Abstract : Designing editing cuts for cinematic Virtual Reality (VR) has been under active investigation. Recently, the connection has been made between cuts in VR and adaptive streaming logics for 360 • videos, with the introduction of rotational snap-cuts. Snap-cuts can benefit the user's experience both by improving the streamed quality in the FoV and ensuring the user sees important elements for the plot. However, snap-cuts should not be too frequent and may be avoided when not beneficial to the streamed quality. We formulate the dynamic decision problem of snap-change triggering as a model-free Reinforcement Learning. We express the optimum cut triggering decisions computed offline with dynamic programming and investigate possible gains in quality of experience compared to baselines. We design Imitation Learning-based dynamic triggering strategies, and show that only knowing the past user's motion and video content, it is possible to outperform the controls without and with all cuts.