuation term: P"ij .�k .x// D PEij C QP"ij . Q�k .x//, where �i .x/ D PEijxj C Q�i .x/.
By imposing periodic boundary conditions, the velocity fluctuation field Q�k .x/ is
assumed to be periodic across the boundary of the unit cell, while the traction field
is antiperiodic, to meet equilibrium on the boundary between contiguous unit cells.

The local constitutive relation between the strain-rate P"ij .x/ and the deviatoric
stress � 0

ij .x/ is given by the same rate–sensitivity relation used within the VPSC
framework (1). Let us choose a fourth-order tensor Lo to be the stiffness of a linear
reference medium (the choice of Lo can be quite arbitrary, but the speed of conver-
gence of the method will depend on this choice) and define the polarization field
'ij.x/ [c.f. (10)] as:

'ij.x/ D Q� 0
ij .x/� Lo

ijkl
QP"kl.x/: (76)

Then, the Cauchy stress deviation can be written as:

Q�ij .x/ D Lo
ijkl

QP"kl.x/C 'ij.x/C Q�m .x/ ıij: (77)

Combining (77) with the equilibrium .�ij;j .x/ D Q�ij;j .x/ D 0/, the incompressibil-
ity condition, and the relation QP"ij .x/ D 1

2

� Q�i;j .x/C Q�j;i .x/
�
:

ˇ
ˇ̌
ˇ
ˇ
Lo

ijkl Q�k;lj .x/C Q�m
;i .x/C 'ij;j .x/ D 0;

Q�k;k .x/ D 0:
(78)

This system of differential equations is formally equivalent to system (9). However,
both systems actually differ in that: (1) the HEM’s stiffness modulus NL of (9) is
replaced in (78) by the stiffness of a linear reference medium Lo, and (2) the polar-
ization field in (78) has in general nonvanishing values throughout the unit cell and
is periodic (owing to the unit cell’s periodicity), while the polarization field in (9)
vanishes outside the domain of the inclusion. The auxiliary system involving Green
functions is then given by [c.f. (13)]:

ˇ
ˇ
ˇ
ˇ̌
Lo

ijkl Gkm;lj .x � x0/CHm;i .x � x0/C ıim ı .x � x0/ D 0;

Gkm;k .x � x0/ D 0:
(79)

After some manipulation, the convolution integrals that give the velocity and
velocity-gradient deviation fields are:

Q�k .x/ D
Z

R3

Gki;j

�
x � x0� 'ij

�
x0� dx0; (80)

Q�i;j .x/ D
Z

R3

Gik;jl

�
x � x0� 'kl

�
x0� dx0: (81)



Convolution integrals in direct space are simply products in Fourier space:

OQ�k .Ÿ/ D ��i�j

� OGki .Ÿ/ O'ij .Ÿ/ ; (82)

OQ�i;j .Ÿ/ D O�ijkl .Ÿ/ O'kl .Ÿ/ ; (83)

where the symbol “ˆ” indicates a Fourier transform. The Green operator in (83) is
defined as �ijkl D Gik;jl. The tensors OGij .Ÿ/ and O�ijkl .Ÿ/ can be calculated by taking
Fourier transform to system (79):

ˇ̌
ˇ
ˇ
ˇ
�l�j L

o
ijkl

OGkm .Ÿ/C i�i
OHm .Ÿ/ D ıim

�k
OGkm .Ÿ/ D 0

: (84)

Defining the 3 � 3 matrix A0
ik .Ÿ/ D �l�jL

o
ijkl, and the 4 � 4 matrix A .Ÿ/:

A .Ÿ/ D

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

A0
11 A0

12 A0
13 �1

A0
21 A0

22 A0
23 �2

A0
31 A0

32 A0
33 �3

�1 �2 �3 0

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

; (85)

we obtain from (84) [c.f. (14 and 15)]:

OGij .Ÿ/ D A�1
ij .i; j D 1; 3/ (86)

and
O�ijkl .Ÿ/ D ��j �l

OGik .Ÿ/ (87)

2.2.2 FFT-Based Algorithm

Assigning initial guess values to the strain-rate field in the regular grid
˚
xd
�

(e.g., QP"o
ij

�
xd
� D 0 ) P"o

ij

�
xd
� D PEij), and computing the corresponding stress field

� 0o
ij

�
xd
�

from the local constitutive relation (1) (which requires to know the initial
values of the critical stresses �s

o

�
xd
�
, and the Schmid tensorsms

ij

�
xd
�
, e.g., from an

orientation image, in which the image’s pixels coincide with the Fourier grid), allow
us to obtain an initial guess for the polarization field in direct space 'o

ij

�
xd
�

(76),
which in turn can be Fourier-transformed to obtain O'o

ij

�
Ÿd
�
. Furthermore, assuming

that �o
ij

�
xd
� D �o

ij

�
xd
�

is the initial guess for a field of Lagrange multipliers associ-
ated with the compatibility constraints, the iterative procedure based on Augmented
Lagrangians proposed by Michel et al. (2000) reads as follows. With the polariza-
tion field after iteration n being known, the n C 1-th iteration starts by computing
the new guess for the kinematically admissible strain-rate deviation field:

OQdnC1
ij

�
Ÿd� D � O� sym

ijkl

�
Ÿd� O'n

kl

�
Ÿd� ; 8Ÿd ¤ 0I and OQdnC1

ij .0/ D 0; (88)



where O� sym
ijkl is the Green operator, appropriately symmetrized. The corresponding

field in real space is thus obtained by application of the inverse FFT, i.e.,

QdnC1
ij

�
xd� D fft�1

n OQdnC1
ij

�
Ÿd�
o
; (89)

and the new guess for the deviatoric stress field is calculated from (omitting
subindices):

� 0nC1
�
xd�C Lo W P�o

X

k

mk
�
xd� m

k
�
xd
� W � 0nC1

�
xd
�

�k.xd/

!n

� sgn
�
mk
�
xd� W � 0nC1

�
xd�
�

D �n
�
xd�C Lo W

� PE C QdnC1
�
xd�
�
: (90)

The iteration is completed with the calculation of the new guess of the Lagrange
multiplier field:

�nC1
�
xd� D �n

�
xd�C Lo W

� QP"nC1
�
xd� � QdnC1

�
xd�
�
: (91)

Equations (90 and 91) guarantee the convergence of: P" �xd
�

(i.e., the strain-rate field
related with the stress through the constitutive equation) toward d

�
xd
�

(i.e., the
kinematically admissible strain-rate field) to fulfill compatibility, and the Lagrange
multiplier field �

�
xd
�

toward the stress field � 0 �xd
�

to fulfill equilibrium.
Upon convergence, the microstructure can be updated using an explicit scheme,

as follows. The resulting strain-rate field, and the shear-rate field, i.e.

P�k
�
xd� D P�o

mk
�
xd
� W � 0 �xd

�

�k .xd/

!n

� sgn
�
mk

�
xd� W � 0 �xd�

�
(92)

can be assumed to be constant during a time interval Œt; t C�t
. The macroscopic
and local strain increments are then calculated as:�Eij D PEij � �t and�"ij

�
xd
� D

P"ij
�
xd
� � �t , and the local crystallographic orientations are updated according to

the following local lattice rotation:

!ij
�
xd� D

� P�ij
�
xd�C QP!ij

�
xd� � P!p

ij

�
xd�
�

��t; (93)

where P!p
ij

�
xd
�

can be obtained from (2) and (92), and QP! �xd
�

is obtained back-
transforming the converged antisymmetric field:

OQP!ij
�
Ÿd� D � O�antisym

ijkl

�
Ÿd� O'kl

�
Ÿd� ; 8�d ¤ 0I and OQP!ij .0/ D 0: (94)

The critical resolved shear stresses of the deformation systems associated with each
material point should also be updated after each deformation increment due to strain



hardening, e.g., in an analogous way as explained in Sect. 2.1.6 for the VPSC case
(in terms a phenomenological Voce law) or with more sophisticated hardening laws
based directly on dislocation densities. Note that, in the latter case, the possibility of
calculating the intragranular misorientations would allow us to track the evolution
of geometrically necessary dislocations (GND) densities explicitly, and, at the same
time, introduce a length scale in the formulation (see, e.g., Acharya et al. 2003).
This more elaborated treatment of hardening, however, is not going to be discussed
further in this work.

After each time increment, the new position of the Fourier points can be deter-
mined calculating the velocity fluctuation term Q�k

�
xd
�

back-transforming (82), and:

Xi

�
xd� D xd

i C
� PEijx

d
j C Q�i

�
xd�
�

��t: (95)

Evidently, due to the heterogeneity of the medium, the set of convected Fourier
points no longer forms a regular grid, after the very first deformation increment.
A rigorous way of dealing with this situation was proposed by Lahellec et al. (2001)
based on the particle-in-cell (PIC) method (Sulsky et al. 1995). In the example pre-
sented in Sects. 3 and 4 below, however, the following simplification was adopted.
Neglecting the velocity fluctuation term in (95), the updated coordinates of the
Fourier points can be approximated by:

Xi

�
xd� QDxd

i C PEijx
d
j ��t: (96)

In this way, the Fourier grid remains regular after each deformation increment. The
distances between adjacent Fourier points, however, do change, following the vari-
ations of the unit cell dimensions, thus determining an “average stretching” of the
grains, following the macroscopic deformation.

3 Results

3.1 Validation of the Full-Field Formulation Using
an Analytical Result

Let us consider a model polycrystal consisting of columnar orthorhombic grains
with symmetry axes aligned with the x3 axis, such that, when loaded in antiplane
mode with shearing direction along x3, the only two slip systems that can be acti-
vated in the grains are those defined by the following Schmid tensors:

ms D .e1 ˝ e3 C e3 ˝ e1/

2
; mh D .e2 ˝ e3 C e3 ˝ e2/

2
; (97)

where fe1; e2; e3g is an orthonormal basis of crystallographic axes, and “s” and
“h” stand for soft and hard slip systems, respectively. If we further consider that



e3 lies parallel to x3, and the material is incompressible, the problem becomes
two-dimensional (2D). The local stress and strain-rate are characterized by the 2D
vectors with components �13 and �23, and P"13 and P"23 (denoted hereafter �1 and
�2, and P"1 and P"2, respectively), and the viscous stiffness tensor L D 2�, by a
2D symmetric second-order tensor with diagonal components 2�1313 and 2�2323,
and off-diagonal components 2�1323 (denoted 2�11, 2�22, and 2�12, respectively).
In addition, let us assume that the constituent grains exhibit a linear response:

P" .x/ D L�1 W � .x/ D
�
1

� s
o
ms ˝ms C 1

�h
o
mh ˝mh

�
W � .x/ ; (98)

with � s
o and �h

o being the viscosities of the soft and hard slip systems
�
� s

o < �
h
o

�
. It can

be shown that the behavior of such polycrystal is characterized by an effective 2D
viscous stiffness tensor NL D 2 N� such that PE D NL�1 W † (where † and PE are the
2D effective stress and strain-rate, respectively), such that (Dykhne 1970; Lurie and
Cherkaev 1984):

det . N�/ D N�11 � N�22 � N�2
12 D � s

o � �h
o : (99)

In the particular case of an isotropic 2D polycrystal, N�11 D N�22 .D N�/ and N�12 D 0,
so that the effective shear modulus becomes:

N� D
q
� s

o � �h
o : (100)

Note that the above result is independent of the 2D microstructure as far as it re-
mains isotropic. This analytical result can be used for validating the FFT-based
formulation. Let us consider the periodic 2D two-phase composite shown in Fig. 1a
(Lebensohn et al. 2005), whose unit cell consists of four square grains, with the crys-
tallographic orientations of the two pairs of opposite grains (i.e., each pair shearing
only the central vertex) being characterized by angles C45ı and �45ı, respectively
(note that the orientation of each 2D crystal is fully characterized by the angle
between the crystal direction e1 and the sample direction x1). The antiplane de-
formation of this unit cell for an applied strain-rate of the form PE D � PE13; 0

�
was

solved numerically using different discretizations: 64, 128, 256, and 512 Fourier
points along each direction (i.e., 1,024, 4,096, 16,384, 65,536 Fourier points per
grain), for a contrast of �h

o

ı
� s

o D 25, which gives theoretical polycrystal viscosity
of N�ı� s

o D 5. Figure 2 shows the relative deviations of the polycrystal viscosities
calculated with the FFT-based model from the theoretical value, as the number of
iterations of the FFT-based method increases. It is seen that: (1) the convergence
of N�FFT toward its theoretical value is rather good, although it saturates at different
levels, depending on the number of discretization points used; (2) the precision of
the FFT solution can be increased by refining appropriately the Fourier grid. This is
due to the fact that a more refined grid provides a higher spatial resolution to repre-
sent the strong gradients and jumps of the local fields, localized at grain boundaries
(see discussion of Fig. 1c–f below).



c /E13
ε23(x)ε13(x)

45°

45°

σ13(x)/∑13
/∑13σ23(x)

x1x3

x2

e2
e2

e2 e2

e1

e1

e1

e1

configuration 

.
/E23

.

soft system relative activity 

d 

e f 

a b

-45°

-45°
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On the other hand, since one of our goals is to understand the influence of the
microstructure on the distribution of the stress and strain-rate fields, it is important to
assess the precision of the FFT-based results also at the local scale. In this context, a
great advantage of microstructures with only two phases is that the phase averages of
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the localization tensors A .x/ and B .x/, defined by the expressions P" .x/ D A .x/ W
PE and � .x/ D B .x/ W † can be easily calculated analytically as (Lebensohn et al.

2005):

hAi1 D 1

c1

.L1 � L2/
�1 W � NL� L2

�
; (101a)

hBi1 D 1

c1

.M1 �M2/
�1 W � NM �M2

�
; (101b)

where ci and h�ii denote volume fraction and average over phase i D 1; 2, respec-
tively, and the local and effective compliance tensors are given by Mi D L�1

i and
NM D NL�1, respectively (similar relations can be obtained for hAi2 and hBi2 by in-

terchanging indices 1 and 2. For isotropic microstructures with linear behavior as the
one considered here, since NL is microstructure-independent, the above expressions
are also microstructure-independent. Using (100), the phase-average localization
tensors for the considered microstructure are given by:

hAi1 D hBi2 D
�
1 C˛

C˛ 1

�
; hAi2 D hBi1 D

�
1 �˛

�˛ 1

�
; (102)

where the indices 1 and 2 were used for phases at angles C45ı and �45ı, respec-
tively, and:

˛ D 1 � 2
�
1C

q
�h

o

ı
� s

o

� : (103)

The above analytical expressions can be used to evaluate the accuracy reached with
the FFT-based simulations at phase-average level. Table 1 shows the values of ˛
obtained for different grid refinements (Lebensohn et al. 2005). The agreement



Table 1 Value of parameter
˛ (103) predicted for different
grid refinements and relative
error with respect to the
theoretical value .˛ D 2=3/

Grid ˛ Relative error

64� 64 0.666021 9:69 � 10�4

128� 128 0.666340 4:90� 10�4

256� 256 0.666452 1:87 � 10�4

512� 512 0.666734 1:01 � 10�4

between the FFT-based predictions and the theoretical values is as good as for the
corresponding effective viscosities shown in Fig. 2 and, like before, is better for
more refined Fourier grids.

Finally, we show the predicted local strain-rate and stress fields. Figure 1c, d
shows, respectively, the 13 and 23 components of the strain-rate field (normal-
ized with the value of the applied macroscopic shear-rate), while Fig. 1e, f shows
the analogous stress components (normalized with the resulting macroscopic shear
stress). The first observation concerns the formation of localization bands (both of
stress and strain-rate), which are normal to e1 (i.e., the normal to the shear plane
of the soft slip system) in every grain. These bands go through quadruple points,
where the 13 components (13 is the only nonvanishing component at polycrystal
level) of the stress and strain-rate fields reach their maximum values. Meanwhile,
the 23 components of the local fields also have non-negligible values along the lo-
calization bands, with alternating signs in the phases, such that the strain-rate is
negative where the stress is positive and vice versa. This alternation is consistent
with the plus and minus signs preceding ˛ in (102) and also give vanishing average
23 stress and strain-rate components at macoscopic level. It is also worth noting
that the corresponding stress and strain-rate field components are related by a 90ı
rotation. Such symmetry is evidently related to the fact that a 2D divergence-free
field has the property of transforming into a curl-free field when rotated by 90ı
(Dykhne 1970). Note for instance that while stress equilibrium requires continuity
of the 23 stress component through the “horizontal” grain boundaries (as in Fig. 1f),
strain compatibility requires continuity of the 23 strain-rate component through the
“vertical” grain boundaries. To complete the analysis, Fig. 1b shows the compli-
cated pattern of the field of relative activity of the soft slip system, associated with
the local and macroscopic response discussed above.

3.2 Validation of Mean-Field Formulations Using
Full-Field Computations

The advantage of using field fluctuation information in nonlinear homogenization
schemes to get improved predictions of the mechanical behavior and texture devel-
opment of viscoplastic polycrystals becomes evident as the heterogeneity (contrast
in local properties) increases. The two possible sources of heterogeneity in single-
phase viscoplastic aggregates are the nonlinearity of the material’s response and the



local anisotropy of the constituent single crystals. To study the influence of both
sources of heterogeneity, we show here examples of self-consistent calculations on
different material systems: (1) fcc aggregates (compatible with, e.g., polycrystalline
copper) with fixed local anisotropy (given by the – rather mild – range of variation
of the Taylor factor of individual grains) and variable rate-sensitivity, and (2) hexag-
onal polycrystals with four and two soft independent slip systems, and orthorhombic
aggregates (compatible with Ti deforming at high temperature, ice, and olivine, re-
spectively), with mild nonlinear behavior and variable local anisotropy, given by the
ratio between the threshold resolved shear stresses associated with hard and soft slip
modes (Lebensohn et al. 2007).

The prediction of the effective properties of a random fcc polycrystal as the
rate-sensitivity of the material decreases is a classical benchmark for the different
nonlinear SC approaches. Figure 3a shows a comparison between average Taylor

Fig. 3 (a) Average Taylor
factor and normalized overall
(b) stress and (c) strain
standard deviations vs.
rate-sensitivity, for a random
fcc polycrystal under uniaxial
tension, calculated with the
different SC approaches
(lines C symbols), and
“exact” values (stars) from
ensemble averages of
FFT-based solutions
(Lebensohn et al. 2007)
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factor vs. rate-sensitivity .1=n/ curves, for a random fcc polycrystal under uniaxial
tension. The Taylor factor was calculated as†ref

eq =�o, where �o is the threshold stress
of the (111)<110> slip systems, and †ref

eq is the macroscopic equivalent stress cor-
responding to an applied uniaxial strain-rate with a Von Mises equivalent value
PE ref

eq D 1. The curves in Fig. 3 correspond to the Taylor model, the different first-
order SC approximations, and the second-order procedure. The solid star indicates
the rate-insensitive Sachs estimate. The open stars correspond to the “exact” solu-
tion, obtained from ensemble averages of FFT-based full-field solutions performed
on random polycrystals. These ensemble averages were calculated over the out-
comes of “numerical experiments” performed on 100 specimens generated alike,
i.e., by random assignation of orientations to a given array of grains, but which differ
at microlevel due to the inherent stochastic character of such generation procedure.
To obtain the results that follow, we have considered periodic 3D polycrystals con-
sisting of 8 � 8 � 8 D 512 cubic grains with randomly chosen orientations. These
unit cells were in turn discretized using a 64 � 64 � 64 Fourier grid, resulting in
8 � 8 � 8 D 512 Fourier points per grain. The averages over a sufficiently large
number of configurations should give the effective properties of a polycrystal with
random microstructure. It should be noted that the microstructures of these polycrys-
tals generated for ensemble averaging are random only in a restricted sense, since
the grain orientations were chosen randomly but the morphology was set a priori to
be equiaxed. The generation of fully random microstructures would require grains
with both random orientation and morphology (Kanit et al. 2003). However, for our
purposes, the above restricted random procedure allows us to reduce the number of
configurations needed to obtain an isotropic ensemble response.

From the comparison between the different mean-field and the full-field esti-
mates, it can be observed that: (1) the Taylor approach gives the stiffest response,
consistent with the upper-bound character of this model; (2) all the SC estimates co-
incide for n D 1, i.e., the linear SC case; (3) in the rate-insensitive limit, the secant
and tangent models tend to the upper and lower bounds, respectively, while the affine
and second-order approximations remain intermediate with respect to the bounds;
(4) except for the tangent model for n>10, the second-order procedure gives the
lowest Taylor factor among the SC approaches. This softer macroscopic response
(i.e., a lower stress is needed to induce a given strain-rate) is a consequence of the
softer behavior at grain level in the linear comparison polycrystal that results when
the average field fluctuations are considered for the determination of the linearized
behavior of the SR grains; (5) the best match with the exact solutions (at least for
rate-sensitivity exponents up to 20, i.e., the highest value we were able to use in the
full-field computations, without losing accuracy) corresponds to the second-order
estimates.

Concerning the overall heterogeneity of the mechanical fields, reflected in
the standard deviations of the equivalent magnitudes over the whole polycrystal
(55–56), the SC predictions (including the second-order approximation) are less
accurate. Figure 3b, c shows these overall SDs (normalized, for an unbiased
comparison, by the corresponding effective magnitudes) as a function of the rate-
sensitivity. It can be observed that: (1) at high nonlinearities, only the SC models



that do not tend to the bounds in the rate-insensitive limit (i.e., AFF and SO) show
the expected increases in both stress and strain-rate heterogeneity. In the TG case,
the stress heterogeneity decreases as the rate heterogeneity increases, while the
SEC approach predicts the opposite trend; (2) both the AFF and SO approximations
overestimate the strain heterogeneity; (3) the SO gives the best match with the
full-field predictions for the stress heterogeneity, although it remains below the
exact solution. In connection with the SO estimates, the use of the field fluctuations
in the linear comparison material to estimate the corresponding fluctuations in the
VP polycrystal has recently been shown (Idiart and Ponte Castañeda 2007) to be
inconsistent. In fact, improved estimates can be generated by taking into account
certain correction terms that are associated with the lack of full stationarity of these
estimates with respect to the reference stresses. Still, the SC methods would not
be expected to yield accurate estimates for the higher-order statistics of the fields,
which become increasingly more sensitive to the details of the microstructure as the
order increases. For example, the third-order moments, which contain information
on the asymmetry of the distributions, are likely to become relatively important in
low rate-sensitivity materials (Moulinec and Suquet 2003), since the strain tends to
localize in deformation bands inside or across grains.

The next example concerns predictions of the effective behavior of random
aggregates of grains with less than five linearly independent soft slip systems
(Lebensohn et al. 2007). In this case, we analyze the dependence with the local
contrast C, given by the ratio between the critical stresses associated with the hard
and the soft slip modes. Figure 4 shows the predicted effective stress, relative to
the threshold stress of the soft slip systems †ref

eq =�
soft
o (where †ref

eq corresponds to

an applied uniaxial strain-rate, with a Von Mises equivalent PE ref
eq D 1), as a func-

tion the local contrast C, predicted by different homogenization approaches, and by
averaging 100 FFT-based solutions, for the following cases:

1. A random hcp aggregate with four linearly independent soft slip systems,
given by a suitable combination of f1010g<1120> prismatic (pr) slip, and
(0001)<1120> basal (bas) slip (such that � soft

o D �
pr
o D �bas

o ). The hard slip mode
is f1011g<1123> pyramidal-<c C a> of the first-type (pyr1), and the con-
trast parameter is therefore given by C D �

pyr1
o =�

pr
o D �

pyr1
o =�bas

o . Assuming a
rate-sensitivity exponent nD 4 and a c=a ratio of 1.587 makes the above ma-
terial model appropriate for a Ti aggregate deforming at elevated temperatures
(Semiatin and Bieler 2001)

2. A random orthorhombic aggregate, with three linearly independent soft slip sys-
tems, given by a suitable combination of (010)[100], (001)[100], (010)[001],
(100)[001]. The hard mode, which closes the single crystal yield surface, is
assumed to be f111g<110>. All the soft systems were assumed to have the
same threshold stress � soft

o , resulting in a contrast parameter C D �
f111g
o =� soft

o .
With a rate-sensitivity exponent nD 4 and b=a and c=a ratios of 2.122 and
1.245, respectively, this material model is consistent with the behavior of an
olivine polycrystal, deforming under conditions found in the Earth’s upper man-
tle (Wenk and Tomé 1999; Castelnau et al. 2008).
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Fig. 4 Plots of reference stress vs. contrast, for random polycrystals with different number of
independent soft slip systems, obtained with different SC approaches (lines) and from ensemble
averages of FFT-based solution (symbols) for (a, b) four, (c, d) three (e, f) two independent soft slip
systems, obtained with different SC approaches (lines) and from ensemble averages of FFT-based
solution (symbols). Left column: linear scale plots, up to a contrast of 50. Right column: log–log
plots, up to a contrast of 1,000. The value of � corresponds to the slope of the logarithmic line
(Lebensohn et al. 2007)



3. A random hcp aggregate with two linearly independent soft systems, corre-
sponding to f0001g<1120> basal slip (i.e. � soft

o D �bas
o /. The hard slip modes

are the f1122g<1123> pyramidal-<c C a> of the second-type (pyr2), and the
contrast parameter is given by C D �

pr
o =�

bas
o D �

pyr2
o =�bas

o . Assuming a rate-
sensitivity exponent nD 3 and a c=a ratio of 1.629, this material model is
relevant for ice polycrystals deforming under conditions found in glaciers
(Castelnau et al. 1996).

Figure 4a, c, e shows the curves (plotted in linear scale) of reference stress
(i.e., †o D†ref

eq =�
soft
o , for PE ref

eq D 1) vs. contrast C, predicted with the different
SC approximations, the Taylor model, and the full-field FFT-based solution, for C
up to 50. The agreement between the SO estimates and the exact solutions is ap-
parent. Figure 4b, d, f shows log–log plots of the effective stress obtained with the
different homogenization models, for contrasts up to 1,000, with the corresponding
regression lines superimposed. It is evident that the results for all models can be
described by scaling laws of the form †o � C � (Nebozhyn et al. 2000). In every
case analyzed (i D 2, 3, and 4, where i is the number of linearly independent soft
systems) � Š 1 for the Taylor model and � Š 0 for the tangent SC approach (note
that the latter exponent also corresponds to the lower-bound Sachs model), while
the secant, affine, and second-order SC models give different exponents, depending
on the value of i . Interestingly, the exponents corresponding to the second-order
approach follow the relation proposed by Nebozhyn et al. (2000): � Š .4 � i/ =2,
in the context of Ponte Castañeda’s (1991) variational approach. The asymptotic
trend to the lower-bound that the tangent SC approach exhibits when the contrast
increases due to the increase of the exponent n is also obtained when the hetero-
geneity increases due to local anisotropy, even for relatively low values of n. This
observation sheds light on why the tangent SC approach has been favored to predict
mechanical behavior of low-symmetry materials, which have “open” single crystal
yield surfaces with three or less independent deformation systems. In such cases,
the tangent SC approach allows accommodation of the local deformation with the
available slip systems, without need of “artificial” systems to close the single crystal
yield surface. While these artificial hard systems make a very small contribution to
strain, they have a strong influence on the predicted macroscopic behavior (effective
viscosity) in these low-symmetry systems, unless a saturated behavior, like the one
displayed by the tangent predictions in Fig. 4, is obtained.

3.3 Overall Texture Development Predictions Using
Mean-Field Approaches

Almost 100% of plastic deformation in the ice single crystals is carried by basal
dislocations. Since basal slip provides only two independent slip systems, the pre-
diction of texture development of polycrystalline ice is a challenging problem
that allows us to discriminate among the different SC approaches. Moreover, an



understanding of the deformation mechanisms and the microstructural evolution of
ice deforming in compression is relevant in glaciology, since compression (together
with shear) is one of the main deformation modes of glaciers. In what follows,
we will use the basal texture factor along the axial direction to characterize the
evolving texture of ice in compression. The basal texture factor is defined as the
weighted average of the projections of the c-axis along the axial direction, i.e.,˝
cos2 ˛.r/

˛
, where ˛.r/ is the angle between the basal pole of SR grain (r) and the

axial compression direction.
In fact, the stiff Taylor and SC secant models are not suitable to simulate plastic

deformation of polycrystalline ice because the strong constraints that these models
impose upon strain are incompatible with the shortage of independent slip systems
in ice. On the other hand, the compression textures of ice typically exhibit a strong
basal pole component aligned with the axial direction (Castelnau et al. 1996). The
formation of this component is related to the crystallographic plastic rotations as-
sociated with basal slip. However, as the basal poles become more aligned with the
axial direction, the basal systems become unfavorably oriented to accommodate de-
formation. Therefore, at large strains, even a “soft” first-order approximation like
the tangent SC fails in reproducing the observed texture with only basal slip activity
(Castelnau et al. 1996). Up to now, the Sachs model (which completely disregards
strain compatibility) has been the only approach able to give a reasonably effective
behavior with predominant basal slip at large strains, when the basal texture along
the compressive direction becomes very strong.

Figure 5 shows the compression texture evolution (in terms of the basal tex-
ture factor), effective stress, relative basal activity, and average number of active
slip systems (AVACS) per grain, for the case of an initially random ice polycrystal
(Lebensohn et al. 2007). Results were obtained using the TG, AFF, and SO ap-
proaches, under the assumption of nD 3 and �pr

o D 20 � �bas
o and �pyr2

o D 200 � �bas
o

(Castelnau et al. 1996), with no strain-hardening, up to a compressive strain of 1.5.
As expected, all models predict a prevalence of basal slip, with a consequent

increase of the basal texture factor along the axial direction, and a progressive
geometric hardening. While the alignment of basal poles along the compression
direction predicted by all three models is similar, they differ in other indicators.
At around 0.8 strain, the tangent predictions show a sudden drop in the basal activ-
ity, together with a rapid increase in the effective stress and in the number of active
deformation systems, which indicates that the strain accommodation starts requir-
ing the activation of the 200 times harder pyramidal systems. In other words, under
the tangent SC approach, the basal slip by itself is not enough to accommodate the
compressive deformation when the basal poles become strongly aligned with the
compression direction.

The SO and AFF models, on the other hand, do a better job at accommodat-
ing large strain mostly with basal slip. The SO results, however, are superior to the
AFF results in this respect. This superior performance of the second-order SC ap-
proximation can be explained in terms of its intrinsic adaptability to microstructural
changes. Figure 6 shows the evolution (as predicted with the SO formulation) of the
normalized standard deviations of the equivalent stress and strain rate over the whole



Fig. 5 Simulation of
compression of an ice
polycrystal. (a) Basal texture
factor along the compression
direction, (b) effective stress,
(c) relative basal activity, and
(d) the average number of
active slip systems per grain,
as predicted with the tangent
(TG), affine (AFF), and
second-order (SO) SC
approaches (Lebensohn et al.
2007)

0.0

0.2

0.4

0.6

0.8

1.0a

b

c

d

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.0 0.5 1.0 1.5
0

2

4

6

8

ax
ia

l t
ex

 fa
ct

or

 TG
 AFF
 SO

ba
sa

l a
ct

iv
ity

ef
fe

ct
iv

e 
st

re
ss

strain

A
V

A
C

S

Fig. 6 Evolution of the
normalized overall standard
deviations of the equivalent
stress and strain-rate, as
predicted with the
second-order formulation, for
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polycrystal, defined by (55–56). Note that the above magnitudes are indicators not
only of intergranular but also of intragranular heterogeneity (as a matter of fact,
these average scalar magnitudes reflect the collective contribution of every com-
ponent of the fluctuation tensors in each SR grain). Evidently, as the basal texture
concentrates along the axial direction, the stress becomes more uniform and the



strain-rate becomes more heterogeneous. This trend toward a uniform stress state
obviously indicates a trend toward the Sachs condition. Therefore, given that the
aforementioned local fluctuation information is contained in the second-order lin-
earization, the SO results approach the lower-bound as deformation proceeds, allow-
ing a substantial accommodation of deformation by basal slip at those large strains.

3.4 Local Texture Development Predictions Using
the FFT-Based Full-Field Approach

Owing to its image-processing lineage, the FFT-based formulation is particularly
suitable for use with direct input from actual images of the material, e.g., optical
or scanning electron microscopy (SEM) images that show the phase distribution
in the case of composites (Moulinec and Suquet 1998), or orientation images in
the case of polycrystals (Lebensohn et al. 2008). The latter will be used here for
a quantitative study of the average orientations and intragranular misorientations
developed in a Cu polycrystal deformed in tension. Electron back-scattering diffrac-
tion (EBSD)-based OIM was used to characterize the local orientations measured in
an area of about 500�500�m, located on one of the flat surfaces of a recrystallized
copper sample. The spatial resolution (given by the distance between two consec-
utive pixels) was 2�m in each direction. Two OIM images were taken, one from
the undeformed sample, and another after 11% tensile strain along the y-direction
(deformation was carried out at room temperature). The scanned area of the de-
formed sample (332 � 445 pixels) was larger than that of the initial microstructure
(274 � 339 pixels), and contained more orientations (2,429 vs. 1,585 grains). This
allowed us to register the images, and thus to identify the ID numbers given by the
OIM software to each individual grain. Once the two images were appropriately
registered, a correlation table allowed us to identify the ID numbers of the grains
with largest areas, in the pre- and postdeformation images, for further comparisons.

Next, a 2D 256 � 256 image, containing information on the local (pixel by
pixel) crystallographic orientation and a total of 1,124 grains, was cropped from
the original OIM image, obtained from the free surface of the undeformed Cu sam-
ple, consisting originally of 274 � 339 pixels and 1,585 grains. The average grain
size (in units of length) of the cropped image, which can be roughly estimated, is:p
256 � 256=1124 � 2�m D 7:64 � 2�m D15:28 �m. Note, however, that, since

the grains in the 2D image are not necessarily sliced across their largest extent as
projected onto the observation plane, the above grain size is a low estimate of the
true grain size in 3D.

Since the actual 3D microstructure of the bulk of the sample was not known, a
3D unit cell was built assuming a randomly generated distribution of bulk grains un-
derneath the measured surface grains (i.e., a “3D substrate”), having same average
grain size and overall crystallographic orientation distribution as the surface grains.
For this, a 3D Voronoi was generated (note that since the FFT-based calculation re-
quires a discrete description of the microstructure on a regularly spaced grid, the
procedure is simpler than in the case of having to determine the exact position of



the boundaries between Voronoi cells in a continuum), as follows: (1) the number
of Fourier points in the third dimension (z-direction) was chosen to be 32, resulting
in a unit cell of 256 � 256 � 32D 2; 097;152 Fourier points. Note that this choice
gives, in average, about four grains along third dimension; (2) the number of grains
of the Voronoi structure was calculated as 2;097;152=.7;64/3 D 4;703; (3) then,
4,703 points were randomly distributed in a 3D unit cell. This Poisson distribution
of points constitutes the nuclei of the random grains; (4) the sides of the unit cell
were divided into equispaced 256�256�32 Fourier points, or voxels. Each Fourier
point was assigned to its nearest nucleus (accounting for periodic boundary condi-
tions across the unit cell limits), determining 4,703 different domains (grains). Next,
the measured 2D and the numerically generated 3D microstructures were merged
as follows. First, every 3D grain having a voxel on the first z-layer was removed,
and every voxel corresponding to these removed grains was assigned with the crys-
tallographic orientation of the pixel of the 2D OIM image having the same x- and
y-coordinates. These replacements determined a structure of “extruded” (columnar)
grains of variable depth in the z-direction (from one to several layers), with its first
(“surface”) layer having the same topology as the OIM image, lying on a 3D sub-
strate. The number of grains of this intermediate configuration decreased to 3,965
grains. Subsequently, to obtain more realistic grain shapes, especially in the tran-
sition zone between the columnar grains and the 3D substrate, the microstructure
was “annealed” using a standard 3D Monte Carlo (MC) grain growth model with
isotropic boundary properties (Rollett and Manohar 2004). The voxels in the sur-
face layer that corresponded to the measured OIM scan (reproduced on the bottom
layer, with periodic boundary conditions) were fixed and not allowed to evolve. All
other parts of the microstructure were allowed to evolve with the result that grain
boundaries moved to minimize their areas. The annealing was run for 1,000,000 MC
steps, at which time evolution had essentially ceased because of the pinning effect
of the surface layers. The number of grains was further decreased to 3,697 in the
final annealed microstructure.

As already pointed out, after carrying out this numerical treatment of the unit
cell’s microstructure, the first layer of the resulting representative volume element
turned out to have the exact same topology as the OIM image. However, without
any further manipulation of this configuration, the measured “surface” grains would
become bulk grains, upon the imposition of periodic boundary conditions across the
unit cell. Therefore, to reproduce the actual free surface condition on the measured
grains, the bottom five z-layers (z-layers 28–32) of Fourier points were replaced by
a “buffer zone,” or “gas phase,” with infinite compliance (i.e., identically zero local
stress). Such gas phase allowed us to consider the presence of surface grains (cor-
responding precisely to the grains whose local orientations were actually measured
by OIM) while keeping, at the same time, the periodicity across the unit cell (this
buffer “disconnects” the surface from the bottom of the periodic repetition of the
unit cell, located immediately above). A similar technique was used in phase field
simulations of microstructure evolution in thin films (Hu and Chen 2004). The re-
sulting configuration of the 3D unit cell, including the zero-stress buffer zone, is
shown schematically in Fig. 7 (Lebensohn et al. 2008). In the next section, we show



Fig. 7 Schematic representation of the 3D unit cell used in the FFT-based simulations of local
orientation and misorientation evolution, with direct input from OIM images (Lebensohn et al.
2008)

and compare results of both unit cell configurations, i.e., the original one resulting
from the merging of the OIM and Voronoi structures plus the MC annealing, with
no buffer zone (amounting to neglect the surface character of the grains whose ori-
entations were measured by OIM), and the one including the gas phase, for a direct
comparison with the OIM measurements.

FFT-based simulations of the tensile deformation of the polycrystalline copper
sample were performed using the two above-described unit cells (with and without
the buffer zone). The rate-sensitive crystal plasticity relation (1) was used as the
local constitutive relation, assuming glide on the twelve (111)<110> systems as
the active slip mode, and a viscoplastic exponent nD 20. The initial distribution of
critically resolved shear stresses was assumed to be uniform. The extended Voce law
hardening parameters (74), adjusted to match the experimental macroscopic stress–
strain curve measured during the tensile deformation of the copper sample, were:
�s

oo D 11MPa; � s
1 D 15:5MPa; � s

0 D 430MPa; � s
1 D 110MPa; .sD1;12/ and

hss0 D 1, for all ss0.
Figure 8a shows the registered initial and 11% strain OIM images (the latter is

shown already cropped), measured on the surface of the copper sample (Lebensohn
et al. 2008). The postdeformation image clearly indicates the development of intra-
granular misorientations, in terms of noticeable color grades inside several grains.
The location and number of pixels of the 13 largest (“marked”) grains are shown
in Fig. 8b. The initial orientations of the marked grains can be seen in Fig. 9, in
an inverse pole figure representation. Figure 9 also shows the trajectories of the
mean orientations of these marked grains (except for grain #5, which is very close



Fig. 8 (a) Registered OIM images of the copper polycrystal before deformation and after 11%
tensile strain. (b) Location and morphology of the 13 largest grains, before and after deformation.
The “FFT window” shows the 256 � 256 pixel region that was actually used to construct the unit
cell (Lebensohn et al. 2008)

Fig. 9 Inverse pole figure of
the measured initial
orientation and the final
average orientation of the
largest grains, and trajectories
predicted with the FFT-based
approach (Lebensohn et al.
2008)
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and behaves very similarly to grain #6, and was not plotted for sake of clarity), as
predicted by the FFT-based model (with buffer zone). The small crosses defining
these trajectories were obtained in increments of 1% overall plastic strain. The ac-
tual final average orientations, measured with OIM, are shown as well. In the region
close to the <001>-corner, grains #1, #9, and #12 rotate toward the stable orienta-
tion<001>, a trend that is predicted, at least qualitatively, by the model. Grains with
initial orientations close to the upper half of the <001>–<111>-line (#4, #5, and
#6) exhibit rotations along this line toward the other stable orientation, i.e., <111>
(also well reproduced by the model). The grains starting near the <110>-corner
(#11 and #13), or in intermediate orientations between <110> and the midsection
of the <001>–<111>-line (#2, #3 and #7) rotate toward this line, presumably in
their way toward the stable orientation <111>. The total rotations of these grains
are the largest. All these features are acceptably reproduced by our simulations,
except for the reorientation of grain #3, which is predicted to be directly toward
<111>. Finally, the trends of grain #10, and especially grain #8, which starts close
a well-known transition point on the <001>–<111>-line, close to <113> (Chin
et al. 1967), are not adequately reproduced by the model. It is also interesting to
compare (while keeping in mind the obvious differences, i.e., Cu vs. Al, 2D vs.
3D) the above trends and the 3D X-ray diffraction characterization done by Winther
et al. (2004) of the rotations of bulk grains of an Al polycrystal deformed in tension.
The rotations measured on Cu surface grains (and well predicted by our model)
with initial orientations belonging to three of the four “regions” characterized by
Winther et al. (2004) (i.e., region 1: close to <111>, region 2: near the upper half
of the <110>–<111>-line, and region 4: near the <100>-corner) are also in ac-
ceptable agreement with the observations of Winther et al. (2004). No grains with
orientations in Winther et al.’s region 3 (close to <221>) were large enough in the
Cu sample to be used for this analysis.

Although interesting, the above-described reasonable agreement between the
measured and predicted average orientation evolution is not surprising, since almost
every (either full-field or mean-field) model based on crystal plasticity qualitatively
predicts the development of two stable texture components in<001> and<111> in
fcc materials deformed under tension, e.g., see comparisons of the above-mentioned
measurements with corresponding Taylor and self-consistent predictions in Winther
et al. (2004). A much less investigated aspect of the local texture evolution of these
materials is reported in Table 2, which shows the comparison between the measured
and the predicted values (in degrees) of the average misorientations (defined as the
average over every pixel belonging to a given grain with respect to the average
orientation of that grain, a quantity that can be readily calculated using quater-
nion algebra) inside the marked grains (Lebensohn et al. 2008). Together with the
size (in pixels) of the grains, two predicted values are reported for each grain: the
fourth column shows the predictions obtained using the unit cell shown in Fig. 7,
i.e., including the buffer zone, therefore considering the effect of measuring misori-
entations in surface grains. The fifth column displays the predictions obtained for
a unit cell without the buffer zone, giving an idea of the misorientation values that
would be measured if the grains were bulk. Evidently, the proper consideration in



Table 2 Area (in pixels) and average misorientation of the 13 largest grains after 11% tensile
strain, measured by OIM and predicted with the FFT-based approach, with and without buffer
zone (Lebensohn et al. 2008)

Grain no.
Number
of pixels

Average misorientation
OIM 11% tension (deg)

Average misorientation
FFT 11% tension (deg)

Average misorientation
FFT 11% tension
(no buffer) (deg)

1 3;625 2.89 2.18 1.81
2 2;019 2.52 2.05 1.64
3 1;842 2.92 2.97 2.25
4 1;479 2.86 2.33 2.27
5 1;466 2.26 2.35 1.76
6 1;380 3.14 2.70 1.91
7 1;331 3.37 3.06 2.89
8 1;113 3.21 2.62 2.12
9 955 2.65 2.80 2.22
10 830 2.92 2.37 1.81
11 692 2.22 2.79 1.99
12 639 4.33 3.36 2.39
13 596 3.09 3.26 2.83

the model of the surface character of the grains, whose average misorientations were
measured by OIM, leads to a good agreement with the corresponding experimental
values. On the other hand, the artificial assumption of the bulk character of these
grains tends to underestimate the actual average misorientations of surface grains.
The reason why the predictions obtained under the bulk assumption fall short is re-
lated to this being a different configuration, compared with the actual traction-free
boundary conditions imposed on the surface grains.

Another interesting observation is that except for grain #12, which exhibits the
largest average misorientation, the initial orientations of other grains with measured
misorientations larger than 3:0ı (#6, #7, #8, and #13) lie in a region of the stere-
ographic triangle spanning from <110> toward the midsection (from 1/3 to 2/3)
of the <001>–<111>-line. While in the case of grain #12, the high average mis-
orientation seems to be related to its particular morphology (note in Fig. 8b that
this grain has a large “hole” in its center, filled by another grain with a completely
different orientation, a configuration that may determine a relative “disconnection”
between different parts of grain #12); for the rest of the grains, their initial orienta-
tions belonging to the above region may be related to their relatively large average
misorientation.

To elucidate whether this orientation dependence does exist (and if our model
is capable of reproducing it), we investigated the behavior of a larger number of
representative grains. Figure 10 shows the average orientations (given by each pole
projected in the inverse pole figure) and the average misorientations (given by the
different symbols used) of the largest 306 grains, as measured by OIM and predicted
with the FFT-based approach, after 11% tensile strain (Lebensohn et al. 2008). The
misorientation values of the grains were grouped into six bins of equal size, and dif-
ferent symbols were assigned to each bin. The first observation is that, as expected,
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Fig. 10 Inverse pole figures of the average orientations and misorientations of the 306 largest
grains after 11% tensile strain, (a) measured by OIM, and (b) predicted with the FFT-based
approach. The misorientations were grouped in bins of equal size, and different symbols were
assigned to each bin (Lebensohn et al. 2008)

after 11% tension, there is already a mild but noticeable trend of large grains to rotate
toward one of the stable <001> and<111> orientations (the region near<110> is
mildly depleted of orientations). Moreover, it is evident (from both the experiments
and the simulations) that most of the grains with the highest average misorienta-
tion are grains transitioning from their initial orientation near <110> toward the
stable orientations. This observation can be explained in the following terms: de-
pending on their initial orientation, the grains of an fcc polycrystal in tension are
attracted toward one of the two stable orientations, i.e., <001> or <111> (the lat-
ter, directly or via the <001>–<111>-line). Grains with orientations in a region
of the orientation space, spanning from near <110> toward the midsection of the
<001>–<111>-line, can be pulled simultaneously toward both stable orientations.
In this case, the instability of the initial grain orientation and the contribution of
interactions with neighbor grains may define the preference of different portions of
these “indecisive” grains to rotate toward different stable orientations. This conflict-
ing attraction toward two completely different orientations may be accommodated
by the development of relatively higher misorientations between different grain’s
subdomains. This corresponds to the transition band concept documented by Dil-
lamore et al. (1972) and Dillamore and Katoh (1974) in polycrystals. Note also that
this orientation split is also observed in deformed single crystal with initial unstable
orientations [thus implying no grain interaction effect (Becker et al. 1991)].

4 Conclusions

In this chapter, we have thoroughly reviewed recently proposed some novel crystal
plasticity-based methods for the prediction of microstructure–property relations in
polycrystalline aggregates. The first method is of the mean-field type and is known



as the second-order VPSC theory, while the second is a full-field method and is
known as the FFT-based formulation. We have comprehensively presented the equa-
tions and assumptions underlying both formulations, using a unified notation and
pointing out their similarities and differences. Mean-field approaches are in general
much more efficient than full-field computations. However, models like the second-
order VPSC formulation, which incorporates more statistical information, require
more complex and numerically demanding algorithms, but still are much faster than
full-field approaches.

Concerning the mean-field theories, we have carried out detailed comparisons of
the different self-consistent approximations for viscoplastic polycrystals. We have
also discussed the numerical implementation of the different SC approaches in the
VPSC code, together with results obtained using different linearization strategies.
The comparison of the effective behavior of model material systems predicted by
different SC approaches has shown that the second-order SC predictions are in better
agreement with the ensemble averages of FFT-based full-field solutions. The latter
is especially true in the cases of highly heterogeneous materials (due to a strong
nonlinearity or local anisotropy), a case in which the gap between the Taylor and
the Sachs bounds is large. With regards to applications of the second-order SC ap-
proximation, we have studied the texture evolution of polycrystalline ice (a material
characterized by a strong local anisotropy, due a strong contrast of plastic properties
at single crystal level) deformed in compression, to illustrate the flexibility of the
second-order formulation to handle these highly anisotropic problems.

The FFT-based full-field formulation for plastically deforming polycrytals has
been conceived as a very efficient alternative to crystal-plasticity FE methods. In
this work, FFT-based computations were first applied to the antiplane deformation
of isotropic, linearly viscous 2D polycrystals. In this case, our numerical imple-
mentation was validated by comparison with analytical results for the effective and
per-phase properties of such special configuration. Next, the full 3D implementa-
tion was applied to the study of the subgrain texture evolution in a copper aggregate
deformed under tension. Direct input was obtained from OIM images for the con-
struction of the representative volume element. A methodology to build such 3D
unit cell, including the 2D OIM data, a 3D substrate, and the presence of a free
surface, was given. The average orientations and misorientations of large grains,
predicted with the FFT-based approach after 11% tensile strain, were directly com-
pared with OIM measurements. The experimental data and the predictions showed
good agreement. The orientation dependence of the average misorientations was
also studied. Again, measurements and predictions showed reasonable agreement.
Grains with initial orientation near <110> tend to develop higher misorientations,
as deformation proceeds. Attraction toward the two different stable orientations (i.e.,
corresponding to the alignment of the <001> and the <111> crystal orientations
with the tensile axis) of different subdomains inside these grains, influenced by
interactions with different neighbors, may be responsible for this behavior. Only
full-field models such as the FFT-based formulation, which account for topological
information and grain interaction in the determination of the local micromechanical
fields, can capture these effects.
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 Appendix: Calculation of Effective Moduli 

Derivatives

We give here the expressions and algorithm for the calculation of the derivatives
of the effective moduli within the context of the VPSC formulation (Lebensohn
et al. 2007).

A.1 Calculation of @B
.s/

kj =@M
.r/
u�

From (32), we have [in matrix notation, all indices running from 1 to 5, except the
grain indices (r) and (s)]:
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#

: (A1)

In order not to clutter the notation, the first and second term on the right are written
in explicit and implicit index notation, respectively. In the second term, the indices
(uv) (i.e., the component of the local compliance with respect to which the deriva-
tives are calculated) appear only to indicate such derivative, while in the first term
they appear mixed with the indices that contract. In what follows, we will use this
mix of explicit indices and implicit notation, when necessary for the sake of clarity.

Deriving (30), we obtain:

@ QMij
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.r/
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@ NMpj
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; (A2)

where F S D .I �S/�1S and  D F S QM C QM . Using the chain rule to express the
first derivative on the right, we can write:
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where

�ijpq D .I � S/�1
ik
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ip ıjq: (A4)



The algorithm for the calculation of @S
ı
@ NM is given below. Replacing (A3) in (A1)

and after some manipulation, we obtain:
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A.2 Calculation of @ NMij=@M
.r/
uv

Deriving (44):
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Using (A5) and calling ˇ.s/ D M .s/ �.s/, we get:
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From where:
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 A.3 Calculation of @Eo=@Mu
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Using (A5), we obtain:
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A.4 Calculation of @ NG=@M
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Replacing (A17) in (A16) and using (A3):
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A.5 Calculation of @S=@ NM

The derivative of Eshelby tensor with respect to the effective compliance appearing
in (A4) can be obtained as follows. From (23) and (24), the (symmetric) Eshelby
tensor of an ellipsoidal inclusion of radii (a,b,c) embedded in an incompressible ho-
mogenous medium of stiffness NLD NM�1 is given by (in tensor notation, all indices
running from 1 to 3):
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where the matrix 4 � 4 A is given by (A5). In particular:
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Deriving (A23):
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The first derivative on the right is obtained as:
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Using (A25) and (A26), @�ijkl
ı
@ NM is calculated as:

@�ijkl

@ NM D ˛j ˛l

@A�1
ik

@ NM C ˛i ˛l

@A�1
jk

@ NM C ˛j ˛k

@A�1
il

@ NM C ˛i ˛k

@A�1
jl

@ NM ; (A29)

where

@A�1
ij

@ NM D �A�1
ik

 
@ NLklmn

@ NM ˛l˛n

!

A�1
mj : (A30)

The expression @ NLklmn
ı
@ NM appearing in (A27) and (A30) is simply the derivative of

a tensor with respect to its inverse. In matrix notation (indices running from 1 to 5):
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