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Abstract In this paper we construct a family of ternary interpolatory Hermite
subdivision schemes of order 1 with small support and HC2-smoothness. Indeed,
leaving the binary domain, it is possible to derive interpolatory Hermite subdivi-
sion schemes with higher regularity than their binary counterparts. The family of
schemes we construct is a two-parameter family whose HC2-smoothness is guar-
anteed whenever the parameters are chosen from a certain polygonal region. The
construction of this new family is inspired by the geometric insight into the ternary
interpolatory scalar three-point subdivision scheme by Hassan and Dodgson. The
smoothness of our new family of Hermite schemes is proven by means of joint
spectral radius techniques.
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1 Introduction

This paper focuses on Hermite subdivision schemes which are iterative algorithms
for approximation or interpolation of given vector-valued discrete data consisting
of function values and associated consecutive derivatives. Our main goal is to
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show, by applying the joint spectral radius techniques, that even in the Hermite
case ternary subdivision schemes achieve higher smoothness than their binary
counterparts. Furthermore we show that this can be done without a significant
increase of the support of the mask. It is well known that such a phenomenon
occurs in the scalar case, see e.g. [24]. However, the Hermite ternary case is more
challenging.

1.1 Motivation and novel contributions

As well known, it is a difficult task to keep the support size of a subdivision scheme
small while increasing its smoothness. These two notions are mutually conflicting
because high smoothness generally requires masks of large support. This leads to
an undesired more global influence of each initial data value on the limit function.
Increasing the a-rity of the subdivision scheme is one of the possible ways to
overcome this problem.

In this paper, we propose a new two-parameter family of ternary three-point Her-

mite schemes for vector-valued data consisting of function values and associated
first derivatives. These parameters are used to control the convergence and the
regularity of the corresponding Hermite scheme. We show that, if the parameters
are chosen from a certain polygonal domain of the parameter plane, the associated
Hermite scheme is HC2-convergent instead of HC1-convergent as usually expected
for a scheme of order 1. In section 2.1, to derive our family of Hermite schemes
we provide a new geometric interpretation of the family of ternary interpolatory
scalar three-point subdivision schemes in [23]. This family is a one-parameter fam-
ily which is C1-smooth for a certain parameter range. In Section 2.2, we extend
this scalar scheme to the Hermite case. The analysis of the convergence and reg-
ularity of the Hermite family is given in Section 3 where we present two different
approaches: The classical approach for regularity analysis of vector subdivision
schemes combined with the HC0 convergence analysis of HA and the classical ap-
proach for regularity analysis of Hermite subdivision schemes. These approaches
involve the so-called joint spectral radius methods, difference operator technique
and the corresponding extended scheme, respectively. The combination of these
different methods, allows us to identify the convergence and regularity regions of
the parameter plane and to identify the optimal parameters. Thus, we identify a
whole class of Hermite interpolatory schemes whose regularity is higher than that
of their binary counterparts of the same order in [28].

1.2 Background on vector and Hermite subdivision schemes

Let d ∈ N0 be an integer number. Vector subdivision schemes of dimension d + 1
are iterative algorithms based on subdivision operators that generate denser and
denser sequences gn, n ∈ N, of vector-valued data from some initial vector-valued
sequence g0 = {g0(α) ∈ Rd+1, α ∈ Z} in `d+1 (Z), the set of d + 1-dimensional
vector sequences indexed by Z. Loosely speaking, the ratio between the number
of elements in gn+1 to the number of elements in gn, assumed to be independent
of n, is called the a-rity of the corresponding scheme.
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In this paper we study ternary (3-arity) vector subdivision schemes. The asso-
ciated level-dependent linear subdivision operators SAn : `d+1 (Z) → `d+1 (Z), for
any n ∈ N0, map the sequences gn = {gn(α), α ∈ Z} into gn+1 = {gn+1(α), α ∈ Z}
and are defined by

gn+1(α) := (SAngn) (α) gn(β), α ∈ Z, n ∈ N0. (1)

(SAngn) (α) :=
∑
β∈Z

An (α− 3β) gn(β), α ∈ Z, n ∈ N0. (2)

At each level n of the subdivision recursion, the matrix coefficients in (2) are
taken from the matrix-valued sequence An := {An(α) ∈ R(d+1)×(d+1), α ∈ Z},
called the level n subdivision mask. In our case, the sequence {An, n ∈ N0} contains
masks An of the same finite support, i.e. suppAn := {α ∈ Z : An(α) 6= 0} ⊆
[−N,N ] for some N ∈ N. The (d+ 1)× (d+ 1) matrix-valued Laurent polynomials

A∗n(z) :=
∑
α∈Z

Anz
α, z ∈ C \ {0}, n ∈ N0,

are the associated mask symbols.

The vector subdivision scheme is the repeated application of the subdivision
operators in (2) to the starting vector-valued sequence g0 ∈ `d+1(Z), i.e.

Input {An, n ∈ N0} and g0
For n = 0, 1, . . .

gn+1 := SAngn

(3)

This paper deals with two kinds of vector schemes of dimension d+1. The first
one is a stationary vector subdivision scheme SA with the level-independent masks
An = A = {A(α) ∈ R(d+1)×(d+1), α ∈ Z}, n ∈ N0, and with the level-independent
subdivision operators SAn = SA, n ∈ N0. For simplicity, we call this stationary
subdivision scheme SA as it is fully determined by the corresponding subdivision
operator SA. Such vector subdivision schemes have been studied by many authors
e.g. [1], [2] , [3] , [5], [7] ,[11], [20], [26] and reference therein.

The second type of vector subdivision schemes that we consider are Hermite

subdivision schemes HA of dimension d + 1 and order d. For a given mask A =
{A(α) ∈ R(d+1)×(d+1), α ∈ Z} with finite support, the associated level-dependent
(non-stationary) linear Hermite subdivision operators HAn : `d+1(Z) → `d+1(Z)
are given by

fn+1(α) := (HAnfn) (α) =
∑
β∈Z

D−n−1A(α− 3β)Dnfn(β), α ∈ Z, n ∈ N0,

(4)
with the diagonal matrix D = diag(1, 1/3, . . . , 1/3d) ∈ R(d+1)×(d+1).
Note that the masks

D−n−1ADn = {D−n−1A(α)Dn, α ∈ Z}, n ∈ N0,

in (4) have a very special type of level-dependence. For simplicity, we call this
Hermite subdivision scheme HA to emphasize this special type of the dependency
on the mask A. Moreover, if HA is convergent, in the sense of Definition 2, the
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vector-valued elements fn(α) are to be interpreted, for large n, as approximations
to the function values and the successive derivatives of the corresponding limit
function Φf0

= lim
n→∞

HAn . . . HA0
f0 evaluated at 3−nα, i.e.

bffn(α) =


fn(α)
f ′n(α)

...

f
(d)
n (α)

 ≈ Φf0
(3−nα) =


φ(3−nα)
φ′(3−nα)

...

φ(d)(3−nα)

 , α ∈ Z.

Hermite schemes, introduced [28] in have been studied by several authors [9], [10],
[14], [16], [17], [21], [25].

We observe that, since (4) can be rewritten as

Dn+1fn+1(α) =
∑
β∈Z

A(α− 3β)Dnfn(β), α ∈ Z, n ∈ N0, (5)

each Hermite subdivision operator HAn of order d and the stationary vector op-
erator SA of dimension d+ 1 are related by

Dn+1 (HAnfn) (α) = (SAD
nfn) (α), α ∈ Z, n ∈ N0. (6)

Thus, the (stationary) vector subdivision scheme SA is called the stationary coun-

terpart of HA.

We continue by defining the convergence and the regularity of SA and HA.

Definition 1 A ternary vector subdivision scheme SAis called

i) convergent, if for every initial vector sequence g0 ∈ `d+1(Z) and the correspond-
ing sequence of refinements in (2), gn = SnA g0, n ∈ N0, there exists a continuous
vector function Φg0

: R→ Rd+1, such that for every compact subset K ⊂ R

lim
n→∞

max
α∈Z∩3nK

‖Φg0
(3−nα)− gn(α)‖∞ = 0;

ii) C`–convergent, ` ∈ N, if Φg0
∈ C`(R) for every initial vector sequence g0 in

`d+1
∞ (Z);

iii) contractive, if Φg0
= 0 for every initial sequence g0 in `d+1(Z).

We also make use of the following notion of convergence that better captures the
intrinsic structure of Hermite subdivision schemes.

Definition 2 A ternary Hermite subdivision schemeHA of order d, isHC`–convergent
with ` ≥ d, if for any initial vector sequence f0 ∈ `d+1 (Z) and the correspond-
ing sequence of refinements fn = HAn · · ·HA0

f0, n ∈ N0, in (4), there exists a
vector-valued function Φf0

: R → Rd+1, Φf0
= [φ(i)]i=0,...,d ∈ C`−d (R) with

φ = φ(0) ∈ C` (R) and φ(i) =
diφ(0)

dxi
, i = 1, . . . , d such that for every compact

subset K ⊂ R
lim
n→∞

max
α∈Z∩3nK

‖Φf0

(
3−nα

)
− fn(α)‖∞ = 0 .
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Note that the notions of C`-convergence for a vector scheme SA and HC`-
convergence for a Hermite scheme HA are intrinsically different. The first notion
in Definition 1 refers to the minimal smoothness of the entries in Φg0

while the
second one in Definition 2 to the maximal one of the entries in Φf0

. In other

words, due to (6), if we look at a HC`-convergent Hermite scheme simply as a
vector scheme it is only C`−d-convergent. Moreover, again due to (6), convergence
and regularity SA does not imply convergence and regularity HA.
In this paper we make use of the following concept of ternary interpolatory sub-
division scheme.

Definition 3 A ternary Hermite subdivision scheme HA is called interpolatory, if

A(0) = D and A(3α) = 0, α ∈ Z, α 6= 0.

Note that a Hermite interpolatory scheme in (4) generates vector sequences satis-
fying

fn+1(3α) = fn(α), for α ∈ Z, n ∈ N0.

2 Construction of ternary Hermite subdivision schemes

In this section, we construct a two-parameter family of interpolatory ternary Her-
mite subdivision schemes of order d = 1, i.e. of dimension 2. By construction, each
scheme from this family reproduces quadratic polynomials. The suitable range of
the parameters is given in Section 3. To derive this new family of Hermite scheme,
we first present, see Subsection 2.1, an alternative way for defining the ternary
interpolatory scalar 3-point subdivision scheme in [23]. This new interpretation of
the scheme is generalized to the Hermite case in Subsection 2.2.

2.1 Scalar case

2.1.1 Lagrange interpolants

We start by determining two special cubic interpolants P` and Pr to the data
(α, pα) with pα ∈ R, α ∈ {−1, 0, 1}. The corresponding interpolation problems are
underdetermined and we choose

P`(t) := p0 + `1t+ `2t
2 + λ(p−1−2p0+p1)t3, t ∈ R,

Pr(t) := p0 + r1t+ r2t
2 − λ(p−1−2p0+p1)t3, t ∈ R,

(7)

to ensure P`(0) = Pr(0) = p0 and to introduce a free parameter λ ∈ R. Note that
λ controls the second difference p−1−2p0+p1 and will be useful for controlling the
regularity of the scalar ternary scheme in Subsection 2.1.2. The coefficients

`1 = −λ(p−1 − 2p0 + p1) + 1
2 (p1 − p−1), `2 = 1

2 (p−1 − 2p0 + p1),

r1 = λ(p−1 − 2p0 + p1) + 1
2 (p1 − p−1), r2 = 1

2 (p−1 − 2p0 + p1),
(8)

are determined from two linear systems of equations derived from the interpolation
conditions P`(α) = Pr(α) = pα for α ∈ {−1, 1}.
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Remark 1 If π ∈ P1 and pα = π(α), α ∈ {−1, 0, 1}, then, by construction,

P` = Pr = π. (9)

Moreover, for λ = 0, Equation (9) holds for π ∈ P2, see Figure 1.

Fig. 1 Interpolants P` (dashed) and Pr (dotted) for λ = 0, 0.5,−1, respectively, with the
corresponding evaluation points.

2.1.2 Ternary scalar subdivision scheme

To define the corresponding ternary scalar subdivision operator Sa : `(Z)→ `(Z),

fn+1 := Safn =
∑
β∈Z

a(· − 3β)fn(β), fn = {fn(α), α ∈ Z}, n ∈ N0,

we choose the initial sequence f0 = {f0(α), α ∈ Z} with

f0(α) = pα, α ∈ {−1, 0, 1} and f0(α) = 0, α 6= −1, 0, 1,

and set

f1(−1) = P`(−1/3), f1(0) = Pr(0) = P`(0) = p0, f1(1) = Pr(1/3).

Therefore, the following linear system of equations∑
β∈{−1,0,1}

a(−1− 3β)pβ = P`(−1/3) =
1

27

(
(6 + 8λ)p−1 + (24− 16λ)p0 + (−3 + 8λ)p1

)
,

∑
β∈{−1,0,1}

a(−3β)pβ = p0,

∑
β∈{−1,0,1}

a(1− 3β)pβ = Pr(1/3) =
1

27

(
(−3 + 8λ)p−1 + (24− 16λ)p0 + (6 + 8λ)p1

)
uniquely identifies the mask

a = {. . . , 0, u, 0, v, 1− u− v, 1, 1− u− v, v, 0, u, 0, . . .}, (10)

where u :=
−3 + 8λ

27
, v :=

6 + 8λ

27
and where 1 is at the position α = 0. For every

λ ∈ R, the mask a is symmetric and is supported on [−4, 4].
Note that u = v−1/3 and that (10) defines the one-parameter family of subdivision
schemes in [23] whose convergence and C1 smoothness is proved for 2/9 < v < 3/9.
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2.2 A family of Hermite subdivision schemes of order 1

2.2.1 Hermite interpolants

We generalize the idea described in Subsection 2.1 to the Hermite case. We start
by solving the Hermite interpolation problem for the given data (α, pα, p

′
α), α ∈

{−1, 0, 1}, and for two sextic Hermite interpolants of the form

PH,`(t) := p0 + p′0t+
4∑
i=1

`it
i+1 + (λδ′ + µδ)t6,

PH,r(t) := p0 + p′0t+
4∑
i=1

rit
i+1 − (λδ′ + µδ)t6,

(11)

with

δ′ = p′−1 − 2p′0 + p′1 and δ =
p1 − p−1

2
− p′0 .

Note that the polynomials in (11) automatically satisfy the Hermite-type in-
terpolation conditions

PH,`(0) = PH,r(0) = p0 and P ′H,`(0) = P ′H,r(0) = p′0.

Note also that the parameters λ, µ ∈ R in (11) are introduced to control

the differences p′−1 − 2p′0 + p′1 and
p1 − p−1

2
− p′0 and influence the regularity

of the corresponding Hermite subdivision scheme in Subsection 2.2.2. In fact,
for every function ϕ ∈ C3([−1, 1]), both differences ϕ′(−1) − 2ϕ′(0) + ϕ′(1) and

6

(
ϕ(1)− ϕ(−1)

2
− ϕ′(0)

)
are approximations of ϕ(3)(0).

The remaining coefficients in (11)

`1 = A−B + λδ′ + µδ, r1 = A−B − λδ′ − µδ,
`2 = r2 = 5δ/2− δ′/4,
`3 = B −A/2− 2λδ′ − 2µδ, r3 = B −A/2 + 2λδ′ + 2µδ,
`4 = r4 = δ′/4− 3δ/2,
A = p−1 − 2p0 + p1, B = (p′1 − p′−1)/4,

(12)

are determined by solving two linear systems of equations derived from the re-
maining Hermite interpolating conditions PH,`(α) = PH,r(α) = pα and PH,`

′(α) =
PH,r

′(α) = p′α for α = −1, 1.

Remark 2 If π ∈ P2 and pα = π(α), p′α = π′(α), α ∈ {−1, 0, 1}, then, by con-
struction, the polynomial reproduction property of the Hermite interpolants is
guaranteed and

PH,` = PH,r = π. (13)

Moreover, for λ = µ = 0, Equation (13) holds for every π ∈ P5, see Figure 2.
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Fig. 2 Hermite interpolants PH,` (dashed) and PH,r (dotted) for (µ, λ) =
(0, 0), (2, 6), (−6,−2), respectively, with corresponding evaluation points and derivatives.

2.2.2 Ternary Hermite subdivision scheme

Similarly to Subsection 2.1.2, for D =

(
1 0
0 1/3

)
, to define the corresponding

ternary Hermite subdivision scheme in (4), we choose the initial vector-valued

sequence f0 = {
(
f0(α), f ′0(α)

)T
, α ∈ Z} with

f0(α) = pα, f ′0(α) = p′α, α ∈ {−1, 0, 1} and f0(α) = f ′0(α) = 0, α 6= −1, 0, 1,

and choose the sequence f1 = {
(
f1(α), f ′1(α)

)T
, α ∈ Z} with

f1(−1) = PH,`(−1/3), f1(0) = p0, f1(1) = PH,r(1/3),

f ′1(−1) = P ′H,`(−1/3), f ′1(0) = p′0, f ′1(1) = P ′H,r(1/3).

Due to interpolation, we immediately deduce that

A(3α) = δ0αD, α ∈ Z.

To compute the other components of the mask A = {A(α), α ∈ Z}, we express the
polynomials in (11) as

PH,s(t) =
∑

α∈{−1,0,1}

pαHα,s,0(t)+ (14)

where the polynomials Hα,s,k for α ∈ {−1, 0, 1} and k ∈ {0, 1} are obtained
from (11) imposing the cardinal Hermite interpolation conditions

Hα,s,0(β) = δαβ , H
′
α,s,0(β) = 0, β = −1, 0, 1, s ∈ {`, r},

Hα,s,1(β) = 0, H ′α,s,1(β) = δαβ , β = −1, 0, 1, s ∈ {`, r}.

Then, for s ∈ {`, r}, the matrix form of the conditions on f1 at α` = −1 and αr = 1
read as follows(

f1(αs)
f ′1(αs)

)
=

(
H−1,s,0(αs/3) H−1,s,1(αs/3)
H ′−1,s,0(αs/3) H ′−1,s,1(αs/3)

)(
f0(−1)
f ′0(−1)

)
+

(
H0,s,0(αs/3) H0,s,1(αs/3)
H ′0,s,0(αs/3) H ′0,s,1(αs/3)

)(
f0(0)
f ′0(0)

)
+

(
H1,s,0(αs/3) H1,s,1(αs/3)
H ′1,s,0(αs/3) H ′1,s,1(αs/3)

)(
f0(1)
f ′0(1)

)
.
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The linear system corresponding to

Df1(α) =
∑

β∈{−1,0,1}

A(α− 3β)f0(β), α = −1, 1,

for the chosen f0 and f1, uniquely identifies the remaining entries of the matrix
mask A supported on [−4, 4] by taking into account that the grid spacing reduces
at each subdivision step by 1/3 (so that the factor 1/3 appears when computing
derivatives of (14))

A(−4) = D · 1
729

(
32µ+ 45 64λ− 12
−144µ− 162 −288λ+ 45

)
, A(−3) =

(
0 0
0 0

)
,

A(−2) = D · 1
729

(
−32µ+ 108 −64λ− 24
−144µ+ 702 −288λ− 144

)
,

A(−1) = D · 1
729

(
576 −128λ− 64µ− 192
864 576λ+ 288µ+ 288

)
,

A(0) = D, A(1) = D · 1
729

(
576 128λ+ 64µ+ 192
−864 576λ+ 288µ+ 288

)
,

A(2) = D · 1
729

(
−32µ+ 108 64λ+ 24
144µ− 702 −288λ− 144

)
,

A(3) =

(
0 0
0 0

)
, A(4) = D · 1

729

(
32µ+ 45 −64λ+ 12

144µ+ 162 −288λ+ 45

)
.

(15)

Note that, by the support estimates in [8] which are also valid for Hermite schemes,
the support of the basic limit function of the scheme defined in (15) is [−2, 2].

3 Regularity analysis of the Hermite family

We recall that our motivation for the construction in Section 2 is a derivation of
a class of ternary Hermite schemes of order d = 1 which for specific parameter
values of λ and µ are at least HC2-smooth.

To this purpose, several regularity analysis approaches are available based on
joint spectral radius, difference (Taylor) operators or their combination. We ob-
serve that while the joint spectral radius approach is fully developed for general
dilation factors and therefore applicable in the ternary case (see [4], [6], [7] for
more details), the approaches based on Taylor operators are stated for the binary
case only. In any case, the generalization of the Taylor theory to the case of general
a-rity is believed to be straightforward.

The analysis of our Hermite family of subdivision schemes HA via joint spectral
radius techniques could be done in three different ways (detailed below): firstly,
by the analysis of C2-regularity of the stationary counterpart SA combined with
convergence analysis of the Taylor subdivision scheme SB associated with SA;
secondly, by the analysis of C1-regularity of SB; lastly, by the analysis of contrac-
tivity of the complete Taylor subdivision scheme SB̃+

associated with the extended

scheme SA+
derived from SA.

Using the first approach, we observe that the domain of C2-convergence of SA
intersected with the convergence domain of SB provides the parameter range for
HC2-convergence of HA . This parameter range coincides with the parameter range
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obtained by C1-regularity analysis of SB corresponding to the second approach.
Therefore, we decided not to present the related details. The third approach, based
on the contractivity analysis of SB̃+

is used for checking the correctness of our
computations.

In particular, in Subsection 3.1 we define and construct the Taylor operator SB
associated with SA while in Subsection 3.2, we shortly recall the basic facts about
the joint spectral radius techniques and apply them to SA and to SB to identify a
polygonal parameter region ofHC2-convergence, see Figure 3. In Subsection 3.3, we
follow the approach based on the construction of the complete Taylor subdivision
scheme SB̃+

associated with the extended scheme SA+
derived from SA and identify

what we call optimal parameter values which ensure better visual quality of the
limit curves.

3.1 Taylor subdivision operator SB

In this section, we construct the Taylor operator SB which is used for the regularity
analysis of HA in subsection 3.2.2. The Taylor operator was proposed in [29], and
its symbol satisfies the following identity(

z − 1 −1
0 1

)
A∗(z) =

1

3
B∗(z)

(
z3 − 1 −1

0 1

)
, z ∈ C \ {0},

where A∗(z) is the symbol associated with the subdivision operator SA and B∗(z)
the symbol associated with the Taylor operator SB. In our specific situation, com-
putation of the symbol B∗(z) gives the mask B (to be divided by the integer
243)

B(−5) =

(
−16µ− 9 32λ− 16µ− 12
48µ+ 54 48µ− 96λ+ 69

)
, B(−4) =

(
−32µ− 45 64λ− 32µ− 57

0 0

)
,

B(−3) =

(
342− 80µ 160λ− 80µ+ 414
48µ− 234 48µ− 96λ− 282

)
, B(−2) =

(
16µ+ 747 819− 16µ− 128λ
48µ− 234 192λ+ 144µ− 138

)
,

B(−1) =

(
108− 32µ −128λ− 96µ− 327

0 243

)
, B(0) =

(
−80µ− 99 −320λ− 240µ− 387
48µ+ 54 192λ+ 144µ+ 150

)
,

B(1) =

(
32µ+ 45 160λ+ 96µ+ 261

0 −96λ− 48

)
, B(2) =

(
0 64λ+ 24
0 0

)
,

B(3) =

(
0 160λ− 27
0 15− 96λ

)
, B(4) =

(
0 12− 64λ
0 0

)
.

(16)

3.2 HC2 regularity via joint spectral radius

The joint spectral radius approach for regularity analysis of scalar binary refinable
functions was introduced in [13] and has been generalized to various different
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situations ever since. We recall that the joint spectral radius of a finite matrix set
T = {Tj ∈ Rn×n : j = 1, . . . , J}, J ∈ N, was introduced in [33] and is defined by

ρ(T ) = lim
n→∞

max
Tk∈T

∥∥ n∏
k=1

Tk
∥∥1/n. (17)

The limit in (17) exists and is independent of the matrix norm. It is well known
that the joint spectral radius measures the joint contractivity of the matrices in T .

The study of HC2-regularity of HA consists of several steps. Firstly, the algo-
rithm in [6, Lemma 3.8] allows to determines the transition matrices for SA and
SB derived from the parameter dependent subdivision masks in (15) and (16).
The invariant common subspaces of these matrices, crucial for our regularity anal-
ysis, are determined from the polynomial reproduction properties of the Hermite
schemes. Then, the recent advances in numerical linear algebra allow for exact
computations of the joint spectral radius of finite sets of transition matrices re-
stricted to common difference subspaces [18], [19], [32]. Moreover, to treat the
parameter dependency of the transition matrices, we use the techniques presented
in [4, Theorem 3.2, Remark 3.5 (iii)].

3.2.1 Transition matrices for SA and SB

We start by constructing the transition matrices used for the regularity analysis
of the vector subdivision scheme SA associated with the matrix mask A in (15).
These transition matrices TAε ∈ R8×8 are 4 × 4 block matrices consisting of 2 × 2
matrix blocks AT (ε+ 3α− β)

TAε =
(
AT (ε+ 3α− β)

)
α,β∈ΩA

ε ∈ {0, 1, 2}, ΩA = {−2,−1, 0, 1}.

The polynomial reproduction properties of HA guarantee that the polynomial
sequences

u0 =

{(
1
0

)
: α ∈ Z

}
, u1 =

{(
α

1

)
: α ∈ Z

}
and u2 =

{(
α2

2α

)
: α ∈ Z

}
, (18)

are polynomial eigensequences of the subdivision operator SA, i.e.

SAum =

(
1

3

)m
um, m = 0, 1, 2.

The structure of u0 indicates [12] that the basic limit function of the scheme SA
has the form

ΦG0
= lim
n→∞

SnAG0 =

(
φ1 φ2
0 0

)
, G0 = δI2,

with φ1 and φ2 being first components of the corresponding Hermite limits of HA.
Therefore, to show that the Hermite scheme HA is HC2-smooth, we need to show
that φ1, φ2 belong to C2(R).
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By [1, Theorem 3.1], the subspaces of R8 spanned by

{(
1
0

)}
α∈ΩA

=



1
0
1
0
1
0
1
0


,

{(
α

1

)}
α∈ΩA

=



−2
1
−1

1
0
1
1
1


,

{(
α2

2α

)}
α∈ΩA

=



4
−4

1
−2

0
0
1
2


,

are right-invariant under all TAε , ε ∈ {0, 1, 2}, and the difference subspaces V A0 ,
V A1 and V A2

V A0 =



1 0 0 0 0 0 0
0 0 0 1 0 0 0
−1 1 0 0 0 0 0

0 0 0 0 1 0 0
0 −1 1 0 0 0 0
0 0 0 0 0 1 0
0 0 −1 0 0 0 0
0 0 0 0 0 0 1


, V A1 =



1 0 0 0 0 1
0 0 1 0 0 −1
−2 1 0 0 0 −1

0 0 −1 1 0 0
1 −2 0 0 0 0
0 0 0 −1 1 0
0 1 0 0 0 0
0 0 0 0 −1 0


,

and

V A2 =



1 0 0 −2 0
0 1 0 1 −1
−3 0 0 2 −2

0 −2 1 1 3
3 0 0 0 2
0 1 −2 0 0
−1 0 0 0 0

0 0 1 0 0


,

satisfying

∑
α∈Z

v(α)uj(−α) = 0, v ∈ V Ak , 0 ≤ j ≤ k, k ∈ {0, 1, 2},

are left-invariant under TAε , ε ∈ {0, 1, 2}. Since we are interested in the C2 regular-
ity of SA, in Proposition 1 below, we analyze the joint spectral properties of the
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matrix set {TAε |V A2 : ε ∈ {0, 1, 2}} respectively given by

1
729


64µ+ 243 96µ+ 108 180 − 96µ −112µ− 144 −80µ− 72

64λ− 128µ− 480 −96λ− 192µ− 57 192µ− 360 224µ− 224λ+ 462 96λ+ 160µ− 6
128λ− 60 192λ− 30 −192λ− 33 39 − 224λ 21 − 160λ
16µ+ 99 72µ+ 81 90 − 48µ 0 −64µ− 63

−112µ− 369 9 − 120µ 144µ− 270 224µ+ 423 96µ− 54

 ,

1
729


−96µ− 135 −48µ− 54 96µ+ 108 0 −64µ− 90

192µ− 192λ+ 576 192λ+ 96µ+ 222 −96λ− 192µ− 57 32λ 128µ− 416λ+ 240
36 − 192λ 15 − 96λ 192λ− 30 0 24 − 128λ

0 −72µ− 81 72µ+ 81 −8µ− 18 72µ+ 81
192µ+ 540 24µ+ 171 9 − 120µ −8µ− 9 200µ+ 252

 ,

1
729


32µ+ 45 0 −48µ− 54 0 0

128λ− 64µ− 132 −192λ− 33 192λ+ 96µ+ 222 32λ− 9 224λ+ 33
64λ− 12 0 15 − 96λ 0 0
−16µ− 99 48µ− 90 −72µ− 81 −8µ− 9 72 − 56µ
−80µ− 171 48µ− 90 24µ+ 171 −8µ− 18 81 − 56µ

 .

(19)

We continue by defining the transition matrices of SB. These transition ma-
trices TBε ∈ R10×10 are 5 × 5 block matrices consisting of 2 × 2 matrix blocks
BT (ε+ 3α− β)

TBε =
(
BT (ε+ 3α− β)

)
α,β∈ΩB

ε ∈ {0, 1, 2}, ΩB = {−3,−2,−1, 0, 1}.

The polynomial reproduction property of HA that we use further on guarantees
that the polynomial sequence

u0 =

{(
−2

1

)
: α ∈ Z

}
(20)

is a polynomial eigensequence of the subdivision operator SB, i.e. SBu0 = u0. The
size of the corresponding difference subspace can be reduced by removing further
common invariant subspaces of the transition matrices and we get V B0 identified
by the column vectors

V B0 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
−2 0 1 0 0 0 0

0 −2 0 1 0 −1 1
1 0 −2 0 0 −1 3
0 1 0 −2 1 0 3
0 0 1 0 0 1 −1
0 0 0 1 −2 1 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0


V B0 is left-invariant under all transition matrices TBε , ε ∈ {0, 1, 2}. Since we are
interested in the C0 regularity of SB, in Proposition 2 below, we analyze the joint
spectral properties of the matrix set {TBε |V B0 : ε ∈ {0, 1, 2}} respectively given by
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(to be divided by the integer number 243)



0 0 0 0 0 0 0
0 0 0 0 0 0 0

423 − 32µ 96µ − 180 −27 −96µ − 108 48µ + 54 16µ + 9 96µ + 135
64λ + 32µ + 138 −192λ − 33 −144µ − 195 192λ + 48µ + 24 −96λ − 96µ − 93 −32λ − 64µ − 87 176µ − 192λ + 270

12 − 64λ 0 288λ − 51 15 − 96λ 192λ − 30 128λ − 24 63 − 352λ
64µ + 72 0 −288µ − 792 96µ + 252 −192µ − 72 −128µ − 459 352µ + 882

450 96µ − 180 −144µ − 630 90 − 48µ 90 − 48µ −48µ − 360 272µ + 783


,



−16µ − 9 48µ + 54 0 0 0 0 0
32λ − 16µ − 12 48µ − 96λ + 69 0 0 0 0 0

112µ 48µ + 342 423 − 32µ 96µ − 180 −96µ − 108 16µ + 324 −32µ − 360
−320λ − 32µ − 90 192λ + 96µ + 222 64λ + 32µ + 138 −192λ − 33 192λ + 48µ + 24 32µ − 32λ + 117 64λ − 32µ − 126

0 0 12 − 64λ 0 15 − 96λ 12 − 64λ 64λ − 12
32µ + 180 −96µ − 252 64µ + 72 0 96µ + 252 64µ + 81 −64µ − 72
144µ + 180 90 − 48µ 450 96µ − 180 90 − 48µ 48µ + 360 −64µ − 387


,



−27 −96µ − 108 −16µ − 9 48µ + 54 0 −48µ − 54 48µ + 54
−33 192λ − 96µ − 138 32λ − 16µ − 12 48µ − 96λ + 69 0 96λ − 48µ − 69 48µ − 96λ + 69

−144µ − 1098 18 − 240µ 112µ 48µ + 342 96µ − 180 −96µ − 261 80µ + 243
288λ − 519 −96λ − 192µ − 57 −320λ − 32µ − 90 192λ + 96µ + 222 −192λ − 33 −96λ − 96µ − 210 128λ + 96µ + 210

0 0 0 0 0 0 0
468 192µ + 72 32µ + 180 −96µ − 252 0 96µ + 261 −96µ − 270

−144µ − 630 90 − 48µ 144µ + 180 90 − 48µ 96µ − 180 0 −16µ − 27


.

(21)

3.2.2 Parameter domain for HC2-regularity of HA

The main result of this section, Theorem 1, shows that the Hermite scheme HA
in (15) is HC2-smooth for (µ, λ) ∈ K2, where K2 ⊂ R2 is a closed convex hull

K2 = co{(µ2,m, λ2,m) ∈ R2 : m = 1, . . . , 6}

of the points

(µ2,1, λ2,1) = ( − 271/100, 519/971 ), (µ2,2, λ2,2) = ( − 159/73, 78/175 ),

(µ2,3, λ2,3) = ( − 2417/2062, 509/2217 ), (µ2,4, λ2,4) = ( − 185/91, 92/293 ),

(µ2,5, λ2,5) = ( − 271/100, 311/661 ), (µ2,6, λ2,6) = ( − 277/100, 113/222 ),

shown on Figure 3. The proof of Theorem 1 is based on Proposition 1 and Propo-
sition 2 whose combination guarantee HC2-regularity of HA.

Proposition 1 The scheme SA in (15) is C2-smooth for (λ, µ) ∈ K2.

Proof To stress the parameter dependence, we set TAε,µ,λ|V A2 = TAε |V A2 for ε ∈
{0, 1, 2}. Define U = span{u1, u2, u3} with uj , j = 1, 2, 3, in (18). Note that the
columns of V A2 in section 3.2.1 can be identified with sequences in `2×1(Ω) with
ΩA = {−2,−1, 0, 1}. Then, straightforward computations show that∑

α∈Z
v(α)u(−α) = 0, v ∈ V A2 , u ∈ U.

Therefore, due to the minimality of ΩA and by [26, Theorem 4.1], it suffices to
show that

ρ(T A) <
1

9
for T A = {TAε,µ,λ|V A2 : ε ∈ {0, 1, 2}, (µ, λ) ∈ K2}.

To do that we compute the Delauney triangulation ∆ of K2

∆ =
{
∆j = co{k1j , k

2
j , k

3
j } : kmj ∈ K2, j = 1, . . . , J

}
, J ∈ N,
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with vertices kmj ∈ K2. Next, for each triangle ∆j ∈ ∆, we define the following set
of nine matrices

T Aj = {TAε,µ,λ|V A2 : ε ∈ {0, 1, 2}, (µ, λ) = kmj , m = 1, 2, 3}.

By [4, Theorem 3.2, Remark 3.5 (iii)], if

ρ(T Aj ) <
1

9
, (22)

then

ρ(T A∆j ) <
1

9
for T∆j = {TAε,µ,λ|V A2 : ε ∈ {0, 1, 2}, (µ, λ) ∈ ∆j}.

To prove (22), we use the results in [18], [19], [32] and the modified Gripenberg
and modified invariant polytope algorithms in [32]. For each triangle ∆j in the tri-
angulation ∆ of K2, or for its dyadically refined version, the algorithms terminate
successfully determining the spectrum maximizing matrix product from Tj . This
proves (22) for all j = 1, . . . , J and, thus, the claim follows.

The regularity analysis if SA is not sufficient to conclude HC2-regularity of HA.
Therefore, we proceed with the analysis of the Taylor operator SB constructed in
(16). For this scheme we can prove the following convergence result, again based
on a JSR approach.

Proposition 2 The scheme SB in (16) is convergent for (λ, µ) ∈ K0.

Proof The proof mimics the proof of Proposition 1 where we replace the transition
matrices by the one in (21).

Combining Propositions 1 and 2 and we are finally ready to prove our main
result.

Theorem 1 The scheme HA in (15) is HC2-smooth for (λ, µ) ∈ K2.

Proof Since, by Proposition 2, HA is convergent its vector-valued limit function

Φ : R→ R2, has structure Φ =

(
φ

φ
′

)
with φ

′
∈ C0. On the other hand, since, by

Proposition 1, SA is C2-convergent it follows that φ ∈ C2. Hence φ
′
∈ C1, which

implies the HC2-convergence of HA.

Remark 3 Note that the use of the triangulation ∆ of K2 in the proof of Proposi-
tion 1 is unavoidable. In fact, if we compute the joint spectral radius of a matrix
set defined by the vertices of the whole domain K2 the sufficient conditions in [4,
Theorem 3.2, Remark 3.5 (iii)] are not satisfied.
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Fig. 3 Domain K2.

3.2.3 C0 and C1-regularity of SA

For completeness, we also describe the parameter domain K0 and K1 for C0 and
C1-convergence of SA, respectively. They are depicted in Figure 4. The domains
K0,K1 are obtained using the argument similar to the one in Proposition 1. The
set K0 is a closed convex hull

K0 = co{(µ0,m, λ0,m) ∈ R2 : m = 1, . . . , 7}

of the points

(µ0,1, λ0,1) = ( −513/50, 231/50 ), (µ0,2, λ0,2) = ( 357/125, 216/125 ),

(µ0,3, λ0,3) = ( 230/50, 310/250 ), (µ0,4, λ0,4) = ( 520/129, −748/217 ),

(µ0,5, λ0,5) = ( −230/50, −301/200 ), (µ0,6, λ0,6) = ( −950/80, 403/100 ),

(µ0,7, λ0,7) = ( −627/53, 211/50 ).

The domain K1 is a closed convex hull

K1 = co{(µ1,m, λ1,m) ∈ R2 : m = 1, . . . , 7}

of the points

(µ1,1, λ1,1) = ( − 51/10, 31/22 ), (µ1,2, λ1,2) = ( − 159/73, 9/7 ),

(µ1,3, λ1,3) = ( 4/5, 3/8 ), (µ1,4, λ1,4) = ( 13/14, 6/25 ),

(µ1,5, λ1,5) = ( − 13/8, −7/20 ), (µ1,6, λ1,6) = ( − 19/8, −2/13 ),

(µ1,7, λ1,7) = ( − 59/11, 9/7 ).

3.3 Complete Taylor operator approach for the extended scheme

In this subsection, we derive the complete Taylor factorization [29] of the extended
Hermite scheme HA+ in (23) of order 2 and study its contractivity for different
parameter values (µ, λ) ∈ K2. We determine what we call optimal parameters
from K2 such that the corresponding Hermite scheme HA yields visually smoother
curves in fewer iterations, see Figure 5.
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Fig. 4 Parameter domains K2 ⊂ K1 ⊂ K0.

To define the scheme HA+ we use the results from [29] and [30] and start by
completing the sequences fn ∈ `2(Z) generated by HA by one additional compo-
nent determined from the following approximations of the second derivative. In
particular, for ϕ ∈ C3(R) and for small h ∈ R, we use the following approximations

ϕ′′(x) ≈ 1

2h

(
ϕ′(x+ h)− ϕ′(x− h)

)
,

ϕ′′(x+ h/3) ≈ 1

6h

(
5ϕ′′(x+ h)− 4ϕ′′(x)− ϕ′′(x− h)

)
,

ϕ′′(x− h/3) ≈ 1

6h

(
−5ϕ′(x− h) + 4ϕ′(x) + ϕ′(x+ h)

)
, x ∈ R.

Note that for an arbitrary initial sequence {f0(α) =
(
f0(α) f ′0(α)

)T
, α ∈ Z} ∈

`2(Z), at the n-th step of the subdivision recursion, the above approximations
suggest the construction of a new sequence in `3(Z) with additional component
f ′′n+1(α) for α ∈ Z defined by

3−2(n+1)f ′′n+1(3α) = 3−2

2

(
3−nf ′n(α+ 1)− 3−nf ′n(α− 1)

)
,

3−2(n+1)f ′′n+1(3α+ 1) = 3−3

2

(
5 · 3−nf ′n(α+ 1)− 4 · 3−nf ′n(α)− 3−nf ′n(α− 1)

)
,

3−2(n+1)f ′′n+1(3α− 1) = 3−3

2

(
− 5 · 3−nf ′n(α− 1) + 4 · 3−nf ′n(α) + 3−nf ′n(α+ 1)

)
,

These identities define additional subdivision rules for the scheme of type (4) with
the corresponding subdivision mask A+ ∈ `3×3(Z) given by its symbol

A∗+(z) =
∑
α∈Z

A+(α)zα =

a11(z) a12(z) 0
a21(z) a22(z) 0

0 q2(z) 0

 , z ∈ C \ {0}, (23)

with (
a11(z) a12(z)
a21(z) a22(z)

)
=
∑
α∈Z

A(α)zα

defined by using (15) and with

q2(z) = −z
−4 − z4 + 3(z−3 − z3) + 5(z−2 − z2) + 4(z−1 − z)

54
, z ∈ C \ {0}.
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The complete Taylor factorization of A∗+(z) defines the operator SB̃+
: `3(Z) →

`3(Z) whose symbol B̃
∗
+(z) satisfies z−1 − 1 −1 −1/2

0 z−1 − 1 −1
0 0 z−1 − 1

A∗+(z) =
1

9
B̃
∗
+(z)

 z−3 − 1 −1 −1/2
0 z−3 − 1 −1
0 0 z−3 − 1

 .

(24)

Computation of the entries of B̃
∗
+(z) provides

b̃00(z) = 80µ z6+99z6−32µ z5−45z5+16µ z4−126z4+112µ z3+279z3−32µ z2+108z2+16µz+9z+32µ+45
81z2

b̃01(z) = − 320µ z6+640λ z6+315z6−128µ z5−256λ z5−51z5+64µ z4+128λ z4−273z4

324z2

− 128µ z3−384l z3+483z3+256λ z2+177z2−128λz+39z−256λ+48
324z2

b̃02(z) =
z (160µ z3+640λ z3+117z3−64µ z2−256λ z2+39z2+32µz+128λz−21z+64µ+256λ+42)

324

b̃10(z) =
2(z−1) (z+1) (8µ z4+9z4−8µ z3−9z3+16µ z2−30z2−8µz−9z+8µ+9)

27z2

b̃11(z) = − (z−1) (32µ z5+64λ z5+35z5+36z4+32µ z3+64λ z3−43z3−64λ z2−68z2−9z−64λ+10)
54z2

b̃12(z) =
z (16µ z3+64λ z3+17z3−16µ z2−64λ z2+19z2+16µz+64λz−z−16µ−64λ−8)

54

b̃20(z) = 0 b̃21(z) = − (z−1) (z+1) (z2+z+1)2

6z2
, b̃22(z) =

z (z+1) (z2+z+1)
6

.

(25)

By [29], the scheme HA is HC2-smooth, if the stationary vector subdivision
scheme SB̃+

is contractive, i.e there exists R ∈ N such that ‖SR
B̃+
‖∞ < 1. By [15],

the latter is equivalent to show that

max


∥∥∥∥∥∥
∑
β∈Z
|B̃[R]

+ (ε− 3β)|

∥∥∥∥∥∥
∞

, ε ∈ {0, 1, 2}

 < 1

with the R-iterated mask B̃
[R]
+ computed by the iteration

B̃
[1]
+ = B̃+, B̃

[r]
+ =

∑
β∈Z

B̃+(· − 3β)B̃
[r−1]
+ (β), r = 1, . . . , R.

Matlab computations for

µ = −1.90660580626993, λ = 0.333939685329603,
µ∗ = −1.86303965004445, λ∗ = 0.328737778603242,

(26)

yield the results presented in the following table where R is the smallest integer
such that ‖SRSB̃+ ‖∞ < 1; The real value αφ ≥ − log3(ρ(T )) is the Hölder exponent

of φ, the first component of the vector limit function, while s.m.p. is the spectrum
maximizing product

∏
of length n that attains the joint spectral radius, i.e. the

joint spectral radius ρ(T ) = ρ(
∏

)1/n.

R ‖SRB̃ ‖∞ αφ s.m.p.

(µ, λ) 10 0.682990725 2.40722. . . T 6
0 T1T0T

3
1 T

6
2 T1T2T

3
1 |V2

(µ∗, λ∗) 9 0.722679251 2.40289. . . T 4
0 T1T0T

3
1 T

4
2 T1T2T

3
1 |V2
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Fig. 5 Basic limit functions φ1 and φ2 for (µ, λ) as in (26)
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