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MAX-PLUS LINEAR APPROXIMATIONS FOR DETERMINISTIC
CONTINUOUS-STATE MARKOV DECISION PROCESSES

ELOÏSE BERTHIER AND FRANCIS BACH

Inria - Ecole Normale Supérieure
PSL Research University, Paris, France

Abstract. We consider deterministic continuous-state Markov decision processes (MDPs). We
apply a max-plus linear method to approximate the value function with a specific dictionary
of functions that leads to an adequate state-discretization of the MDP. This is more efficient
than a direct discretization of the state space, typically intractable in high dimension. We
propose a simple strategy to adapt the discretization to a problem instance, thus mitigating the
curse of dimensionality. We provide numerical examples showing that the method works well on
simple MDPs.

1. Introduction

Reinforcement learning problems [SB18] are generally formulated as Markov decision processes
(MDPs). Dynamic programming provides simple algorithms, such as value iteration, to compute
the optimal value function and an optimal policy for a discrete MDP, when the model is known.

Yet many problems formalized as MDPs are time- and space-discretizations of control problems,
with a continuous underlying state space. To faithfully reproduce the dynamics of the control
problem, one needs to compute a sharp space-discretization, subject to the curse of dimensionality:
for high-dimensional problems, the space-discretized MDP will not even fit in memory.

Following the method of [McE03] and [AGL08], we compute approximations of the optimal value
function for deterministic MDPs, namely max-plus linear approximations within a dictionary of
functions. These methods have been developed for optimal control and deal with continuous state
spaces. For certain choices of function dictionaries, they can be viewed as an efficient way to
discretize the state-continuous MDP while preserving its dynamics. Adaptively choosing the basis
functions used to approximate the value function is a way to circumvent the curse of dimensionality
when the true value function has a sparse representation.

Our contributions are the following:
� we propose a new approximation method to solve subproblems appearing in the max-plus

value iteration algorithm, namely to optimize some objectives over the state-space with
gradient ascent (section III, D);

� we present a specific dictionary of functions simplifying the method, and show how it can
be used to build an adaptive discretization of the state space (section VI);

� we provide numerical simulations on MDPs where this adaptive max-plus approximation
method computes nearly optimal policies with significantly less parameters than discretized
value iteration (section VII).

Setting: We consider a deterministic, time-homogeneous, infinite-horizon, discounted MDP
[HLL12] defined by a state space S, an action space A, a bounded reward function r : S � A !
[�R;R] for some R � 0, a dynamics ’:(:) : S � A ! S and a discount factor 0 � 
 < 1, with the
following assumptions:

(1) the state space S is a bounded subset of Rd (d � 1);
(2) the action space A is finite.
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2 MAX-PLUS LINEAR APPROXIMATIONS FOR DETERMINISTIC CONTINUOUS-STATE MDPS

We want to approximate the optimal value function V � : S! R corresponding to an optimal pol-
icy �� : S! A maximizing the cumulative discounted reward. The greedy policy � corresponding
to a value function V is obtained by:

�(s) 2 argmax
a2A

r(s; a) + 
V (’a(s)):

The value iteration algorithm consists in computing V � as the unique fixed point of the Bellman
operator T : RS ! RS (RS denotes the set of functions from S to R) defined as:

TV (s) := max
a2A

r(s; a) + 
V (’a(s)):

The value iteration algorithm iteratively computes the recursion Vk+1 = TVk that converges
to V �, with linear rate since T is strictly contractive with factor 
 < 1. But if S is a finite set, it
requires O(jAj � jSj) computations, and the storage of O(jSj) values of Vk at each step.

From now on we consider that S is a compact but potentially not discrete set. In this case one
can directly look for a discretization of the MDP and perform value iteration, but this will become
intractable in high dimension since the size of the discretized state space grows exponentially
with the dimension. Alternatively one can consider the space-continuous MDP and compute an
approximation of the optimal value function, without having to discretize the MDP.

2. Max-Plus Linear Approximations

Let W be a finite dictionary of functions w : S ! R. The value function can be approximated
by a "linear" combination of functions in W, with an adapted definition of linearity. The max-plus
semiring [GP97] is defined as (R[f�1g;�;
), where � represents the maximum operator, and 

represents the usual sum. Like linear combinations in the usual ring, for � 2 RW, we define the
max-plus linear combination:

V (s) =
M
w2W

�(w)
 w(s) = max
w2W

�(w) + w(s):

The Bellman operator’s structure is naturally compatible with max-plus operations, as it is
max-plus additive and homogeneous: for c; V; V 0 2 RS, we have

T (V � V 0) = T (maxfV; V 0g) = maxfTV; TV 0g = TV � TV 0

T (c
 V ) = T (c+ V ) = 
c+ TV = c

TV:

The basis functions used in [AGL08] and [McE03] are smooth (wi(s) := �cks � sik2 for some
si 2 S) or Lipschitz-continuous (wi(s) := �cks� sik). However, the scale c > 0 of such functions
must be chosen according to the regularity of the true value function. Since it is unknown in
practice it needs to be tuned as a hyperparameter. Other somewhat simpler choices of basis
functions can be considered as well. Let (A(w1); :::; A(wn)) be a partition of the state space, where
each wi is defined as the max-plus indicator of a set A(wi):

wi(s) :=

(
0 if s 2 A(wi)

�1 otherwise:

Then the max-plus linear combinations of (w1; :::; wn) span the set of value functions that are
piecewise constant with respect to the partition [Bac19]. This is thus a way to discretize the value
function.

Following the notations of [Bac19], for a given dictionary of functions W, we define the following
four operators:

W : RW ! RS; W�(s) := max
w2W

�(w) + w(s)

W+ : RS ! RW; W+V (w) := inf
s2S

V (s)� w(s)

W> : RS ! RW; W>V (w) := sup
s2S

V (s) + w(s)

W>+ : RW ! RS; W>+�(s) := min
w2W

�(w)� w(s):
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W maps a vector � to a functionW� that is the max-plus linear combination of the dictionary W

with coefficient �. W+ is known as the residuation [CGQ04] of W and acts as a pseudo-inverse:
W� � V , � �W+V . The transposed notation for W> comes from the definition of a max-plus
dot product (it is only a max-plus bilinear form) between functions on S, which will be used in the
rest of the paper:

8z; w 2 RS; hz; wi := sup
s2S

z(s) + w(s):

The lower-projection of a function V 2 RS onto the span of the dictionary is computed asWW+V ,
and W>+W>V is its upper-projection. Both projection operators WW+ and W>+W> are idem-
potent and non-expansive for the ‘1 norm.

3. Approximate Value Iteration

These max-plus tools can be used to compute a tractable approximation of the optimal value
function of an MDP.

3.1. Projection Method. A simple way to approximate the value function has been proposed in
[AGL08], as an extension of the method of [McE03], both for control problems. Following [Bac19],
we apply it to MDPs. The idea is to represent the value function as a max-plus linear combination
in a dictionary of functions, and to apply alternatingly the Bellman operator and a projection onto
the span of the dictionary: Vk+1 = WW+TVk. Hence if Vk is represented as W�k, then �k+1 is
given by �k+1 = W+TW�k, where the operator W+TW : RW ! RW is computed by:

�k+1(w) = inf
s2S

max
w02W


�k(w0) + Tw0(s)� w(s):

This computation is a min/max problem, which is not easy to solve in general. If S is finite,
this requires to compute jSj � jWj values at each iteration.

3.2. Variational Method. A slightly more involved approximation method has been also pro-
posed by [AGL08]. Let us define two dictionaries of functions W and Z. W plays the same role
as before, while Z is a set of test functions which can be taken equal to W. The value iteration
recursion Vk+1 = TVk is replaced by a variational formulation:

hz; Vk+1i = hz; TVki 8z 2 Z;

of which we consider the maximal solution in span(W ), given by ([AGL08], Proposition 4): Vk+1 =
WW+Z>+Z>TVk. It can be interpreted as a first projection on the min-plus span generated by Z,
before a second projection on the max-plus span of W. Again if Vk is represented by W�k, we
have the following recursion:

�k+1 = W+Z>+Z>TW�k:

The operator W+Z>+Z>TW : RW ! RW decomposes as M �K, with K = Z>TW : RW ! RZ

and M = W+Z>+ : RZ ! RW. The recursion may be recast as:

�k+1(z) = K�k(z) = sup
s2S

z(s) + max
w2W


�k(w) + Tw(s)

= max
w2W


�k(w) + hz; Twi

�k+1(w) = M�k+1(w) = inf
s2S
�w(s) + min

z2Z
�k+1(z)� z(s)

= min
z2Z

�k+1(z)� hz; wi:

The operator W+Z>+Z>TW is a 
-contraction, hence the recursion will converge with linear
rate to the unique fixed point. An interesting property is that the jZj � jWj values hz; Twi for
(z; w) 2 Z�W can be precomputed at a cost that is independent of the horizon 1=(1� 
) of the
MDP. The main difficulty here is their prior computation. Unlike in [Bac19] where S is finite, for
a continuous state space these computations might only be performed approximately.
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3.3. Basis Functions and Clustered MDP. Discrete versions of the MDP can be built from the
preceding approximation methods with W a set of max-plus indicators corresponding to a partition
of the state space, as mentioned earlier. Indeed, when W = Z and the (wi)1�i�n are max-plus
indicators, the above operator M is the identity and W+W>+W>TW = W>TW (a max/max
problem), to be compared with W+TW (a min/max problem) for the projection method. Note
that with the approximate indicators introduced below, M will not be equal to the identity, even
though W = Z.

With max-plus indicators and the variational method, the approximate value iteration becomes:

�k+1(w) = max
w02W

hw; Tw0i+ 
�k(w0);

which we interpret as classical value iteration on the MDP formed with the clusters (A(w))w2W as
states, and as rewards the maximal achievable reward going from one cluster to the other, that is:

R(w;w0) = hw; Tw0i = sup
s2S

w(s) + Tw0(s)

= sup
s2A(w)

max
a2A s.t.

’a(s)2A(w0)

r(s; a);

with R(w;w0) = �1 if f(s; ’a(s)) j s 2 S; a 2 Ag \ A(w) � A(w0) = ?. This reduced problem
is appealing but hard to solve in a continuous state space. Even finding if R(w;w0) is finite is
both a controllability and reachability problem [Lib11], whose solution is not straightforward. A
differentiable version of the max-plus indicators is the following:

w(s) = �cdist(s;A(w))2;

where dist(s;A(w)) is the euclidean distance between s and the set A(w), and c > 0 is a hyper-
parameter, typically chosen large compared to the scale of the true value function. We refer to
such basis functions as soft indicators. When c ! +1, we recover the preceding clustered MDP
and elements in the span of W are almost (asymptotically) piecewise constant with respect to the
partition.

3.4. Oracle Subproblem. We now take a closer look at the subproblems that must be solved
before running the approximate value iteration recursion, namely hz; wi and hz; Twi for the vari-
ational method. First, hz; wi is independent of the MDP and can be computed in closed form for
general choices of dictionaries, and:

hz; Twi = sup
s2S

z(s) + Tw(s)

= sup
s2S; a2A

z(s) + r(s; a) + 
w(’a(s)):

This is a discrete-time control problem, easier than the original one (finding the optimal value
function) since its horizon is one time step. As mentioned by [AGL08], this is a perturbed version
of the computation of hz; wi as soon as T is close to the identity, that is, in the context of optimal
control when the time-discretization of the MDP is small.

In [AGL08], hz; Twi is approximated using the Hamiltonian of a control problem. For general
MDPs, we may look at this problem from a different perspective. It is an optimization problem,
and, as noted by [AGL08], even though computing hz; Twi is not a concave maximization problem,
choosing strongly concave basis functions z and w has a regularizing effect.

Hence an approximation of hz; Twi can be computed by gradient ascent on fa(s) := z(s) +
r(s; a) + 
w(’a(s)), for each a 2 A, and then taking the maximum on a. For differentiable z, w,
’a and r(:; a), fa is differentiable with:

rfa(s) = rz(s) +rr(s; a) + 
J’a
(s)>rw(’a(s));

where J’a
denotes the Jacobian of ’a and rr is the gradient of r with respect to s. Seeing this

problem like [AGL08] as a perturbation of hz; wi, an efficient initialization for gradient ascent on
this problem is given by s0 2 argmaxs z(s) + w(s). Furthermore, for continuous basis functions,
reward function and dynamics, since S is compact by assumption, the supremum in hz; Twi is a
maximum attained at some (s; a) 2 S � A. The full procedure to obtain the approximate value
function is described in Algorithm 1.
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As noted in [Bac19], the Bellman operator T can be replaced by T � for some integer � � 1,
replacing accordingly 
 by 
�. This makes the computation of hz; T �wi more complicated, as it
requires to run jAj� gradient ascents. A simplification is to consider only sequences of constant
actions for � steps.

Comparison with existing methods: Approximate value iteration is usually performed by fitted
value iteration [SB18], with a linear parameterization of the value function. With max-plus param-
eterizations, the projections are computed efficiently, which spares the repeated use of stochastic
optimization, and leads to an explicit error analysis. Nonlinear approximations can be handled
with Q-learning (see [MM09] for continuous MDPs), with weaker convergence guarantees [SB18].

Algorithm 1 Max-plus Approximate Value Iteration
Input: MDP, W and Z, gradient steps k, step size �
Output: approximate value function V

Precomputations:
1: for z 2 Z; w 2W do
2: s; hz; wi  argmax;maxs2S z(s) + w(s)
3: for a 2 A do
4: hz; Twi  z(s) + r(s; a) + w(’a(s))
5: for i = 1 to k do
6: g  rz(s) +rr(s; a) + J’a

(s)>rw(’a(s))
7: s s+ �g
8: f  z(s) + r(s; a) + w(’a(s))
9: hz; Twi  maxff; hz; Twig

Reduced value iteration:
10: � 0
11: repeat
12: for z 2 Z do
13: �(z) maxw2W 
�(w) + hz; Twi
14: for w 2W do
15: �(w) minz2Z �(z)� hz; wi
16: until convergence
17: return V = W�

4. Error Analysis

4.1. Error Decomposition. The operator �T := WW+Z>+Z>T is 
-contractive, since T is 
-
contractive and bothWW+ and Z>+Z> are non-expansive. If the hz; wi and hz; Twi are computed
exactly, the error of the exact max-plus approximation is controlled only by projection errors. In
practice, the values Kz;w := hz; Twi are approximated by some K̂z;w obtained by gradient ascent
with some error due to the finite number of iterations and to the non-concavity of the objective
function.

Proposition 1. Let V � be the optimal value function of the MDP, V̂ = W�̂, where �̂ is the fixed
point of M � K̂, and

kK̂ �Kk1 := sup
z2Z;w2W

jK̂z;w �Kz;wj:

Then: kV̂ � V �k1 �
1

1� 

�
kWW+V � � V �k1

+kZ>+Z>V � � V �k1 + kK̂ �Kk1
�
:

Proof. Let V1 be the unique fixed point of �T :

kV1 � V �k � k �TV1 � �TV �k+ k �TV � � V �k

� 
kV1 � V �k+ kWW+Z>+Z>V � � V �k
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(1� 
)kV1 � V �k � kWW+Z>+Z>V � �WW+V �k
+ kWW+V � � V �k

� kZ>+Z>V � � V �k+ kWW+V � � V �k;

because WW+ is non-expansive. Since �̂ = M � K̂�̂:

kV̂ � V1k � kV̂ � �T V̂ k+ 
kV̂ � V1k

(1� 
)kV̂ � V1k � kWW+Z>+K̂�̂�WW+Z>+K�̂k

� kZ>+K̂�̂� Z>+K�̂k � kK̂�̂�K�̂k

� kK̂ �Kk1:

The last two inequalities result from the reverse triangle inequality for the infinity norm. Combining
the last line with the upper bound on kV1 � V �k, the result follows. �

In numerical implementations, the fact that reduced value iteration is stopped after a finite
number of iterations causes a last source of error. Since the convergence is fast, it will often be
negligible compared to the other approximations.

Proposition 2. For �0 2 RW, let �k+1 = MK̂�k for k � 1. Then denoting as �̂ the unique fixed
point of M � K̂:

kW�k �W�̂k1 � k�k � �̂k1 � 
kk�0 � �̂k1:

4.2. Projection Error. For any V 2 RS, W>+W>V = �WW+(�V ), so we only consider the
projection error for WW+ (lower projection).

Proposition 3. Let c > 0 and (A1; :::; An) a partition of S where each Ai is convex, compact
and non-empty, and let D = max1�i�n diam(Ai) where diam(Ai) = maxs;s02Ai

ks � s0k. Let
W1 = fw1

1; :::; w
1
ng and W2 = fw2

1; :::; w
2
ng defined by:

8i 2 f1; :::; ng;8s 2 S;

(
w1
i (s) = �c1dist(s;Ai)

w2
i (s) = �c2dist(s;Ai)2:

If V has Lipschitz constant L and c1 � L, c2 � L
4D , then

kV �W1W
+
1 V k1 � LD

kV �W2W
+
2 V k1 � LD +

L2

4c2
� 2LD:

Proof. For s 2 S,

WW+V (s) � max
w

w(s) + V (s)� w(s) � V (s):

On the other hand, 9i 2 f1; :::; ng s.t. s 2 Ai. Then:

WW+V (s) = max
w

w(s) + inf
s0
V (s0)� w(s0)

� wi(s)| {z }
=0

+ inf
s0
V (s0)� wi(s0):

The Lipschitz continuity of V implies that for p 2 f1; 2g:

WW+V (s) � V (s) + inf
s02S
fcpdist(s0; Ai)p � Lks� s0kg ;

and the results follow using ks� s0k � diam(Ai) + dist(s0; Ai):
�

Unlike for smooth or Lipschitz-continuous basis functions [AGL08, Bac19], there is no depen-
dency in c in the bound, for c large enough. This avoids oscillations of the approximation when c
is chosen too large and simplifies parameter selection.
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5. Comparison with the Method of Akian, Gaubert & Lakhoua for
Control Problems

Deterministic MDPs and optimal control problems are closely related. Applying our method to
an MDP that is a time-discretization of a control problem is similar to directly applying the original
method by [AGL08] to the control problem. Let 0 � � < 1 be a discount factor, �r : S�A! [�R;R],
f : S�A! Rd and define the optimal control problem [FS06]:

sup
a(:)

Z +1

0

�t�r(s(t); a(t))dt;

with s(0) = s0;8t � 0; _s(t) = f(s(t); a(t)), (s(t); a(t)) 2 S�A.

5.1. Time-Discretization of a Control Problem. A control problem can be approximated
by a state-continuous MDP by time-discretization. The corresponding time-discretized MDP with
step � > 0 and Euler scheme is:

r(s; a) = � �r(s; a); ’a(s) = s+ �f(s; a); 
 = �� :

For � > 0, the continuous- and discrete-time Bellman operators S� ; T� : RS ! RS are defined by,
for each u 2 RS:

(S�u)(s) := sup
a(:)

Z �

0

�t�r(s(t); a(t))dt+ ��u(s(�))

(T�u)(s) := max
a

� �r(s; a) + ��u(s+ �f(s; a)):

Under regularity assumptions, the value function of the MDP converges to the value function of
the control problem [TBO19]. This is obtained in a similar way as the Hamilton-Jacobi-Bellman
(HJB) equation [FS06].

5.2. Hamiltonian Approximation for the Oracle Subproblem. For a continuous-time con-
trol problem, in the approximation method, T is the continuous Bellman operator S� . The HJB
equation provides a first order approximation [AGL08] of S�w with respect to the horizon � :

S�w(s) = sup
a(:)

Z �

0

�t�r(s(t); a(t))dt+ ��w(s(t+ �))

= sup
a2A

� �r(s; a) + o(�) + (1 + � log � + o(�))

� (w(s) + �rw(s) � f(s; a) + o(�))

= (1 + � log �)w(s) + �H(s;rw) + o(�);

where H(s; p) := supa2A �r(s; a) + p � f(s; a) is the Hamiltonian of the control problem. Instead of
optimizing over S, a second approximation made by [AGL08] is to consider only s0 2 S(z; w) :=
argmaxs z(s) +w(s), since hz; Twi is a perturbation of hz; wi for � small. The final approximation
is:

hz; Twi ’ sup
s2S(z;w)

z(s) + (1 + � log �)w(s) + �H(s;rw):

This is a valid approximation up to O(�
p
�) terms, if the Hamiltonian is Lipschitz-continuous and

z + w is strongly concave. This prevents the use of Lipschitz bases for Z and W at the same
time in [AGL08]. Without these assumptions, the approximation is weaker, in O(�), breaking the
convergence of the method. In this case, one cannot avoid optimizing on s. [McE03] and [AGL08]
use the first order approximation, but � is a parameter of their method that can be made arbitrarily
small. In the context of MDPs, � is fixed and in principle it cannot be modified while solving the
MDP. Besides, some MDPs are not natural time-discretizations of control problems.

For control problems, time-discretization and Hamiltonian approximation result in the same
approximation of hz; Twi, up to o(�) terms (or O(�2) assuming more regularity on w):

K̂z;w = sup
s;a

z(s) + � �r(s; a) + ��w(s+ �f(s; a))

= sup
s
z(s) + (1 + � log �)w(s) + �H(s;rw) + o(�):
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If � is not negligible, the Hamiltonian approximation is no longer valid, nor the approximate
computation of hz; S�wi. On the other hand, the computation of hz; T�wi is still valid, but the
MDP no longer approximates the control problem.

After convergence of the reduced value iteration, our method provides an approximation of the
value function of the control problem with an error of order

O
�
D=� + � + kK̂ �Kk1=�

�
;

where D is the maximal diameter of the partition, which is similar to [AGL08]. Reaching a fixed
precision requires a number of basis functions exponential in the dimension d. Exploiting the
structure of the problem like [GMQ11] may reduce this effect.

Remark on the use of T �: As previously mentioned, T �� can be used for � � 1, instead of T� . In
the error bounds, � is replaced by ��, which can be advantageous for D fixed. Considering only
constant actions during � steps, T �� is very close to T��, up to the Euler scheme used to compute
the dynamics (� steps of size � vs. one step of size ��).

6. Adaptive Selection of Basis Functions

From a partition (A1; :::; An) of the state space, we define a dictionary W = Z of soft-indicators
wi(:) = �cdist(:; Ai)2. Running Algorithm 1 with this dictionary returns a value function that is
almost piecewise constant with respect to the partition (when c is large). This is a way to discretize
the MDP, but the performance of the final policy will depend on the partition [MM02, BS08].
Typically, a uniform partition of S might not be the best choice for all MDPs. For instance
some areas of S with very low optimal value function are usually not encountered in optimal
trajectories, hence spending computational power there would be useless. On the contrary, a
sharper approximation of the value function in other areas is critical to the performance of the
policy.

We propose an algorithm to build the partition adaptively, with a simple greedy heuristic.
Starting from a coarse partition, we compute the approximate value function, and then we select
one of the (Ai)1�i�n that we want to refine, according to some criterion to be described later.
Then we split this cluster into new sub-clusters partitioning it and replace it by them in the
partition. If the clusters are rectangular parallelepipeds in dimension d, a simple splitting strategy
is to subdivide it into 2d smaller parallelepipeds, by a middle cut along each dimension. In a
two-dimensional state space, this corresponds to building a quadtree [FB74]. Formally, a cluster A
with a soft-indicator w is split into C1; :::; C2d :

A =

2d[
j=1

Cj with 8i 6= j 2 f1; :::; 2dg; Ci \ Cj = ?:

Criterion for cluster selection: The efficiency of the partition hinges on the strategy used to
select the cluster to split at each step. We maintain a dictionary W of soft-indicators associated
to a partition (A1; :::; An) and another dictionary Z with partition (B1; :::; Bn). Following the
idea of matching pursuit [MZ93], a simple heuristic is to split the cluster with highest Bellman
error jTV (s)� V (s)j. Since two dictionaries are maintained, the origin of this error will be shared
between W and Z, which will lead to a possibly different cluster selected in each dictionary.

We define a grid G = (s1; :::; sp) covering S where we evaluate the Bellman error. Assuming
the hz; Twi are computed exactly, after convergence of reduced value iteration, we obtain fixed
points � and � such that: (

� = K� = Z>TW�

� = M� = W+Z>+�:

Let V = W� and U = Z>+�, we get V = WW+U and Z>+Z>TV = U , and then the decompo-
sition:

V � TV = (V � Z>+Z>TV ) + (Z>+Z>TV � TV )

= (V � U) + (U � TV ):
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For s 2 G, jV (s) � TV (s)j � jV (s) � U(s)j + jU(s) � TV (s)j. The first term is the difference
between U and its lower projection on the span of W, the second one between TV and its upper
projection on the span of Z. This suggests to:

� select cluster A 3 s 2 argmaxs2G U(s)� V (s) in W,
� select cluster B 3 s 2 argmaxs2G U(s)� TV (s) in Z.

This strategy greedily targets areas of S where the projection errors should be reduced and
refines the dictionaries locally. One could imagine other selection criteria, such as favoring areas
with high value function or near the initialization of the trajectories if it is fixed. Alternative
strategies [Bac19] include using basis functions depending on a subset of the state variables to
capture local lower-dimensional dependencies. Furthermore, online methods could be applied to
incorporate exploration, especially techniques based on upper-confidence bounds, as done in [BS08]
on a similar problem.

7. Experiments

Setting: We test our method on two standard deterministic MDPs from the gym library of
reinforcement learning environments [BCP+16]. Both are time-discretizations of control problems,
with state dimension 2 in Mountain, 4 in Cartpole. We test uniform max-plus partitions and the
adaptive basis procedure, with respectively � = 5 and � = 1 for problems 1 and 2. For comparison,
we also run standard value iteration on discretizations of the MDPs. To ensure differentiability, the
reward function is slightly smoothed as a sigmoid function for all three methods; 
 is set identical
across methods (
 = 0:999 in problem 1, 0:99 in problem 2).

The optimal value function V � being unknown, the methods cannot be evaluated by kV �
V �k1. Instead we evaluate the performance of the greedy policy � with respect to V on the task.
The standard performance criterion proposed by gym is the cumulative reward averaged on 100
consecutive runs. The randomness only comes from the initialization of the trajectories drawn
from a Gaussian around equilibrium positions. The results are plotted in Figures 1 and 2. We give
the mean cumulative reward in solid line, as well as the first and third quartiles in shaded colors.
The x-axis represents the number of parameters of the value function, that is, either the number
of basis functions in the dictionaries W or Z or the number of states in the direct discretization of
the MDP.

Results: Value iteration on the discretized MDP requires a very sharp discretization to get
an efficient policy. While it is still achievable for such small MDPs, it is not reliable in higher
dimension. The max-plus approximation computes almost piecewise constant value functions that
lead to efficient policies for a much smaller number of parameters. On Mountain, the number of
parameters is reduced from 105 to 102 from a direct discretization to the max-plus discretization, for
similar performances of the policies. Finally, the adaptive basis selection method further improves
the ratio between performance and number of parameters. It provides compact representations
of V , faster to compute and leading to faster online evaluations of � during inference.

8. Conclusion

The max-plus linear approximation method for deterministic continuous-state MDPs with a
suitable choice a basis functions provides an intuitive state-discretization. While it is still subject
to the curse of dimensionality, the discretization can be adapted to a specific MDP and turns out
to be effective in numerical examples. The same approach can be adapted to the Q-function for
deterministic MDPs, although the potential benefits are unclear in a model-based setting. The
extension to non deterministic MDPs is not straightforward and provides an interesting avenue for
future research.

Acknowledgements

This work was supported by the Direction Générale de l’Armement, and by the French gov-
ernment under management of Agence Nationale de la Recherche as part of the “Investissements
d’avenir” program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).



10 MAX-PLUS LINEAR APPROXIMATIONS FOR DETERMINISTIC CONTINUOUS-STATE MDPS

Figure 1. Average performance of the three approximation methods on Mountain
as a function of the number of parameters.

Figure 2. Average performance of the three approximation methods on Cartpole
as a function of the number of parameters.
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